Itao: a new iterative thresholding algorithm based optimizer for deep neural networks

In this paper, we propose a new iterative thresholding algorithm based optimizer (Itao) for deep neural networks. It is a first-order gradient-based algorithm with Tikhonov regularization for stochastic objective functions. It is fast and straightforward to implement. It acts on the parameters and t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 10; p. 1
Main Authors: Merrouchi, M., Atifi, K., Skittou, M., T.Gadi
Format: Journal Article
Language:English
Published: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we propose a new iterative thresholding algorithm based optimizer (Itao) for deep neural networks. It is a first-order gradient-based algorithm with Tikhonov regularization for stochastic objective functions. It is fast and straightforward to implement. It acts on the parameters and their gradients, with respect to the objective function, in only one step in the backpropagation system when training a neural network. This reduces the learning time and makes it well suited for neural networks with large parameters and/or large datasets. We have experimented this algorithm on several types of loss functions such as mean squared error, mean absolute error and categorical crossentropy. Different types of models such as regression and classification are studied. The robustness of this optimizer against the noisy labels is also verified. Many of the empirical results of conducted experiments in this study show that our optimizer works well in practice. It can outperform other state-of-the-art optimizers in terms of accuracy or at least give the same results in addition to the reduction of learning time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3222311