An Imbalanced-Data Processing Algorithm for the Prediction of Heart Attack in Stroke Patients
Early predicting heart attack out of stroke patients in a view of data analysis is an approach to reduce a high mortality rate. Stroke-patient data in Intensive Care Unit are imbalanced due to that stroke patients with heart attack are in the minority of stroke patients. How to predict heart attack...
Uloženo v:
| Vydáno v: | IEEE access Ročník 9; s. 25394 - 25404 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Early predicting heart attack out of stroke patients in a view of data analysis is an approach to reduce a high mortality rate. Stroke-patient data in Intensive Care Unit are imbalanced due to that stroke patients with heart attack are in the minority of stroke patients. How to predict heart attack in the stroke-patient data becomes a challenge. For processing the imbalanced data, this paper designs an algorithm by leveraging random undersampling, clustering and oversampling techniques, which is called undersampling-clustering-oversampling algorithm (shortly, UCO algorithm). The UCO algorithm generates nearly balanced data which are utilized to train machine-learning models for predicting heart attack. Over the database of Medical Information Mart for Intensive Care III, extensive experiments are conducted to evaluate the UCO algorithm. A setting of undersampling number of 120 in the algorithm UCO, denoted UCO(120), shows good performance in helping machine-learning classifiers extract features. Five classifiers are separately deployed to predict heart attack based on outputs of the UCO(120). Our results show that random forest classifier achieves the best predicting performance with an <inline-formula> <tex-math notation="LaTeX">accuracy </tex-math></inline-formula> of 70.29%, and <inline-formula> <tex-math notation="LaTeX">precision </tex-math></inline-formula> of 70.05%. It could be well-predicted using UCO(120) and random forest that whether a stroke patient will have heart attack or not. |
|---|---|
| AbstractList | Early predicting heart attack out of stroke patients in a view of data analysis is an approach to reduce a high mortality rate. Stroke-patient data in Intensive Care Unit are imbalanced due to that stroke patients with heart attack are in the minority of stroke patients. How to predict heart attack in the stroke-patient data becomes a challenge. For processing the imbalanced data, this paper designs an algorithm by leveraging random undersampling, clustering and oversampling techniques, which is called undersampling-clustering-oversampling algorithm (shortly, UCO algorithm). The UCO algorithm generates nearly balanced data which are utilized to train machine-learning models for predicting heart attack. Over the database of Medical Information Mart for Intensive Care III, extensive experiments are conducted to evaluate the UCO algorithm. A setting of undersampling number of 120 in the algorithm UCO, denoted UCO(120), shows good performance in helping machine-learning classifiers extract features. Five classifiers are separately deployed to predict heart attack based on outputs of the UCO(120). Our results show that random forest classifier achieves the best predicting performance with an <inline-formula> <tex-math notation="LaTeX">accuracy </tex-math></inline-formula> of 70.29%, and <inline-formula> <tex-math notation="LaTeX">precision </tex-math></inline-formula> of 70.05%. It could be well-predicted using UCO(120) and random forest that whether a stroke patient will have heart attack or not. Early predicting heart attack out of stroke patients in a view of data analysis is an approach to reduce a high mortality rate. Stroke-patient data in Intensive Care Unit are imbalanced due to that stroke patients with heart attack are in the minority of stroke patients. How to predict heart attack in the stroke-patient data becomes a challenge. For processing the imbalanced data, this paper designs an algorithm by leveraging random undersampling, clustering and oversampling techniques, which is called undersampling-clustering-oversampling