A Novel Data Integrity Attack Detection Algorithm Based on Improved Grey Relational Analysis

False data injection (FDI) attack is the most common data integrity attack, and it is also one of the most serious threats in industrial control systems (ICSs). Although many detection approaches are developed with burgeoning research interests, the technical capability of existing detection methods...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 6; s. 73423 - 73433
Hlavní autoři: Zhang, Zhengdao, Wang, Yunfei, Xie, Linbo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract False data injection (FDI) attack is the most common data integrity attack, and it is also one of the most serious threats in industrial control systems (ICSs). Although many detection approaches are developed with burgeoning research interests, the technical capability of existing detection methods is still insufficient because the stealth FDI attacks have been proven to bypass bad data detector. In this paper, a novel data analytical algorithm is proposed to identify the stealth FDI attacks in ICSs according to the correlation analysis. First, we evaluate the correlation between measurements and control variables based on an improved grey relational analysis. Then, SVM is used to classify the FDI attack according to the values of correlation. Through a reliable semi-physical simulation testbed whose virtual plant corresponds to a 330 MW boiler-turbine unit, two FDI attacks that can bypass the detection system are studied. A dataset, which contains the normal data and attack data, is created from the testbed to verify the effectiveness of the proposed algorithm. In addition, the performance of the proposed algorithm is also studied based on the new gas pipeline dataset that is collected by the distributed analytics and security institute in Mississippi State University. Such a novel algorithm, which has better accuracy and reliability, is compared with the state of the art based on the data analysis.
AbstractList False data injection (FDI) attack is the most common data integrity attack, and it is also one of the most serious threats in industrial control systems (ICSs). Although many detection approaches are developed with burgeoning research interests, the technical capability of existing detection methods is still insufficient because the stealth FDI attacks have been proven to bypass bad data detector. In this paper, a novel data analytical algorithm is proposed to identify the stealth FDI attacks in ICSs according to the correlation analysis. First, we evaluate the correlation between measurements and control variables based on an improved grey relational analysis. Then, SVM is used to classify the FDI attack according to the values of correlation. Through a reliable semi-physical simulation testbed whose virtual plant corresponds to a 330 MW boiler-turbine unit, two FDI attacks that can bypass the detection system are studied. A dataset, which contains the normal data and attack data, is created from the testbed to verify the effectiveness of the proposed algorithm. In addition, the performance of the proposed algorithm is also studied based on the new gas pipeline dataset that is collected by the distributed analytics and security institute in Mississippi State University. Such a novel algorithm, which has better accuracy and reliability, is compared with the state of the art based on the data analysis.
Author Zhang, Zhengdao
Xie, Linbo
Wang, Yunfei
Author_xml – sequence: 1
  givenname: Zhengdao
  orcidid: 0000-0003-1351-0723
  surname: Zhang
  fullname: Zhang, Zhengdao
  email: wxzzd@jiangnan.edu.cn
  organization: Engineering Research Center of Internet of Things Applied Technology, School of IoT Engineering, Ministry of Education, Jiangnan University, Wuxi, China
– sequence: 2
  givenname: Yunfei
  orcidid: 0000-0003-3763-1976
  surname: Wang
  fullname: Wang, Yunfei
  organization: Engineering Research Center of Internet of Things Applied Technology, School of IoT Engineering, Ministry of Education, Jiangnan University, Wuxi, China
– sequence: 3
  givenname: Linbo
  surname: Xie
  fullname: Xie, Linbo
  organization: Engineering Research Center of Internet of Things Applied Technology, School of IoT Engineering, Ministry of Education, Jiangnan University, Wuxi, China
BookMark eNp9UctqWzEUFCWFpmm-IBtB13b1jrS8dR41hATy2BWELJ3ryLm2UkkO-O8r56aldJGzkA6jM8MZzWd0sEkbQOiEkimlxHzrZrPzu7spI1RPmdZCEvEBHTKqzIRLrg7-6T-h41JWpJVukDw9RD87fJ1eYMBnrjo831RY5lh3uKvV-Sd8BhV8jWmDu2GZ2svjGn93BQJu0Hz9nBs34MsMO3wLg9tPugF37diVWL6gj70bChy_3Ufo4eL8fvZjcnVzOZ91VxMviK4T6Hu9kNQBp6GnQHXwxAdHjfNCytMgqeCMS8VU6IM0esFETw0oH1Qw0hl-hOajbkhuZZ9zXLu8s8lF-wqkvLQu1-gHsERRw6RRMtCFYEo4T1T7HgDakwUVsml9HbWat19bKNWu0jY3Q8Wyto3WhAjepsw45XMqJUNvfayv9mt2cbCU2H02dszG7rOxb9k0Lv-P-2fj91knIysCwF-GlvtS_Dex_Ztg
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TSG_2020_3029954
crossref_primary_10_1016_j_jfranklin_2021_02_024
crossref_primary_10_1109_JIOT_2022_3224671
crossref_primary_10_1186_s42162_022_00195_7
crossref_primary_10_3390_app122211598
crossref_primary_10_1016_j_hitech_2023_100477
crossref_primary_10_1109_TII_2021_3132131
crossref_primary_10_1016_j_rser_2022_112423
crossref_primary_10_1109_ACCESS_2020_3029847
crossref_primary_10_1109_ACCESS_2020_3047374
crossref_primary_10_1109_ACCESS_2020_2999585
crossref_primary_10_1145_3592797
crossref_primary_10_1109_JIOT_2022_3184333
crossref_primary_10_32604_cmc_2023_026787
crossref_primary_10_1109_ACCESS_2021_3058403
Cites_doi 10.1109/TSG.2015.2495133
10.1049/iet-gtd.2017.0455
10.1109/TAC.2016.2541919
10.1016/j.compeleceng.2017.02.010
10.3115/1072017.1072026
10.1016/j.automatica.2017.09.028
10.1109/CDC.2010.5717318
10.1080/00396338.2011.555586
10.1109/TNNLS.2015.2404803
10.1049/iet-cps.2017.0013
10.1109/SmartGridComm.2011.6102326
10.1109/TIT.2006.885507
10.1109/TSMC.2014.2387096
10.1016/j.isatra.2007.02.009
10.1109/TAC.2015.2498708
10.1109/TSG.2015.2492827
10.1109/TII.2016.2614396
10.1109/ACCESS.2017.2769099
10.1145/1653662.1653666
10.1109/ACCESS.2017.2757944
10.1109/TPWRS.2012.2224144
10.1109/MDAT.2016.2594178
10.1109/TPWRS.2016.2631891
10.1109/59.589708
10.1109/TSG.2011.2163807
10.1007/978-1-4615-4999-4
10.1109/TSG.2015.2409775
10.1109/TIFS.2016.2542061
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2018.2884504
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 73433
ExternalDocumentID oai_doaj_org_article_061925965d1b4264ac06216ee1f0b145
10_1109_ACCESS_2018_2884504
8555556
Genre orig-research
GrantInformation_xml – fundername: National Key R & D Program of China
  grantid: 2018YFD0400900
– fundername: Education Ministry and China Mobile Science Research Foundation
  grantid: MCM20170204
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-eff8b51ae31df1e18dc0cda19ac4557d5143235626dfd598b24f19e6cd6d95a93
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454360200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:41 EDT 2025
Sun Nov 30 05:15:43 EST 2025
Tue Nov 18 20:49:27 EST 2025
Sat Nov 29 03:33:32 EST 2025
Wed Aug 27 03:03:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-eff8b51ae31df1e18dc0cda19ac4557d5143235626dfd598b24f19e6cd6d95a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3763-1976
