An Imbalanced-Data Processing Algorithm for the Prediction of Heart Attack in Stroke Patients

Early predicting heart attack out of stroke patients in a view of data analysis is an approach to reduce a high mortality rate. Stroke-patient data in Intensive Care Unit are imbalanced due to that stroke patients with heart attack are in the minority of stroke patients. How to predict heart attack...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 9; pp. 25394 - 25404
Main Authors: Wang, Meng, Yao, Xinghua, Chen, Yixiang
Format: Journal Article
Language:English
Published: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Early predicting heart attack out of stroke patients in a view of data analysis is an approach to reduce a high mortality rate. Stroke-patient data in Intensive Care Unit are imbalanced due to that stroke patients with heart attack are in the minority of stroke patients. How to predict heart attack in the stroke-patient data becomes a challenge. For processing the imbalanced data, this paper designs an algorithm by leveraging random undersampling, clustering and oversampling techniques, which is called undersampling-clustering-oversampling algorithm (shortly, UCO algorithm). The UCO algorithm generates nearly balanced data which are utilized to train machine-learning models for predicting heart attack. Over the database of Medical Information Mart for Intensive Care III, extensive experiments are conducted to evaluate the UCO algorithm. A setting of undersampling number of 120 in the algorithm UCO, denoted UCO(120), shows good performance in helping machine-learning classifiers extract features. Five classifiers are separately deployed to predict heart attack based on outputs of the UCO(120). Our results show that random forest classifier achieves the best predicting performance with an <inline-formula> <tex-math notation="LaTeX">accuracy </tex-math></inline-formula> of 70.29%, and <inline-formula> <tex-math notation="LaTeX">precision </tex-math></inline-formula> of 70.05%. It could be well-predicted using UCO(120) and random forest that whether a stroke patient will have heart attack or not.
AbstractList Early predicting heart attack out of stroke patients in a view of data analysis is an approach to reduce a high mortality rate. Stroke-patient data in Intensive Care Unit are imbalanced due to that stroke patients with heart attack are in the minority of stroke patients. How to predict heart attack in the stroke-patient data becomes a challenge. For processing the imbalanced data, this paper designs an algorithm by leveraging random undersampling, clustering and oversampling techniques, which is called undersampling-clustering-oversampling algorithm (shortly, UCO algorithm). The UCO algorithm generates nearly balanced data which are utilized to train machine-learning models for predicting heart attack. Over the database of Medical Information Mart for Intensive Care III, extensive experiments are conducted to evaluate the UCO algorithm. A setting of undersampling number of 120 in the algorithm UCO, denoted UCO(120), shows good performance in helping machine-learning classifiers extract features. Five classifiers are separately deployed to predict heart attack based on outputs of the UCO(120). Our results show that random forest classifier achieves the best predicting performance with an <inline-formula> <tex-math notation="LaTeX">accuracy </tex-math></inline-formula> of 70.29%, and <inline-formula> <tex-math notation="LaTeX">precision </tex-math></inline-formula> of 70.05%. It could be well-predicted using UCO(120) and random forest that whether a stroke patient will have heart attack or not.
Early predicting heart attack out of stroke patients in a view of data analysis is an approach to reduce a high mortality rate. Stroke-patient data in Intensive Care Unit are imbalanced due to that stroke patients with heart attack are in the minority of stroke patients. How to predict heart attack in the stroke-patient data becomes a challenge. For processing the imbalanced data, this paper designs an algorithm by leveraging random undersampling, clustering and oversampling techniques, which is called undersampling-clustering-oversampling algorithm (shortly, UCO algorithm). The UCO algorithm generates nearly balanced data which are utilized to train machine-learning models for predicting heart attack. Over the database of Medical Information Mart for Intensive Care III, extensive experiments are conducted to evaluate the UCO algorithm. A setting of undersampling number of 120 in the algorithm UCO, denoted UCO(120), shows good performance in helping machine-learning classifiers extract features. Five classifiers are separately deployed to predict heart attack based on outputs of the UCO(120). Our results show that random forest classifier achieves the best predicting performance with an accuracy of 70.29%, and precision of 70.05%. It could be well-predicted using UCO(120) and random forest that whether a stroke patient will have heart attack or not.
Early predicting heart attack out of stroke patients in a view of data analysis is an approach to reduce a high mortality rate. Stroke-patient data in Intensive Care Unit are imbalanced due to that stroke patients with heart attack are in the minority of stroke patients. How to predict heart attack in the stroke-patient data becomes a challenge. For processing the imbalanced data, this paper designs an algorithm by leveraging random undersampling, clustering and oversampling techniques, which is called undersampling-clustering-oversampling algorithm (shortly, UCO algorithm). The UCO algorithm generates nearly balanced data which are utilized to train machine-learning models for predicting heart attack. Over the database of Medical Information Mart for Intensive Care III, extensive experiments are conducted to evaluate the UCO algorithm. A setting of undersampling number of 120 in the algorithm UCO, denoted UCO(120), shows good performance in helping machine-learning classifiers extract features. Five classifiers are separately deployed to predict heart attack based on outputs of the UCO(120). Our results show that random forest classifier achieves the best predicting performance with an [Formula Omitted] of 70.29%, and [Formula Omitted] of 70.05%. It could be well-predicted using UCO(120) and random forest that whether a stroke patient will have heart attack or not.
Author Chen, Yixiang
Yao, Xinghua
Wang, Meng
Author_xml – sequence: 1
  givenname: Meng
  orcidid: 0000-0001-8959-1983
  surname: Wang
  fullname: Wang, Meng
  organization: East China Normal University, Shanghai, China
– sequence: 2
  givenname: Xinghua
  orcidid: 0000-0002-2852-0847
  surname: Yao
  fullname: Yao, Xinghua
  email: xhyao@shutcm.edu.cn
  organization: School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
– sequence: 3
  givenname: Yixiang
  surname: Chen
  fullname: Chen, Yixiang
  organization: East China Normal University, Shanghai, China
BookMark eNqFUcFq3DAQFSWFpJt8QS6Cnr2VLEu2jmabNguBFjY9BjGWxxttvFIqKYf-fbV1CKWXzmWGmfdmHvM-kDMfPBJyzdmac6Y_9ZvNzW63rlnN14LJVmnxjlzUXOlKSKHO_qrPyVVKB1aiKy3ZXpCH3tPtcYAZvMWx-gwZ6PcYLKbk_J728z5Elx-PdAqR5kcsQxydzS54GiZ6ixAz7XMG-0Sdp7scw1MBQXboc7ok7yeYE1695hX58eXmfnNb3X37ut30d5VtWJcrFINmeuRSdtAxDXU7TlxijRwm0Bo7NUhEPdhG4NSh5LXFthGghewQaylWZLvsHQMczHN0R4i_TABn_jRC3Jui09kZjWqFVNzqRnDW6FHBIBottZJKINoyXZGPy67nGH6-YMrmEF6iL_JN3WjWlefprqDEgrIxpBRxervKmTnZYhZbzMkW82pLYel_WNZlOD0zR3Dzf7jXC9ch4ts1fVLPavEb5r-baw
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_life13091828
crossref_primary_10_1142_S0219649222500794
crossref_primary_10_1016_j_ijcard_2024_132506
crossref_primary_10_1007_s10115_025_02361_1
crossref_primary_10_3390_app15031552
crossref_primary_10_3233_IDA_211519
crossref_primary_10_1109_ACCESS_2024_3454516
crossref_primary_10_1007_s11831_025_10406_5
crossref_primary_10_1007_s13755_024_00329_z
Cites_doi 10.1155/2017/1827016
10.1186/1471-2105-14-106
10.1016/j.engappai.2016.02.011
10.1093/oso/9780198714934.003.0003
10.1109/TPAMI.2007.70740
10.1016/j.ehj.2017.01.005
10.1109/ICTAI.2018.00030
10.1007/11538059_91
10.1016/j.eswa.2020.113334
10.1145/2911451.2914722
10.1080/03007995.2019.1646000
10.1016/j.ijbiomac.2016.11.037
10.1007/s00357-005-0018-3
10.1109/ICTAI.2010.49
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3057693
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 25404
ExternalDocumentID oai_doaj_org_article_673561c9431049d6ab349596563eec67
10_1109_ACCESS_2021_3057693
9349502
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Project of China
  grantid: 2018YFB2101300
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-e3b909d1558a809a27df15e2e1afa99e86b5ee9bc43ef8e512ce743a9358ee253
IEDL.DBID DOA
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000619314000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:32 EDT 2025
Sun Jun 29 16:10:59 EDT 2025
Sat Nov 29 06:11:57 EST 2025
Tue Nov 18 22:13:27 EST 2025
Wed Aug 27 05:45:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e3b909d1558a809a27df15e2e1afa99e86b5ee9bc43ef8e512ce743a9358ee253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8959-1983
0000-0002-2852-0847
OpenAccessLink https://doaj.org/article/673561c9431049d6ab349596563eec67
PQID 2490800098
PQPubID 4845423
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_673561c9431049d6ab349596563eec67
crossref_primary_10_1109_ACCESS_2021_3057693
proquest_journals_2490800098
crossref_citationtrail_10_1109_ACCESS_2021_3057693
ieee_primary_9349502
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
nagul (ref15) 2018; 6
de winter (ref28) 2013; 18
ref14
letters (ref26) 1999
ref2
junfan (ref1) 2019
ref17
ref16
ref19
ref18
honglian (ref24) 0
rongfeng (ref3) 0
week (ref6) 2016
yuejin (ref10) 0
jianping (ref11) 0
xiaoli (ref25) 2011
ref22
ref21
yuqiong (ref23) 2008
yaowang (ref12) 0
ref27
ref8
he (ref20) 2012
ref7
fenglan (ref9) 2001
ref4
ref5
References_xml – ident: ref18
  doi: 10.1155/2017/1827016
– year: 2016
  ident: ref6
  article-title: Heart disorders and diseases; Data on heart attack described by researchers at capital medical University (over expression of protein kinase C epsilon improves retention and survival of transplanted mesenchymal stem cells in rat acute myocardial infarction)
– ident: ref17
  doi: 10.1186/1471-2105-14-106
– ident: ref14
  doi: 10.1016/j.engappai.2016.02.011
– year: 0
  ident: ref3
  article-title: A report of 9 cases of acute stroke complicated with acute myocardial infarction
  publication-title: Hunan Medicine
– ident: ref13
  doi: 10.1093/oso/9780198714934.003.0003
– ident: ref21
  doi: 10.1109/TPAMI.2007.70740
– ident: ref4
  doi: 10.1016/j.ehj.2017.01.005
– ident: ref8
  doi: 10.1109/ICTAI.2018.00030
– ident: ref19
  doi: 10.1007/11538059_91
– year: 0
  ident: ref10
  article-title: Spontaneous improvement of exercise abnormality in acute myocardial infarction and the predictive value of low-dose dobutamine echocardiographic test
  publication-title: Chinese Journal of circulation
– ident: ref7
  doi: 10.1016/j.eswa.2020.113334
– year: 2019
  ident: ref1
  publication-title: Observation of Clinical Effect of 'Stroke Integration' in the Treatment of Ischemic Stroke
– year: 0
  ident: ref12
  article-title: Application of machine learning algorithm in prediction of coronary heart disease and myocardial infarction
  publication-title: International Medicine & Health Guidance News
– ident: ref16
  doi: 10.1145/2911451.2914722
– volume: 18
  start-page: 10
  year: 2013
  ident: ref28
  article-title: Using the student's t-test with extremely small sample sizes
  publication-title: Practical Assessment Res Eval
– year: 1999
  ident: ref26
  article-title: An empirical comparison of four initialization methods for the K-means algorithm
– ident: ref2
  doi: 10.1080/03007995.2019.1646000
– start-page: 1322
  year: 2012
  ident: ref20
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
  publication-title: Proc IEEE World Congr Comput Intell
– volume: 6
  start-page: 65
  year: 2018
  ident: ref15
  article-title: An effective K-means approach for imbalance data clustering using precise reduction sampling
  publication-title: Int J Comput Sci Eng
– year: 0
  ident: ref11
  article-title: Analysis of the predictive value of high-frequency electrocardiogram on acute myocardial infarction
  publication-title: Biomed Eng Res
– year: 0
  ident: ref24
  article-title: Diagnostic value of cardiac troponin T for acute myocardial infarction
  publication-title: Contemporary Medicine
– year: 2011
  ident: ref25
  publication-title: Research on the Application Value of High-Sensitivity Troponin T Detection in Myocardial Infarction
– year: 2008
  ident: ref23
  article-title: Diagnostic significance of determination of troponin I and T for acute myocardial infarction
  publication-title: Experimental and Laboratory Medicine
– ident: ref5
  doi: 10.1016/j.ijbiomac.2016.11.037
– ident: ref27
  doi: 10.1007/s00357-005-0018-3
– year: 2001
  ident: ref9
  publication-title: Electrocardiogram QTcd Changes and Prognosis in Different Periods of Acute Myocardial Infarction
– ident: ref22
  doi: 10.1109/ICTAI.2010.49
SSID ssj0000816957
Score 2.3843453
Snippet Early predicting heart attack out of stroke patients in a view of data analysis is an approach to reduce a high mortality rate. Stroke-patient data in...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25394
SubjectTerms Algorithms
Cardiac arrest
Classifiers
Clustering
Clustering algorithms
Data analysis
Data processing
Feature extraction
Heart
heart attack
Heart attacks
imbalanced data
Intensive care
Machine learning
Oversampling
Patients
Performance prediction
Prediction algorithms
Predictive models
Stroke
Stroke (medical condition)
Undersampling
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1R1EN7KLS0YoFWPnAk4HU-HB_DUkQvqFKpxKWKHGcCq4Wk2jX8fmYSE1GBKnGLYjuy8_zxxmO_Adh3qUobXTdkphIMSR3LqJKViyzKRqsspSWi7oNN6PPz_PLS_FyDg_EuDCL2h8_wkB97X37duTveKjsyMdF5Vo58o3U23NUa91M4gIRJdRAWmkpzVMxm1AYyAdX0kHo1B_37Z_HpNfpDUJVnM3G_vJxuvK5im_Ah0EhRDLh_hDVsP8H7J-KCW_CnaMWP24qPLjqsoxPrrQjXAihdFDdX3XLur28F0VZBNJAS2WnDQImuEWc0BLwovLduIeat-OWX3YIyDTqsq8_w-_T7xewsCsEUIpfI3EcYV0aamuhDbnNprCKApikqnNrGGoN5VqWIpnJJjE2OxAMcEruw7CdFVGn8BdbbrsVtELW1WmY0LxLZS6wjjp5kmdZSNValNsEJqMe_XLqgNM4BL27K3uKQphygKRmaMkAzgYOx0N9BaOP_2Y8ZvjErq2T3LwiXMgw6PrNG9NAZIklkCNWZrRgnQxQ2RnSZnsAWYzl-JMA4gb3HzlCGEb0qFXtImZHmOy-X2oV3XMFhe2YP1v3yDr_CW3fv56vlt76zPgBvFuYy
  priority: 102
  providerName: IEEE
Title An Imbalanced-Data Processing Algorithm for the Prediction of Heart Attack in Stroke Patients
URI https://ieeexplore.ieee.org/document/9349502
https://www.proquest.com/docview/2490800098
https://doaj.org/article/673561c9431049d6ab349596563eec67
Volume 9
WOSCitedRecordID wos000619314000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDI4QYoAB8RTHSxkYKaRpmzRjOUAwgJAAiQVFaeoC4uihu8LIb8dJw-kQEiwsHRr3EduNPzfJZ0L2bMazWlY1pqlohrRKWFSy0kYGWC25yDBEVL7YhLy8zO_u1NVUqS-3JqyjB-4UdyhkgiHeKgx0CGYrYcoEMb1CGJIAWOH3kTOpppIpPwbnsVCZDDRDMVOHRb-PPcKEkMcH6OOuBOC3UOQZ-0OJlR_jsg82p0tkMaBEWnRvt0xmoFkhC1Pcgavkvmjo-UvpViZaqKJj0xoaVv1jOy0GD0PM-x9fKKJSiigPG92cjLMDHdb0DD28pUXbGvtMnxp63Y6GzyjU0ayO18jt6clN_ywKtRIim7K8jSApFVMVooPc5EwZjvqPM-AQm9ooBbkoMwBV2jSBOgcM8xYQPBg3DQrAs2SdzDbDBjYIrYyRTOCwh1guNRYheCqElIzXhmcmhR7hX2rTNhCJu3oWA-0TCqZ0p2vtdK2Drntkf3LRa8ej8bv4kbPHRNSRYPsT6Bo6uIb-yzV6ZNVZc3IT5ZoZ75HtL-vq8MGONXcToA5w5pv_8egtMu-60_2r2Saz7egNdsicfW-fxqNd76t4vPg42fU7Dj8BtwrpsA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1VBYly4KtFLBTqA8em9TpxEh_DQrUV7QqJIvWCIseZlFXbpNp1-_uZSdwIBELiFsV2ZOf5443HfgPw3mmlm6xuyEwlGJI6llElKxdZlE2mUk1LRN0Hm8gWi_z83HzZgP3xLgwi9ofP8IAfe19-3blb3io7NDHReVaOfKCTRMnhtta4o8IhJIzOgrTQVJrDYjajVpARqKYH1K857N9vy0-v0h_CqvwxF_cLzNHT_6vaM3gSiKQoBuSfwwa2L-DxL_KC2_C9aMXxdcWHFx3W0UfrrQgXAyhdFFcX3Wrpf1wLIq6CiCAlstuGoRJdI-Y0CLwovLfuUixb8dWvukvKNCixrnfg29Gns9k8CuEUIpfI3EcYV0aamghEbnNprCKIphoVTm1jjcE8rTSiqVwSY5MjMQGHxC8se0oRlY5fwmbbtfgKRG1tJlOaGYnuJdYRS0_SNMukaqzSNsEJqPu_XLqgNc4hL67K3uaQphygKRmaMkAzgf2x0M0gtfHv7B8YvjEr62T3LwiXMgw7PrVGBNEZoklkCtWprRgnQyQ2RnRpNoFtxnL8SIBxArv3naEMY3pdKvaRMifNX_-91B48mp-dnpQnx4vPb2CLKzts1uzCpl_d4lt46O78cr1613fcn4136Xk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Imbalanced-Data+Processing+Algorithm+for+the+Prediction+of+Heart+Attack+in+Stroke+Patients&rft.jtitle=IEEE+access&rft.au=Wang%2C+Meng&rft.au=Yao%2C+Xinghua&rft.au=Chen%2C+Yixiang&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=25394&rft.epage=25404&rft_id=info:doi/10.1109%2FACCESS.2021.3057693&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3057693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon