Hybrid Nature-Inspired Optimization Algorithm: Hydrozoan and Sea Turtle Foraging Algorithms for Solving Continuous Optimization Problems
In this paper, we develop a hybrid optimization algorithm inspired by the reproduction processes of hydrozoans and the foraging behavior of sea turtles for solving continuous optimization problems. Our hybrid algorithm combines the exploration capability of the hydrozoan algorithm with the exploitat...
Uloženo v:
| Vydáno v: | IEEE access Ročník 8; s. 65780 - 65800 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we develop a hybrid optimization algorithm inspired by the reproduction processes of hydrozoans and the foraging behavior of sea turtles for solving continuous optimization problems. Our hybrid algorithm combines the exploration capability of the hydrozoan algorithm with the exploitation capability of the sea turtle foraging algorithm. Moreover, a new adaptive crossover operator was introduced and integrated into the hybrid algorithm to further enhance exploration capability. Our hybrid algorithm was evaluated and compared to the individual algorithms and 12 state-of-the-art algorithms. Results on 21 standard benchmark functions showed that our algorithm was very effective and was among the best of the group, specifically it converged faster than the individual algorithms on most functions and reached optimal or near-optimal results on all functions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2020.2984023 |