0000-0003-1351-0723
OpenAccessLink https://ieeexplore.ieee.org/document/8555556
PQID 2455880043
PQPubID 4845423
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2018_2884504
crossref_primary_10_1109_ACCESS_2018_2884504
proquest_journals_2455880043
doaj_primary_oai_doaj_org_article_061925965d1b4264ac06216ee1f0b145
ieee_primary_8555556
PublicationCentury 2000
PublicationDate 20180000
2018-00-00
20180101
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 20180000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
ref33
ref10
ref2
cárdenas (ref27) 2011
ref1
ref17
ref16
ref19
ref18
han (ref29) 0
mo (ref11) 2014; 24
deng (ref23) 1989; 1
ref26
ref25
ref20
ref22
morris (ref36) 2015
ref21
ref28
tian (ref32) 2004; 24
ref8
ref7
ref9
ref4
ref3
liang (ref6) 2017; 8
ref5
dang (ref30) 2004; 6
han (ref24) 2017; 32
References_xml – volume: 1
  start-page: 1
  year: 1989
  ident: ref23
  article-title: Introduction to grey system theory
  publication-title: J Grey Syst
– volume: 24
  start-page: 1396
  year: 2014
  ident: ref11
  article-title: Detecting integrity attacks on SCADA systems
  publication-title: IEEE Trans Control Syst Technol
– volume: 8
  start-page: 1630
  year: 2017
  ident: ref6
  article-title: A review of false data injection attacks against modern power systems
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2495133
– ident: ref35
  doi: 10.1049/iet-gtd.2017.0455
– start-page: 355
  year: 2011
  ident: ref27
  article-title: Attacks against process control systems: Risk assessment, detection, and response
  publication-title: Proc 6th ACM Symp Inf Comput Commun Secur
– ident: ref14
  doi: 10.1109/TAC.2016.2541919
– ident: ref26
  doi: 10.1016/j.compeleceng.2017.02.010
– ident: ref34
  doi: 10.3115/1072017.1072026
– ident: ref15
  doi: 10.1016/j.automatica.2017.09.028
– ident: ref10
  doi: 10.1109/CDC.2010.5717318
– volume: 32
  start-page: 1647
  year: 2017
  ident: ref24
  article-title: A variable selection algorithm based on improved grey relational analysis
  publication-title: Control Decis
– ident: ref2
  doi: 10.1080/00396338.2011.555586
– ident: ref19
  doi: 10.1109/TNNLS.2015.2404803
– ident: ref21
  doi: 10.1049/iet-cps.2017.0013
– ident: ref7
  doi: 10.1109/SmartGridComm.2011.6102326
– ident: ref31
  doi: 10.1109/TIT.2006.885507
– ident: ref28
  doi: 10.1109/TSMC.2014.2387096
– volume: 24
  start-page: 180
  year: 2004
  ident: ref32
  article-title: Simplified nonlinear dynamic model for a 330 MW unit
  publication-title: Proc CSEE
– ident: ref33
  doi: 10.1016/j.isatra.2007.02.009
– ident: ref12
  doi: 10.1109/TAC.2015.2498708
– ident: ref13
  doi: 10.1109/TSG.2015.2492827
– ident: ref22
  doi: 10.1109/TII.2016.2614396
– ident: ref20
  doi: 10.1109/ACCESS.2017.2769099
– ident: ref5
  doi: 10.1145/1653662.1653666
– ident: ref1
  doi: 10.1109/ACCESS.2017.2757944
– ident: ref17
  doi: 10.1109/TPWRS.2012.2224144
– ident: ref3
  doi: 10.1109/MDAT.2016.2594178
– volume: 6
  start-page: 41
  year: 2004
  ident: ref30
  article-title: Improvement on degree of grey slope incidence
  publication-title: Eng Sci
– year: 0
  ident: ref29
  article-title: Multivariate chaotic time series prediction based on improved grey relational analysis
  publication-title: IEEE Trans Syst Man Cybern Syst
– year: 2015
  ident: ref36
  publication-title: Industrial control system simulation and data logging for intrusion detection system research
– ident: ref4
  doi: 10.1109/TPWRS.2016.2631891
– ident: ref9
  doi: 10.1109/59.589708
– ident: ref16
  doi: 10.1109/TSG.2011.2163807
– ident: ref25