algorithm (shortly, UCO algorithm). The UCO algorithm generates nearly balanced data which are utilized to train machine-learning models for predicting heart attack. Over the database of Medical Information Mart for Intensive Care III, extensive experiments are conducted to evaluate the UCO algorithm. A setting of undersampling number of 120 in the algorithm UCO, denoted UCO(120), shows good performance in helping machine-learning classifiers extract features. Five classifiers are separately deployed to predict heart attack based on outputs of the UCO(120). Our results show that random forest classifier achieves the best predicting performance with an accuracy of 70.29%, and precision of 70.05%. It could be well-predicted using UCO(120) and random forest that whether a stroke patient will have heart attack or not. Early predicting heart attack out of stroke patients in a view of data analysis is an approach to reduce a high mortality rate. Stroke-patient data in Intensive Care Unit are imbalanced due to that stroke patients with heart attack are in the minority of stroke patients. How to predict heart attack in the stroke-patient data becomes a challenge. For processing the imbalanced data, this paper designs an algorithm by leveraging random undersampling, clustering and oversampling techniques, which is called undersampling-clustering-oversampling algorithm (shortly, UCO algorithm). The UCO algorithm generates nearly balanced data which are utilized to train machine-learning models for predicting heart attack. Over the database of Medical Information Mart for Intensive Care III, extensive experiments are conducted to evaluate the UCO algorithm. A setting of undersampling number of 120 in the algorithm UCO, denoted UCO(120), shows good performance in helping machine-learning classifiers extract features. Five classifiers are separately deployed to predict heart attack based on outputs of the UCO(120). Our results show that random forest classifier achieves the best predicting performance with an [Formula Omitted] of 70.29%, and [Formula Omitted] of 70.05%. It could be well-predicted using UCO(120) and random forest that whether a stroke patient will have heart attack or not. |
| Author | Chen, Yixiang Yao, Xinghua Wang, Meng |
| Author_xml | – sequence: 1 givenname: Meng orcidid: 0000-0001-8959-1983 surname: Wang fullname: Wang, Meng organization: East China Normal University, Shanghai, China – sequence: 2 givenname: Xinghua orcidid: 0000-0002-2852-0847 surname: Yao fullname: Yao, Xinghua email: xhyao@shutcm.edu.cn organization: School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China – sequence: 3 givenname: Yixiang surname: Chen fullname: Chen, Yixiang organization: East China Normal University, Shanghai, China |
| BookMark | eNqFUcFq3DAQFSWFpJt8QS6Cnr2VLEu2jmabNguBFjY9BjGWxxttvFIqKYf-fbV1CKWXzmWGmfdmHvM-kDMfPBJyzdmac6Y_9ZvNzW63rlnN14LJVmnxjlzUXOlKSKHO_qrPyVVKB1aiKy3ZXpCH3tPtcYAZvMWx-gwZ6PcYLKbk_J728z5Elx-PdAqR5kcsQxydzS54GiZ6ixAz7XMG-0Sdp7scw1MBQXboc7ok7yeYE1695hX58eXmfnNb3X37ut30d5VtWJcrFINmeuRSdtAxDXU7TlxijRwm0Bo7NUhEPdhG4NSh5LXFthGghewQaylWZLvsHQMczHN0R4i_TABn_jRC3Jui09kZjWqFVNzqRnDW6FHBIBottZJKINoyXZGPy67nGH6-YMrmEF6iL_JN3WjWlefprqDEgrIxpBRxervKmTnZYhZbzMkW82pLYel_WNZlOD0zR3Dzf7jXC9ch4ts1fVLPavEb5r-baw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_life13091828 crossref_primary_10_1142_S0219649222500794 crossref_primary_10_1016_j_ijcard_2024_132506 crossref_primary_10_1007_s10115_025_02361_1 crossref_primary_10_3390_app15031552 crossref_primary_10_3233_IDA_211519 crossref_primary_10_1109_ACCESS_2024_3454516 crossref_primary_10_1007_s11831_025_10406_5 crossref_primary_10_1007_s13755_024_00329_z |
| Cites_doi | 10.1155/2017/1827016 10.1186/1471-2105-14-106 10.1016/j.engappai.2016.02.011 10.1093/oso/9780198714934.003.0003 10.1109/TPAMI.2007.70740 10.1016/j.ehj.2017.01.005 10.1109/ICTAI.2018.00030 10.1007/11538059_91 10.1016/j.eswa.2020.113334 10.1145/2911451.2914722 10.1080/03007995.2019.1646000 10.1016/j.ijbiomac.2016.11.037 10.1007/s00357-005-0018-3 10.1109/ICTAI.2010.49 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3057693 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 25404 |
| ExternalDocumentID | oai_doaj_org_article_673561c9431049d6ab349596563eec67 10_1109_ACCESS_2021_3057693 9349502 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Project of China grantid: 2018YFB2101300 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-e3b909d1558a809a27df15e2e1afa99e86b5ee9bc43ef8e512ce743a9358ee253 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000619314000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:32 EDT 2025 Sun Jun 29 16:10:59 EDT 2025 Sat Nov 29 06:11:57 EST 2025 Tue Nov 18 22:13:27 EST 2025 Wed Aug 27 05:45:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-e3b909d1558a809a27df15e2e1afa99e86b5ee9bc43ef8e512ce743a9358ee253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8959-1983 0000-0002-2852-0847 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9349502 |
| PQID | 2490800098 |
| PQPubID | 4845423 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_673561c9431049d6ab349596563eec67 crossref_primary_10_1109_ACCESS_2021_3057693 proquest_journals_2490800098 crossref_citationtrail_10_1109_ACCESS_2021_3057693 ieee_primary_9349502 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 nagul (ref15) 2018; 6 de winter (ref28) 2013; 18 ref14 letters (ref26) 1999 ref2 junfan (ref1) 2019 ref17 ref16 ref19 ref18 honglian (ref24) 0 rongfeng (ref3) 0 week (ref6) 2016 yuejin (ref10) 0 jianping (ref11) 0 xiaoli (ref25) 2011 ref22 ref21 yuqiong (ref23) 2008 yaowang (ref12) 0 ref27 ref8 he (ref20) 2012 ref7 fenglan (ref9) 2001 ref4 ref5 |
| References_xml | – ident: ref18 doi: 10.1155/2017/1827016 – year: 2016 ident: ref6 article-title: Heart disorders and diseases; Data on heart attack described by researchers at capital medical University (over expression of protein kinase C epsilon improves retention and survival of transplanted mesenchymal stem cells in rat acute myocardial infarction) – ident: ref17 doi: 10.1186/1471-2105-14-106 – ident: ref14 doi: 10.1016/j.engappai.2016.02.011 – year: 0 ident: ref3 article-title: A report of 9 cases of acute stroke complicated with acute myocardial infarction publication-title: Hunan Medicine – ident: ref13 doi: 10.1093/oso/9780198714934.003.0003 – ident: ref21 doi: 10.1109/TPAMI.2007.70740 – ident: ref4 doi: 10.1016/j.ehj.2017.01.005 – ident: ref8 doi: 10.1109/ICTAI.2018.00030 – ident: ref19 doi: 10.1007/11538059_91 – year: 0 ident: ref10 article-title: Spontaneous improvement of exercise abnormality in acute myocardial infarction and the predictive value of low-dose dobutamine echocardiographic test publication-title: Chinese Journal of circulation – ident: ref7 doi: 10.1016/j.eswa.2020.113334 – year: 2019 ident: ref1 publication-title: Observation of Clinical Effect of 'Stroke Integration' in the Treatment of Ischemic Stroke – year: 0 ident: ref12 article-title: Application of machine learning algorithm in prediction of coronary heart disease and myocardial infarction publication-title: International Medicine & Health Guidance News – ident: ref16 doi: 10.1145/2911451.2914722 – volume: 18 start-page: 10 year: 2013 ident: ref28 article-title: Using the student's t-test with extremely small sample sizes publication-title: Practical Assessment Res Eval – year: 1999 ident: ref26 article-title: An empirical comparison of four initialization methods for the K-means algorithm – ident: ref2 doi: 10.1080/03007995.2019.1646000 – start-page: 1322 year: 2012 ident: ref20 article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning publication-title: Proc IEEE World Congr Comput Intell – volume: 6 start-page: 65 year: 2018 ident: ref15 article-title: An effective K-means approach for imbalance data clustering using precise reduction sampling publication-title: Int J Comput Sci Eng – year: 0 ident: ref11 article-title: Analysis of the predictive value of high-frequency electrocardiogram on acute myocardial infarction publication-title: Biomed Eng Res – year: 0 ident: ref24 article-title: Diagnostic value of cardiac troponin T for acute myocardial infarction publication-title: Contemporary Medicine – year: 2011 ident: ref25 publication-title: Research on the Application Value of High-Sensitivity Troponin T Detection in Myocardial Infarction – year: 2008 ident: ref23 article-title: Diagnostic significance of determination of troponin I and T for acute myocardial infarction publication-title: Experimental and Laboratory Medicine – ident: ref5 doi: 10.1016/j.ijbiomac.2016.11.037 – ident: ref27 doi: 10.1007/s00357-005-0018-3 – year: 2001 ident: ref9 publication-title: Electrocardiogram QTcd Changes and Prognosis in Different Periods of Acute Myocardial Infarction – ident: ref22 doi: 10.1109/ICTAI.2010.49 |
| SSID | ssj0000816957 |
| Score | 2.3843453 |
| Snippet | Early predicting heart attack out of stroke patients in a view of data analysis is an approach to reduce a high mortality rate. Stroke-patient data in... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 25394 |
| SubjectTerms | Algorithms Cardiac arrest Classifiers Clustering Clustering algorithms Data analysis Data processing Feature extraction Heart heart attack Heart attacks imbalanced data Intensive care Machine learning Oversampling Patients Performance prediction Prediction algorithms Predictive models Stroke Stroke (medical condition) Undersampling |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYNHq23T5nGsq6IgIqjgRUKanaqoXdmt_n5n2risCHrx2qSPzEwy32TSbxjbIxCdVLmLtHA6yiTOOaPyLJJ5qUBIojhrNX2hLi_13Z25mir1RWfCOnrgTnCHUgl08d6go0MwO5CuFIjpDcIQAeBl-x95rMxUMNWuwTqRJleBZiiJzWHR7-OIMCBMkwO0cSoB-M0VtYz9ocTKj3W5dTanS2wxoERedF-3zGagXmELU9yBq-y-qPn5a0knEz0MomPXOB5O_WM7L14ehhj3P75yRKUcUR42Uk6G9MCHFT9DC2940TTOP_Onml83o-EzdupoVsdr7Pb05KZ_FoVaCZHPYt1EIEoTmwGiA-10bFyqBlWSQwqJq5wxoGWZA5jSZwIqDejmPSB4cJQGBUhzsc5m62ENG4wrn2QgpVapBKo_pwnleCkVlJmIQfVY-iU26wORONWzeLFtQBEb28nakqxtkHWP7U9ueut4NH7vfkT6mHQlEuz2ApqGDaZh_zKNHlslbU4eYqg5Tnts-0u7NkzYsU0pAUqAU2_-x6u32DwNp9ur2Wazzegddtic_2iexqPd1lY_ASIU5Yc priority: 102 providerName: Directory of Open Access Journals |
| Title | An Imbalanced-Data Processing Algorithm for the Prediction of Heart Attack in Stroke Patients |
| URI | https://ieeexplore.ieee.org/document/9349502 https://www.proquest.com/docview/2490800098 https://doaj.org/article/673561c9431049d6ab349596563eec67 |
| Volume | 9 |
| WOSCitedRecordID | wos000619314000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKxQEOpbAgtpTKB47NNp_-OKbbrooEFRIg7QVFjjOBVduk2nV75Lcz47gRiKpSL1EU25GT50neeOw3jH0gEp20hYlUZlSUC7Q5LYs8EkUtIRMkceaR_iTPz9Vyqb9sscNxLwwA-MVnMKNTH8tventDU2VHOkM6T8qRT6QUw16tcT6FEkjoQgZhoSTWR-V8js-ALmCazHBUU9K_f34-XqM_JFX570vsfy-LF4_r2C7bCTSSlwPuL9kWdK_Y87_EBSfsR9nxj1c1LV200EQnxhketgVgOS8vf_brlft1xZG2cqSBWEhBGwKK9y0_QxNwvHTO2Au-6vhXt-4vsNKgw7p5zb4vTr_Nz6KQTCGyeaxcBFmtY90gfVBGxdqksmmTAlJITGu0BiXqAkDXNs-gVYA8wAKyC0NxUoC0yN6w7a7v4C3j0iY5CKFkKoAS1CmiQVYICXWexSCnLL17y5UNSuOU8OKy8h5HrKsBmoqgqQI0U3Y4NroehDYern5M8I1VSSXbX0BcqmB0tGYN6aHVSJLQEWqEqQknjRQ2A7ACOzohLMebBBinbP9uMFTBojdVShFSYqRq7_5W79gz6uAwPbPPtt36Bt6zp_bWrTbrA-_r4_Hz79MDP3D_ALSD5mE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWqUgk4QKFULJTiA8emzac_jmGh2qrLCoki9YIsx5m0q7YJ2nX5_cwkbgQCVeotiu3IyfPEzzP2G8Y-EIlOmsJGKrMqygXanJZFHomikpAJkjjrkZ7LxUKdn-uvG-xgPAsDAP3mMzikyz6WX3fullxlRzpDOk_KkY-KPE_j4bTW6FGhFBK6kEFaKIn1UTmd4lvgIjBNDnFcU9q_v6afXqU_pFX551_cTzDHzx_WtW32LBBJXg7Iv2Ab0L5kT_-QF9xhP8qWn9xUtHnRQR19st7ycDAAy3l5fdGtlv7yhiNx5UgEsZDCNgQV7xo-QyPwvPTeuiu-bPk3v-qusNKgxLp-xb4ffz6bzqKQTiFyeax8BFmlY10jgVBWxdqmsm6SAlJIbGO1BiWqAkBXLs-gUYBMwAHyC0uRUoC0yHbZZtu18Jpx6ZIchFAyFUAp6hQRISeEhCrPYpATlt59ZeOC1jilvLg2_Zoj1maAxhA0JkAzYQdjo5-D1Mb91T8SfGNV0snubyAuJpgd7VpDgug00iRcCtXCVoSTRhKbATiBHd0hLMeHBBgnbO9uMJhg02uTUoyUOKl68_9W79nj2dmXuZmfLE7fsifU2cFZs8c2_eoW3rEt98sv16v9fuD-Bvmq54I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Imbalanced-Data+Processing+Algorithm+for+the+Prediction+of+Heart+Attack+in+Stroke+Patients&rft.jtitle=IEEE+access&rft.au=Wang%2C+Meng&rft.au=Yao%2C+Xinghua&rft.au=Chen%2C+Yixiang&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=25394&rft.epage=25404&rft_id=info:doi/10.1109%2FACCESS.2021.3057693&rft.externalDocID=9349502 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |