Shrimp classification for white spot syndrome detection through enhanced gated recurrent unit-based wild geese migration optimization algorithm

The major dangerous viral infection for cultivated shrimps is WSSV. The virus is extremely dangerous, spreads swiftly, and may result in up to 100% mortality in 3–10 days. The vast wrapped double stranded DNA virus known as WSSV describes a member of the Nimaviridae viral family’s species Whispoviru...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Virus genes Ročník 60; číslo 2; s. 134 - 147
Hlavní autori: Ramachandran, L., Mangaiyarkarasi, S. P., Subramanian, A., Senthilkumar, S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2024
Springer Nature B.V
Predmet:
ISSN:0920-8569, 1572-994X, 1572-994X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The major dangerous viral infection for cultivated shrimps is WSSV. The virus is extremely dangerous, spreads swiftly, and may result in up to 100% mortality in 3–10 days. The vast wrapped double stranded DNA virus known as WSSV describes a member of the Nimaviridae viral family’s species Whispovirus. It impacts a variety of crustacean hosts but predominantly marine shrimp species that are raised for commercial purposes. The entire age groups are affected by the virus, which leads to widespread mortality. Mesodermal and ectodermal tissues, like the lymph nodes, gills, and cuticular epithelium, represents the centres of infection. Complete genome sequencing related to the WSSV strains from Thailand, China, and Taiwan has identified minute genetic variations amongst them. There exist conflicting findings on the causes of WSSV pathogenicity, which involve variations in the size associated with the genome, the count of tandem repeats, and the availability or lack of certain proteins. Hence, this paper plans to perform the shrimp classification for the WSSV on the basis of novel deep learning methodology. Initially, the data is gathered from the farms as well as internet sources. Next, the pre-processing of the gathered shrimp images is accomplished using the LBP technique. These pre-processed images undergo the segmentation process utilizing the TGVFCMS approach. The extraction of the features from these segmented images is performed by the PLDA technique. In the final step, the classification of the shrimp into healthy shrimp and WSSV affected shrimp is done by the EGRU, in which the parameter tuning is accomplished by the wild GMO algorithm with the consideration of accuracy maximization as the major objective function. Performance indicators for accuracy have been compared with those of various conventional methods, and the results show that the methodology is capable of accurately identifying the shrimp WSSV illness.
AbstractList The major dangerous viral infection for cultivated shrimps is WSSV. The virus is extremely dangerous, spreads swiftly, and may result in up to 100% mortality in 3–10 days. The vast wrapped double stranded DNA virus known as WSSV describes a member of the Nimaviridae viral family’s species Whispovirus. It impacts a variety of crustacean hosts but predominantly marine shrimp species that are raised for commercial purposes. The entire age groups are affected by the virus, which leads to widespread mortality. Mesodermal and ectodermal tissues, like the lymph nodes, gills, and cuticular epithelium, represents the centres of infection. Complete genome sequencing related to the WSSV strains from Thailand, China, and Taiwan has identified minute genetic variations amongst them. There exist conflicting findings on the causes of WSSV pathogenicity, which involve variations in the size associated with the genome, the count of tandem repeats, and the availability or lack of certain proteins. Hence, this paper plans to perform the shrimp classification for the WSSV on the basis of novel deep learning methodology. Initially, the data is gathered from the farms as well as internet sources. Next, the pre-processing of the gathered shrimp images is accomplished using the LBP technique. These pre-processed images undergo the segmentation process utilizing the TGVFCMS approach. The extraction of the features from these segmented images is performed by the PLDA technique. In the final step, the classification of the shrimp into healthy shrimp and WSSV affected shrimp is done by the EGRU, in which the parameter tuning is accomplished by the wild GMO algorithm with the consideration of accuracy maximization as the major objective function. Performance indicators for accuracy have been compared with those of various conventional methods, and the results show that the methodology is capable of accurately identifying the shrimp WSSV illness.
The major dangerous viral infection for cultivated shrimps is WSSV. The virus is extremely dangerous, spreads swiftly, and may result in up to 100% mortality in 3-10 days. The vast wrapped double stranded DNA virus known as WSSV describes a member of the Nimaviridae viral family's species Whispovirus. It impacts a variety of crustacean hosts but predominantly marine shrimp species that are raised for commercial purposes. The entire age groups are affected by the virus, which leads to widespread mortality. Mesodermal and ectodermal tissues, like the lymph nodes, gills, and cuticular epithelium, represents the centres of infection. Complete genome sequencing related to the WSSV strains from Thailand, China, and Taiwan has identified minute genetic variations amongst them. There exist conflicting findings on the causes of WSSV pathogenicity, which involve variations in the size associated with the genome, the count of tandem repeats, and the availability or lack of certain proteins. Hence, this paper plans to perform the shrimp classification for the WSSV on the basis of novel deep learning methodology. Initially, the data is gathered from the farms as well as internet sources. Next, the pre-processing of the gathered shrimp images is accomplished using the LBP technique. These pre-processed images undergo the segmentation process utilizing the TGVFCMS approach. The extraction of the features from these segmented images is performed by the PLDA technique. In the final step, the classification of the shrimp into healthy shrimp and WSSV affected shrimp is done by the EGRU, in which the parameter tuning is accomplished by the wild GMO algorithm with the consideration of accuracy maximization as the major objective function. Performance indicators for accuracy have been compared with those of various conventional methods, and the results show that the methodology is capable of accurately identifying the shrimp WSSV illness.The major dangerous viral infection for cultivated shrimps is WSSV. The virus is extremely dangerous, spreads swiftly, and may result in up to 100% mortality in 3-10 days. The vast wrapped double stranded DNA virus known as WSSV describes a member of the Nimaviridae viral family's species Whispovirus. It impacts a variety of crustacean hosts but predominantly marine shrimp species that are raised for commercial purposes. The entire age groups are affected by the virus, which leads to widespread mortality. Mesodermal and ectodermal tissues, like the lymph nodes, gills, and cuticular epithelium, represents the centres of infection. Complete genome sequencing related to the WSSV strains from Thailand, China, and Taiwan has identified minute genetic variations amongst them. There exist conflicting findings on the causes of WSSV pathogenicity, which involve variations in the size associated with the genome, the count of tandem repeats, and the availability or lack of certain proteins. Hence, this paper plans to perform the shrimp classification for the WSSV on the basis of novel deep learning methodology. Initially, the data is gathered from the farms as well as internet sources. Next, the pre-processing of the gathered shrimp images is accomplished using the LBP technique. These pre-processed images undergo the segmentation process utilizing the TGVFCMS approach. The extraction of the features from these segmented images is performed by the PLDA technique. In the final step, the classification of the shrimp into healthy shrimp and WSSV affected shrimp is done by the EGRU, in which the parameter tuning is accomplished by the wild GMO algorithm with the consideration of accuracy maximization as the major objective function. Performance indicators for accuracy have been compared with those of various conventional methods, and the results show that the methodology is capable of accurately identifying the shrimp WSSV illness.
The major dangerous viral infection for cultivated shrimps is WSSV. The virus is extremely dangerous, spreads swiftly, and may result in up to 100% mortality in 3–10 days. The vast wrapped double stranded DNA virus known as WSSV describes a member of the Nimaviridae viral family’s species Whispovirus. It impacts a variety of crustacean hosts but predominantly marine shrimp species that are raised for commercial purposes. The entire age groups are affected by the virus, which leads to widespread mortality. Mesodermal and ectodermal tissues, like the lymph nodes, gills, and cuticular epithelium, represents the centres of infection. Complete genome sequencing related to the WSSV strains from Thailand, China, and Taiwan has identified minute genetic variations amongst them. There exist conflicting findings on the causes of WSSV pathogenicity, which involve variations in the size associated with the genome, the count of tandem repeats, and the availability or lack of certain proteins. Hence, this paper plans to perform the shrimp classification for the WSSV on the basis of novel deep learning methodology. Initially, the data is gathered from the farms as well as internet sources. Next, the pre-processing of the gathered shrimp images is accomplished using the LBP technique. These pre-processed images undergo the segmentation process utilizing the TGVFCMS approach. The extraction of the features from these segmented images is performed by the PLDA technique. In the final step, the classification of the shrimp into healthy shrimp and WSSV affected shrimp is done by the EGRU, in which the parameter tuning is accomplished by the wild GMO algorithm with the consideration of accuracy maximization as the major objective function. Performance indicators for accuracy have been compared with those of various conventional methods, and the results show that the methodology is capable of accurately identifying the shrimp WSSV illness.
Author Mangaiyarkarasi, S. P.
Ramachandran, L.
Subramanian, A.
Senthilkumar, S.
Author_xml – sequence: 1
  givenname: L.
  surname: Ramachandran
  fullname: Ramachandran, L.
  email: fourstar.lr@gmail.com
  organization: Department of Electronics and Communication Engineering, E.G.S. Pillay Engineering College
– sequence: 2
  givenname: S. P.
  surname: Mangaiyarkarasi
  fullname: Mangaiyarkarasi, S. P.
  organization: Department of Electrical and Electronics Engineering, University College of Engineering, Panruti Campus
– sequence: 3
  givenname: A.
  surname: Subramanian
  fullname: Subramanian, A.
  organization: Srinivasa Ramanujan Centre, SASTRA Deemed to Be University
– sequence: 4
  givenname: S.
  surname: Senthilkumar
  fullname: Senthilkumar, S.
  organization: Department of Electronics and Communication Engineering, E.G.S. Pillay Engineering College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38253919$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1TAURS1URG8LP8AAWWLCJHD8SOIMUcVLqsQAkJhZvs5J4iqxL7ajqvwEv4x70wqpgzKwLdtrbz_OPiMnPngk5CWDtwygfZcY4w2vgIvSQHYVPCE7Vre86jr584TsoONQqbrpTslZSlcAoBSXz8ipULwWHet25M-3KbrlQO1sUnKDsya74OkQIr2eXEaaDiHTdOP7GBakPWa0RyJPMazjRNFPxlvs6Why6SPaNUb0ma7e5WpvUlm8dnPZR0xIFzfG7YhwyG5xv7eJmccQXZ6W5-TpYOaEL-7Gc_Lj44fvF5-ry6-fvly8v6ysBJUrVIyp1g5yEMhRNL0SNVhorJWtkXvZg1ESbG9w4L3tsamFbPfIWgTWcLDinLzZfA8x_FoxZb24ZHGejcewJi1YLRouWCv_i_KOtaoBqJuCvn6AXoU1-vIQLYCJrlRNQKFe3VHrfsFeH0oFTLzR91UpgNoAG0NKEQdtXT5-VI7GzZqBvg2A3gKgSwD0MQD61ps_kN67PyoSmygV2I8Y_137EdVfmjDFXA
CitedBy_id crossref_primary_10_1038_s41598_024_75850_y
crossref_primary_10_1038_s41598_025_94413_3
crossref_primary_10_1038_s41598_024_66496_x
crossref_primary_10_1038_s41598_025_87993_7
crossref_primary_10_3233_JIFS_241512
crossref_primary_10_1038_s41598_024_68836_3
crossref_primary_10_3390_v16050813
Cites_doi 10.1051/vetres/2010022
10.1016/j.aquaculture.2011.06.021
10.1016/j.jip.2012.03.004
10.1111/raq.12676
10.1111/jfd.12194
10.1007/s00343-011-0252-y
10.1111/lam.12353
10.1007/s12652-020-01727-3
10.1016/j.jviromet.2011.07.010
10.1080/10236244.2014.894349
10.1016/j.jviromet.2011.01.010
10.1007/s13337-012-0079-y
10.3389/fgene.2019.00264
10.1111/are.12877
10.1016/j.jviromet.2011.01.011
10.1111/j.1365-2109.2010.02553.x
10.3233/JIFS-220172
10.3354/aei00176
10.3329/ijns.v1i3.8822
10.1016/j.aquaculture.2010.12.022
10.1007/s00705-019-04265-2
10.1099/vir.0.026351-0
10.3233/JIFS-232687
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
DBID AAYXX
CITATION
NPM
3V.
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
7S9
L.6
DOI 10.1007/s11262-023-02049-0
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE - Academic

PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1572-994X
EndPage 147
ExternalDocumentID 38253919
10_1007_s11262_023_02049_0
Genre Journal Article
GeographicLocations Thailand
Taiwan
GeographicLocations_xml – name: Thailand
– name: Taiwan
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5RE
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7U
Z7W
Z87
Z8O
Z8Q
Z91
ZMTXR
ZOVNA
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7TM
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
7X8
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c408t-e81187cf4f3e2e36d8350c06cc47a4b4d0a840cdaef2dcde65347be17e01620c3
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001152263700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8569
1572-994X
IngestDate Sat Sep 27 21:34:42 EDT 2025
Sun Nov 09 13:08:31 EST 2025
Wed Nov 05 04:18:21 EST 2025
Mon Jul 21 06:06:30 EDT 2025
Sat Nov 29 04:53:38 EST 2025
Tue Nov 18 22:01:03 EST 2025
Fri Feb 21 02:44:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords White spot syndrome detection
Wild geese migration optimization algorithm
Enhanced gated recurrent unit
Shrimp classification
Language English
License 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e81187cf4f3e2e36d8350c06cc47a4b4d0a840cdaef2dcde65347be17e01620c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 38253919
PQID 3013900730
PQPubID 30539
PageCount 14
ParticipantIDs proquest_miscellaneous_3153623174
proquest_miscellaneous_2917860056
proquest_journals_3013900730
pubmed_primary_38253919
crossref_citationtrail_10_1007_s11262_023_02049_0
crossref_primary_10_1007_s11262_023_02049_0
springer_journals_10_1007_s11262_023_02049_0
PublicationCentury 2000
PublicationDate 20240400
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Boston
PublicationTitle Virus genes
PublicationTitleAbbrev Virus Genes
PublicationTitleAlternate Virus Genes
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Lakshmanan, Veerasamy (CR28) 2022; 43
Mohamed (CR23) 2019; 23
Prayitno, Verdegem, Verreth, Vlak (CR18) 2022
Ramachandran, Mohan, Senthilkumar, Ganesh (CR29) 2022
Hu, Wu, Zhang, Zhang, Lo (CR26) 2020
Trang, Hung, Ninh, Knibb, Nguyen (CR25) 2019
Samanman, Kanatharana, Chotigeat, Deachamag, Thavarungkul (CR3) 2011; 173
Xiaoli, Xiuzhen, Wenbin (CR8) 2011; 29
de Tailly, Keitel, Owen, Alcaraz-Calero, Alexander, Sloman (CR27) 2021; 13
Iqbal, Kabir, Alan, Mamun, Hossain (CR12) 2011; 1
Hoa, Zwart, Phuong, Oanh, Mart, Vlak (CR1) 2011; 92
Panichareon, Khawsak, Deesukon, Sukhumsirichart (CR2) 2011; 178
Jia, Wang, Lu, Zhang, Dong (CR14) 2014; 47
Oakey, Smith, Underwood, Afsharnasab, Alday-Sanz, Dhar, Sivakumar, Sahul (CR24) 2019; 164
Shekhar, Gopikrishna, DilliKumar (CR4) 2010; 41
Jang, Qiao, Kim (CR13) 2014; 37
Walker, Winton (CR6) 2010
Walker, Gudkovs, Mohan, Stalin Raj, Pradeep, Sergeant, Chandra Mohan, Ravibabu, Karunasagur, Santiago (CR7) 2011; 319
Flegel (CR9) 2012; 110
Gayathri, Amarakoon, Wijegoonawardane, Wicraamasinghe (CR22) 2016; 56
Piamsomboon, Inchaisri, Wongtavatchai (CR20) 2016; 8
Pradeep, Rai, Mohan, Shekhar, Karunasagar (CR17) 2012; 23
CR21
Sithigorngula, Rukpratanporn, Chaivisuthangkura, Sridulyakul, Longyant (CR5) 2011; 173
Gao, Kong, Li, Xiao, Meng (CR10) 2011; 312
Bipul Dey, Girsha Dugassa, Sheban Hinzano, Peter Bossier (CR19) 2019; 12
Hossain, Nandi, Siddique, Sanyal, Sultana, Hossain (CR11) 2015; 60
Nagalakshmi, Jyothi (CR16) 2013; 3
Xue, Wei, Li, Geng, Sun (CR15) 2015; 48
B Pradeep (2049_CR17) 2012; 23
S Samanman (2049_CR3) 2011; 173
H Gao (2049_CR10) 2011; 312
JBD de Tailly (2049_CR27) 2021; 13
X Jia (2049_CR14) 2014; 47
PJ Walker (2049_CR6) 2010
PJ Walker (2049_CR7) 2011; 319
S Xue (2049_CR15) 2015; 48
2049_CR21
P Piamsomboon (2049_CR20) 2016; 8
WC Hu (2049_CR26) 2020
L Ramachandran (2049_CR29) 2022
G Nagalakshmi (2049_CR16) 2013; 3
IK Jang (2049_CR13) 2014; 37
TW Flegel (2049_CR9) 2012; 110
SB Prayitno (2049_CR18) 2022
AAD Gayathri (2049_CR22) 2016; 56
B Panichareon (2049_CR2) 2011; 178
R Lakshmanan (2049_CR28) 2022; 43
TT Trang (2049_CR25) 2019
M Iqbal (2049_CR12) 2011; 1
TT Hoa (2049_CR1) 2011; 92
MS Shekhar (2049_CR4) 2010; 41
A Hossain (2049_CR11) 2015; 60
K Bipul Dey (2049_CR19) 2019; 12
P Sithigorngula (2049_CR5) 2011; 173
X Xiaoli (2049_CR8) 2011; 29
ME Mohamed (2049_CR23) 2019; 23
J Oakey (2049_CR24) 2019; 164
References_xml – year: 2010
  ident: CR6
  article-title: Emerging viral diseases of fish and shrimp
  publication-title: Vet Res
  doi: 10.1051/vetres/2010022
– volume: 319
  start-page: 18
  year: 2011
  end-page: 24
  ident: CR7
  article-title: Longitudinal disease studies in small-holder black tiger shrimp (Penaeus monodon) farms in Andhra Pradesh, India. II. Multiple WSSV genotypes associated with disease outbreaks in ponds seeded with uninfected postlarvae
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2011.06.021
– volume: 110
  start-page: 166
  issue: 2
  year: 2012
  end-page: 173
  ident: CR9
  article-title: Historic emergence, impact and current status of shrimp pathogens in Asia
  publication-title: J Invertebr Pathol
  doi: 10.1016/j.jip.2012.03.004
– year: 2022
  ident: CR18
  article-title: White spot syndrome virus host range and impact on transmission
  publication-title: Rev Aquac
  doi: 10.1111/raq.12676
– volume: 37
  start-page: 911
  issue: 10
  year: 2014
  end-page: 920
  ident: CR13
  article-title: Effect of multiple infections with white spot syndrome virus (WSSV) and vibrio anguillarum on Pacific white shrimp, (L.): mortality and viral replication
  publication-title: J Fish Dis
  doi: 10.1111/jfd.12194
– volume: 29
  start-page: 930
  year: 2011
  end-page: 941
  ident: CR8
  article-title: Development and application of antibody microarray for white spot syndrome virus detection in shrimp
  publication-title: Chin J Oceanol Limnol
  doi: 10.1007/s00343-011-0252-y
– volume: 60
  start-page: 128
  year: 2015
  end-page: 134
  ident: CR11
  article-title: Prevalence and distribution of white spot syndrome virus in cultured shrimp
  publication-title: Lett Appl Microbiol
  doi: 10.1111/lam.12353
– year: 2020
  ident: CR26
  article-title: Shrimp recognition using ShrimpNet based on convolutional neural network
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-020-01727-3
– volume: 13
  start-page: 1
  issue: 4
  year: 2021
  end-page: 16
  ident: CR27
  article-title: Monitoring methods of feeding behaviour to answer key questions in penaeid shrimp feeding
  publication-title: Rev Aquac
– volume: 178
  start-page: 16
  year: 2011
  end-page: 21
  ident: CR2
  article-title: Multiplex real-time PCR and high-resolution melting analysis for detection of white spot syndrome virus, yellow-head virus, and penaeus monodon densovirus in penaeid shrimp
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2011.07.010
– volume: 23
  start-page: 613
  issue: 2
  year: 2019
  end-page: 637
  ident: CR23
  article-title: A comparison of the severity of white spot disease in cultured shrimp ( ) at a farm level in Egypt I-molecular, histopathological and field observations
  publication-title: Egypt J Aquatic Biol Fisher
– volume: 47
  start-page: 79
  year: 2014
  end-page: 92
  ident: CR14
  article-title: Immune responses of to thermal stress: a comparative study of shrimp in freshwater and seawater conditions
  publication-title: Mar Freshwat Behav Physiol
  doi: 10.1080/10236244.2014.894349
– volume: 173
  start-page: 75
  year: 2011
  end-page: 84
  ident: CR3
  article-title: Highly sensitive capacitive biosensor for detecting white spot syndrome virus in shrimp pond water
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2011.01.010
– volume: 23
  start-page: 161
  issue: 2
  year: 2012
  end-page: 174
  ident: CR17
  article-title: Biology, host range, pathogenesis and diagnosis of white spot syndrome virus
  publication-title: Indian J Virol
  doi: 10.1007/s13337-012-0079-y
– ident: CR21
– year: 2019
  ident: CR25
  article-title: Genetic variation in disease resistance against white spot syndrome virus (WSSV) in
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00264
– volume: 48
  start-page: 236
  issue: 1
  year: 2015
  end-page: 245
  ident: CR15
  article-title: Effects of total ammonia, temperature and salinity on the mortality and viral replication of WSSV-infected Chinese shrimp ( )
  publication-title: Aquac Res
  doi: 10.1111/are.12877
– volume: 56
  start-page: 239
  year: 2016
  end-page: 251
  ident: CR22
  article-title: Detection and prevalence of white spot syndrome disease (WSSV) in shrimp farms
  publication-title: World Sci News
– volume: 173
  start-page: 85
  year: 2011
  end-page: 91
  ident: CR5
  article-title: Simultaneous and rapid detection of white spot syndrome virus and yellow head virus infection in shrimp with a dual immune chromatographic strip test
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2011.01.011
– volume: 12
  start-page: 822
  issue: 2
  year: 2019
  end-page: 865
  ident: CR19
  article-title: Causative agent, diagnosis and management of white spot disease in shrimp: a review
  publication-title: Rev Aquac
– volume: 41
  start-page: 1683
  issue: 11
  year: 2010
  end-page: 1690
  ident: CR4
  article-title: Development of immunodot blot assay for the detection of white spot syndrome virus infection in shrimps ( )
  publication-title: Aquac Res
  doi: 10.1111/j.1365-2109.2010.02553.x
– volume: 43
  start-page: 1453
  year: 2022
  end-page: 1466
  ident: CR28
  article-title: A novel neural network model for shrimp segmentation to detect white spot syndrome
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-220172
– volume: 8
  start-page: 331
  year: 2016
  end-page: 337
  ident: CR20
  article-title: Climate factors influence the occurrence of white spot disease in cultured penaeid shrimp in Chanthaburi province, Thailand
  publication-title: Aquac Environ Interact
  doi: 10.3354/aei00176
– volume: 1
  start-page: 56
  year: 2011
  end-page: 61
  ident: CR12
  article-title: Seasonal status of white spot syndrome virus in broodstocks, nauplii and postlarvae of black tiger shrimp ( ) in Bangladesh
  publication-title: Int J Nat Sci
  doi: 10.3329/ijns.v1i3.8822
– volume: 3
  start-page: 1
  issue: 9
  year: 2013
  ident: CR16
  article-title: White spot syndrome virus detection in shrimp images using image segmentation techniques
  publication-title: Int J Adv Res Comput Sci Softw Eng
– volume: 312
  start-page: 26
  year: 2011
  end-page: 31
  ident: CR10
  article-title: Quantitative analysis of temperature, salinity and pH on WSSV proliferation in Chinese shrimp by real-time PCR
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2010.12.022
– volume: 164
  start-page: 2061
  issue: 8
  year: 2019
  end-page: 2082
  ident: CR24
  article-title: Global distribution of white spot syndrome virus genotypes determined using a novel genotyping assay
  publication-title: Arch Virol
  doi: 10.1007/s00705-019-04265-2
– volume: 92
  start-page: 675
  year: 2011
  end-page: 680
  ident: CR1
  article-title: Mixed-genotype white spot syndrome virus infections of shrimp are inversely correlated with disease outbreaks in ponds
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.026351-0
– year: 2022
  ident: CR29
  article-title: Early Detection and identification of white spot syndrome in shrimp using an improved deep convolutional neural network
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-232687
– volume: 178
  start-page: 16
  year: 2011
  ident: 2049_CR2
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2011.07.010
– year: 2022
  ident: 2049_CR18
  publication-title: Rev Aquac
  doi: 10.1111/raq.12676
– volume: 29
  start-page: 930
  year: 2011
  ident: 2049_CR8
  publication-title: Chin J Oceanol Limnol
  doi: 10.1007/s00343-011-0252-y
– volume: 1
  start-page: 56
  year: 2011
  ident: 2049_CR12
  publication-title: Int J Nat Sci
  doi: 10.3329/ijns.v1i3.8822
– volume: 60
  start-page: 128
  year: 2015
  ident: 2049_CR11
  publication-title: Lett Appl Microbiol
  doi: 10.1111/lam.12353
– volume: 41
  start-page: 1683
  issue: 11
  year: 2010
  ident: 2049_CR4
  publication-title: Aquac Res
  doi: 10.1111/j.1365-2109.2010.02553.x
– volume: 110
  start-page: 166
  issue: 2
  year: 2012
  ident: 2049_CR9
  publication-title: J Invertebr Pathol
  doi: 10.1016/j.jip.2012.03.004
– volume: 173
  start-page: 75
  year: 2011
  ident: 2049_CR3
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2011.01.010
– volume: 312
  start-page: 26
  year: 2011
  ident: 2049_CR10
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2010.12.022
– year: 2019
  ident: 2049_CR25
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00264
– volume: 56
  start-page: 239
  year: 2016
  ident: 2049_CR22
  publication-title: World Sci News
– year: 2020
  ident: 2049_CR26
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-020-01727-3
– volume: 3
  start-page: 1
  issue: 9
  year: 2013
  ident: 2049_CR16
  publication-title: Int J Adv Res Comput Sci Softw Eng
– year: 2022
  ident: 2049_CR29
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-232687
– volume: 23
  start-page: 161
  issue: 2
  year: 2012
  ident: 2049_CR17
  publication-title: Indian J Virol
  doi: 10.1007/s13337-012-0079-y
– volume: 48
  start-page: 236
  issue: 1
  year: 2015
  ident: 2049_CR15
  publication-title: Aquac Res
  doi: 10.1111/are.12877
– volume: 319
  start-page: 18
  year: 2011
  ident: 2049_CR7
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2011.06.021
– volume: 43
  start-page: 1453
  year: 2022
  ident: 2049_CR28
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-220172
– ident: 2049_CR21
– volume: 173
  start-page: 85
  year: 2011
  ident: 2049_CR5
  publication-title: J Virol Methods
  doi: 10.1016/j.jviromet.2011.01.011
– volume: 12
  start-page: 822
  issue: 2
  year: 2019
  ident: 2049_CR19
  publication-title: Rev Aquac
– volume: 164
  start-page: 2061
  issue: 8
  year: 2019
  ident: 2049_CR24
  publication-title: Arch Virol
  doi: 10.1007/s00705-019-04265-2
– volume: 37
  start-page: 911
  issue: 10
  year: 2014
  ident: 2049_CR13
  publication-title: J Fish Dis
  doi: 10.1111/jfd.12194
– volume: 92
  start-page: 675
  year: 2011
  ident: 2049_CR1
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.026351-0
– volume: 23
  start-page: 613
  issue: 2
  year: 2019
  ident: 2049_CR23
  publication-title: Egypt J Aquatic Biol Fisher
– year: 2010
  ident: 2049_CR6
  publication-title: Vet Res
  doi: 10.1051/vetres/2010022
– volume: 47
  start-page: 79
  year: 2014
  ident: 2049_CR14
  publication-title: Mar Freshwat Behav Physiol
  doi: 10.1080/10236244.2014.894349
– volume: 8
  start-page: 331
  year: 2016
  ident: 2049_CR20
  publication-title: Aquac Environ Interact
  doi: 10.3354/aei00176
– volume: 13
  start-page: 1
  issue: 4
  year: 2021
  ident: 2049_CR27
  publication-title: Rev Aquac
SSID ssj0008824
Score 2.4403975
Snippet The major dangerous viral infection for cultivated shrimps is WSSV. The virus is extremely dangerous, spreads swiftly, and may result in up to 100% mortality...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 134
SubjectTerms Algorithms
Biomedical and Life Sciences
Biomedicine
Crustacea
Deep learning
DNA
DNA viruses
ectoderm
Epithelium
family
Genetic diversity
genome
Genomes
Gills
Image processing
Internet
lymph
Lymph nodes
Medical Microbiology
Mortality
Original Paper
Pathogenicity
Plant Sciences
Recurrent infection
shrimp
species
Stranding
Taiwan
Thailand
Viral infections
Virology
viruses
Whispovirus
White spot syndrome
Whole genome sequencing
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC50VfDi-xFdpQVv2tjp7jz6JCIuHmRZUGFvIemu2RnYyYyTjOKv8C9blXRmkGX34jkdKKjXV13VXwG8zijuz2zayFo7LS1iLhuVk7sHn-nA7CMju_6X4vi4PD11J_HCrYtjlVNMHAJ1WHm-I39nGKtwX0m9X_-QvDWKu6txhcZ1uMEsCWYY3TvZRWJCjwN9lKMSqcxyFx_NjE_nUp1rSRlL8vNQJ9W_iekC2rzQKR0S0NHd_xX9HtyJ0FN8GG3lPlzD9gHcGpdR_n4If77ON4vlWnjG0zxANOhMEKgVv7jXIKgA7sXEcCAC9sMUVyviqh-B7XwYJxB8MxfEhm_ymftJbClsSE6XQRAyp--IHYrl4my0PrGisLWM70FFfX5Gsvfz5SP4fvTp28fPMq5rkN6qspdY8upyP7MzgxpNHgjcKa9y721R28YGVVM16UONMx18wDwztmgwLZBgp1bePIaDdtXiUxBG-UIhFt7V2jalabJgVSjR2cwp2xQJpJOuKh-5zHmlxnm1Z2Fm_Vak32rQb6USeLP7Zz0yeVx5-nDSZRW9uqv2ikzg1e4z-SM3WeoWV9uu0lT_ljkzrF5-xpCpEuykYjCBJ6N57UQyVLIbl7oE3k72thfgcnmfXS3vc7itySvHkaNDOOg3W3wBN_3PftFtXg5e8xeieB3i
  priority: 102
  providerName: ProQuest
Title Shrimp classification for white spot syndrome detection through enhanced gated recurrent unit-based wild geese migration optimization algorithm
URI https://link.springer.com/article/10.1007/s11262-023-02049-0
https://www.ncbi.nlm.nih.gov/pubmed/38253919
https://www.proquest.com/docview/3013900730
https://www.proquest.com/docview/2917860056
https://www.proquest.com/docview/3153623174
Volume 60
WOSCitedRecordID wos001152263700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1572-994X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008824
  issn: 0920-8569
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgA4kXfg8KozISb2DJsZ3YfoRpEw-oqjZAfYsS-7pWWtMpSZn2V_Avc3aSVmgMCV7yYieybN_dd7m77wh5l6Len6ukZIWwgimAjJU8Q3H3LhU-sI907Ppf9GRiZjM77YvCmiHbfQhJRk29K3ZLRCYY2hgWCjotQ0d9H82dCeJ4evZ9q38RM0bSKIuOkUkz25fK_Pkbv5ujGxjzRnw0mp2TR_-34MfkYQ8z6cfuXjwhd6B6Su53jSevn5GfZ4t6ubqkLmDnkCwUz4cigKVXIa5A0dlt6cBmQD20MWOron1bHwrVIqYO0PAXztM6_LUPPE90gyqCBdPoKaJwHAdogK6W591No2tUUau-9pMWF-fretkuVs_Jt5Pjr0efWd-agTnFTcvAhDblbq7mEgTIzCOQ445nzildqFJ5XqDn6HwBc-GdhyyVSpeQaECIKbiTB2SvWlfwklDJneYA2tlCqNLIMvWKewNWpZarUo9IMpxQ7nre8tA-4yLfMS6Hjc5xo_O40Tkfkffbdy471o6_zj4cDj7vJbjJZcDGIY6Jw2-3wyh7IaBSVLDeNLlAX9dkgU319jkSTQpCTHT8RuRFd6m2S5Lonkub2BH5MNyg3QJuX--rf5v-mjwQKJFdutEh2WvrDbwh99yPdtnUY3JXz3R8Gnyao2RM9j8dT6an45AGOx1H2foFoAEZFA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBBaO7Tx8QAgBVasuq0oUqbeQ2LPdlbrZZZOl6q_gn_AbGeexK1S1tx44x4ks5_P4G8_MNwCvIrL7Ix0WPJdGco0Y80LEtN2djaTz6iOtuv4gGQ7Tw0OzvwF_-loYn1bZ28TGULuZ9Xfk75TnKj6uJD7Mf3LfNcpHV_sWGi0s9vD0hFy26v3uZ_q_r6Xc_nLwaYd3XQW41SKtOaa-w7Yd6ZFCiSp2xEGEFbG1Osl1oZ3IyemxLseRdNZhHCmdFBgmSOxICqvou1fgKtEImTapgvsry09stZGrMuSSpVFsuiKdtlQvlLHkdEJyX45quPj3IDzDbs9EZpsDb_v2_7ZUd-BWR63Zx3Yv3IUNLO_B9bbZ5ul9-P1tvJhM58x6f8EnSDWYZETa2YmPpTBy8GvWKzgwh3WTpVayrpURw3LcpEswf_Po2MJHKry2FVuSWeSeDjhGngc9R6yQTSdH7e5iMzLL067eleXHR7RW9Xj6AL5fymo8hM1yVuJjYErYRCAm1uRSF6kqIqeFS9HoyAhdJAGEPTYy22m1-5Yhx9laZdrjKSM8ZQ2eMhHAm9U781ap5MLRWz12ss5qVdkaOAG8XD0me-ODSHmJs2WVSfLv09gryJ4_RtExSrSanN0AHrVwXk1JpTJSJjQBvO3xvZ7A-fN9cvF8X8CNnYOvg2ywO9x7CjclWaA2vWoLNuvFEp_BNfurnlSL582OZfDjsnH_F-Hee_Y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6V8hAX3o9AASPBCaw6tvd1QAi1RFStokqA1Nuya882kZpNSDZU_RX8H34dM_tIhKr21gPn9a4s7-fxN56ZbwDeBGT3C9vPZaYTLS1iKHMV0nb3LtCe1Ucadf2DaDiMj46Sww3409XCcFplZxNrQ-2nju_Itw1zFY4rqe2iTYs43B18nP2U3EGKI61dO40GIvt4dkru2-LD3i7967daDz5_2_ki2w4D0lkVVxJj7rbtClsY1GhCT3xEORU6Z6PM5tarjBwg5zMstHcew8DYKMd-hMSUtHKGvnsNrkeGUMxV6jvr9BJirrV0VULuWRyESVuw05Tt9XWoJZ2WkktTE6n-PRTPMd1zUdr68Bvc_Z-X7R7caSm3-NTskfuwgeUDuNk04Tx7CL-_jubjyUw49iM4carGqiAyL045xiLI8a9Ep-wgPFZ19lop2hZHAstRnUYh-EbSizlHMFjzSizJXEqmCV6QR0LPERcoJuPjZteJKZnrSVsHK7KTY1qrajR5BN-vZDUew2Y5LfEpCKNcpBAjl2Ta5rHJA2-VjzGxQaJsHvWg3-Ekda2GO7cSOUnX6tOMrZSwldbYSlUP3q3emTUKJpeO3upwlLbWbJGuQdSD16vHZIc4uJSVOF0uUk1-fxyysuzFYwwdr0S3yQnuwZMG2qspmVgHJuknPXjfYX09gYvn--zy-b6CWwT39GBvuP8cbmsyTE3W1RZsVvMlvoAb7lc1Xsxf1ptXwI-rhv1fiNyEbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shrimp+classification+for+white+spot+syndrome+detection+through+enhanced+gated+recurrent+unit-based+wild+geese+migration+optimization+algorithm&rft.jtitle=Virus+genes&rft.au=Ramachandran%2C+L&rft.au=Mangaiyarkarasi%2C+S+P&rft.au=Subramanian%2C+A&rft.au=Senthilkumar%2C+S&rft.date=2024-04-01&rft.eissn=1572-994X&rft.volume=60&rft.issue=2&rft.spage=134&rft_id=info:doi/10.1007%2Fs11262-023-02049-0&rft_id=info%3Apmid%2F38253919&rft.externalDocID=38253919
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8569&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8569&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8569&client=summon