  doi: 10.1007/978-1-4615-4999-4
– ident: ref18
  doi: 10.1109/TSG.2015.2409775
– ident: ref8
  doi: 10.1109/TIFS.2016.2542061
SSID ssj0000816957
Score 2.2425144
Snippet False data injection (FDI) attack is the most common data integrity attack, and it is also one of the most serious threats in industrial control systems...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 73423
SubjectTerms Algorithms
attack detection
Control systems
Correlation
Correlation analysis
Data analysis
Data integrity
Data mining
Datasets
Detection algorithms
false data injection
Gas pipelines
grey correlation analysis
Industrial electronics
Industry control systems
Integrated circuits
Integrity
Mathematical model
Natural gas
Noise measurement
Physical simulation
SVM
Turbines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT8QgFCbGeNCDcY3jFg4erQIFCsc6rpeJB008mBDKosZxxozV3y9QZjKJiV7sqaFQ-pa-hbx8D4AjSQzBVrvCxApX6nXEgNSm4N5650palVqnZhPVYCAeHuTtXKuvWBPWwQN3jDtFMcJnkjOLm-i9tUGcYO4c9qjBNKGXokrOJVPJBgvMJasyzBBG8rTu9wNFsZZLnBAhKMut2aauKCH25xYrP-xycjaXa2A1R4mw7r5uHSy40QZYmcMO3ASPNRyMv9wQnutWw5uE-hAiali3rTav8Ny1qchqBOvh0zg8eX6DZ8FjWRiGupOEcH8VBAmn9XBxwwxRsgXuLy_u-tdFbpVQGIpEWzjvRcOwdiW2HjssrEHGaiy1oYxVNoZFpAyxDrfeMikaQj2WjhvLrWRalttgcTQeuR0Am7L00noSEidLfUjH4vLgxC2lFtFS9wCZck2ZjCMe21kMVconkFQdq1Vktcqs7oHj2aL3Dkbj9-lnURyzqREDOw0EzVBZM9RfmtEDm1GYs5cIFi_eA_tT4ar8v34oErgULFmgb_c_tt4Dy5Gc7qhmHyy2k093AJbMV_vyMTlMqvoNlGroIg
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Data Integrity Attack Detection Algorithm Based on Improved Grey Relational Analysis
URI https://ieeexplore.ieee.org/document/8555556
https://www.proquest.com/docview/2455880043
https://doaj.org/article/061925965d1b4264ac06216ee1f0b145
Volume 6
WOSCitedRecordID wos000454360200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbxQhFH9pGw968KuarrYNB4-ddmCAgeN026oHNx406cGEMPBQ43bXtNMe_dsFhp2Y2Jg4hwlhYAb48fEe8_g9gDeaOUa9xcolC1cebOKAtK6SwQfEhreNtdnZRLtYqMtL_XELjqazMIiYjc_wOAXzv3y_drdpq-xEiXTJbdhuWzme1Zr2U5IDCS3aQixEa33SzeexDsl6Sx0zpbgoztg2i0_m6C9OVf6aifPycvHk_wr2FB4XMZJ0I-7PYAtXz-HRH-SCu_ClI4v1HS7JmR0seZ9pIaLITbphsO4HOcMhW2GtSLf8uo5Pvl2R07ikeRKjxq2GGH4bkSYbg7n0wcJh8gI-X5x_mr-rii-FyvFaDRWGoHpBLTbUB4pUeVc7b6m2jgvR-iQ3sSYKQ9IHL7TqGQ9Uo3Reei2sbl7Czmq9wj0gfdME7QOLmpXnIeprKXtc5T3nvuaNnQHbNLJxhWg8-btYmqxw1NqMyJiEjCnIzOBoyvRz5Nn4d_LThN6UNJFk54gIiyljztRJORRaCk_7JPhZV0tGJSINdU-5mMFugnJ6SUFxBvubvmDKgL4xLLZSnOpi_V7dn-s1PEwFHHdn9mFnuL7FA3jg7obvN9eHWdWP9w-_zg9zv_0NBkLo-Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PbxQhFH6p1cR68FdtXK3KwWOnHRhg4TjdWttYNx5q0oMJYeBRjeuuaaf9-wWGnZhoTJwTmYEZ4APee8zjewBvNXOMeouVSx6uPNjEAWldJYMPiA2fNtbmYBPT-VxdXOhPG7A3noVBxOx8hvspmf_l-5W7SVtlB0qkS96BuyLKUTmc1hp3VFIICS2mhVqI1vqgnc1iK5L_ltpnSnFRwrGtxU9m6S9hVf5Yi7OAOX70f1V7DA-LIknaAfknsIHLp_DgN3rBbfjSkvnqFhfkyPaWnGZiiKh0k7bvrftOjrDPflhL0i4uV_HJ1x_kMAo1T-KtYbMhpt9HrMnaZS59sLCYPIPPx-_OZydViaZQOV6rvsIQVCeoxYb6QJEq72rnLdXWcSGmPmlOrInqkPTBC606xgPVKJ2XXgurmx3YXK6W-BxI1zRB-8CibeV5iBZbKh7lvOfc17yxE2DrTjauUI2niBcLk02OWpsBGZOQMQWZCeyNhX4OTBv_zn6Y0BuzJprsfCPCYsqsM3UyD4WWwtMuqX7W1ZJRiUhD3VEuJrCdoBxfUlCcwO56LJgypa8Ni70UF7vYvhd_L_UG7p-cfzwzZ6fzDy9hK1V22KvZhc3-6gZfwT1323-7vnqdx-0vb8nqJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Data+Integrity+Attack+Detection+Algorithm+Based+on+Improved+Grey+Relational+Analysis&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Zhengdao&rft.au=Wang%2C+Yunfei&rft.au=Xie%2C+Linbo&rft.date=2018&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=6&rft.spage=73423&rft.epage=73433&rft_id=info:doi/10.1109%2FACCESS.2018.2884504&rft.externalDocID=8555556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon