Quantitative Assessment of Scots Pine (Pinus Sylvestris L.) Whorl Structure in a Forest Environment Using Terrestrial Laser Scanning

State-of-the-art technology available at sawmills enables measurements of whorl numbers and the maximum branch diameter for individual logs, but such information is currently unavailable at the wood procurement planning phase. The first step toward more detailed evaluation of standing timber is to i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing Vol. 11; no. 10; pp. 3598 - 3607
Main Authors: Pyorala, Jiri, Liang, Xinlian, Vastaranta, Mikko, Saarinen, Ninni, Kankare, Ville, Wang, Yunsheng, Holopainen, Markus, Hyyppa, Juha
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1939-1404, 2151-1535
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract State-of-the-art technology available at sawmills enables measurements of whorl numbers and the maximum branch diameter for individual logs, but such information is currently unavailable at the wood procurement planning phase. The first step toward more detailed evaluation of standing timber is to introduce a method that produces similar wood quality indicators in standing forests as those currently used in sawmills. Our aim was to develop a quantitative method to detect and model branches from terrestrial laser scanning (TLS) point clouds data of trees in a forest environment. The test data were obtained from 158 Scots pines (Pinus sylvestris L.) in six mature forest stands. The method was evaluated for the accuracy of the following branch parameters: Number of whorls per tree and for every whorl, the maximum branch diameter and the branch insertion angle associated with it. The analysis concentrated on log-sections (stem diameter >15 cm) where the branches most affect wood's value added. The quantitative whorl detection method had an accuracy of 69.9% and a 1.9% false positive rate. The estimates of the maximum branch diameters and the corresponding insertion angles for each whorl were underestimated by 0.34 cm (11.1%) and 0.67° (1.0%), with a root-mean-squared error of 1.42 cm (46.0%) and 17.2° (26.3%), respectively. Distance from the scanner, occlusion, and wind were the main external factors that affect the method's functionality. Thus, the completeness and point density of the data should be addressed when applying TLS point cloud based tree models to assess branch parameters.
AbstractList State-of-the-art technology available at sawmills enables measurements of whorl numbers and the maximum branch diameter for individual logs, but such information is currently unavailable at the wood procurement planning phase. The first step toward more detailed evaluation of standing timber is to introduce a method that produces similar wood quality indicators in standing forests as those currently used in sawmills. Our aim was to develop a quantitative method to detect and model branches from terrestrial laser scanning (TLS) point clouds data of trees in a forest environment. The test data were obtained from 158 Scots pines (Pinus sylvestris L.) in six mature forest stands. The method was evaluated for the accuracy of the following branch parameters: Number of whorls per tree and for every whorl, the maximum branch diameter and the branch insertion angle associated with it. The analysis concentrated on log-sections (stem diameter >15 cm) where the branches most affect wood's value added. The quantitative whorl detection method had an accuracy of 69.9% and a 1.9% false positive rate. The estimates of the maximum branch diameters and the corresponding insertion angles for each whorl were underestimated by 0.34 cm (11.1%) and 0.67° (1.0%), with a root-mean-squared error of 1.42 cm (46.0%) and 17.2° (26.3%), respectively. Distance from the scanner, occlusion, and wind were the main external factors that affect the method's functionality. Thus, the completeness and point density of the data should be addressed when applying TLS point cloud based tree models to assess branch parameters.
Author Holopainen, Markus
Hyyppa, Juha
Kankare, Ville
Vastaranta, Mikko
Liang, Xinlian
Saarinen, Ninni
Wang, Yunsheng
Pyorala, Jiri
Author_xml – sequence: 1
  givenname: Jiri
  orcidid: 0000-0002-4045-6067
  surname: Pyorala
  fullname: Pyorala, Jiri
  email: jiri.pyorala@nls.fi
  organization: Department of Remote Sensing and Photogrammetry and the Centre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute, Masala, Finland
– sequence: 2
  givenname: Xinlian
  surname: Liang
  fullname: Liang, Xinlian
  email: xinlian.liang@nls.fi
  organization: Department of Remote Sensing and Photogrammetry and the Centre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute, Masala, Finland
– sequence: 3
  givenname: Mikko
  surname: Vastaranta
  fullname: Vastaranta, Mikko
  email: mikko.vastaranta@helsinki.fi
  organization: Department of Forest Sciences, University of Helsinki, Helsinki, Finland
– sequence: 4
  givenname: Ninni
  orcidid: 0000-0003-2730-8892
  surname: Saarinen
  fullname: Saarinen, Ninni
  email: ninni.saarinen@helsinki.fi
  organization: Department of Forest Sciences, University of Helsinki, Helsinki, Finland
– sequence: 5
  givenname: Ville
  surname: Kankare
  fullname: Kankare, Ville
  email: ville.kankare@helsinki.fi
  organization: Department of Forest Sciences, University of Helsinki, Helsinki, Finland
– sequence: 6
  givenname: Yunsheng
  surname: Wang
  fullname: Wang, Yunsheng
  email: yunsheng.wang@nls.fi
  organization: Department of Remote Sensing and Photogrammetry and the Centre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute, Masala, Finland
– sequence: 7
  givenname: Markus
  surname: Holopainen
  fullname: Holopainen, Markus
  email: markus.holopainen@helsinki.fi
  organization: Department of Forest Sciences, University of Helsinki, Helsinki, Finland
– sequence: 8
  givenname: Juha
  surname: Hyyppa
  fullname: Hyyppa, Juha
  email: juha.hyyppa@nls.fi
  organization: Department of Remote Sensing and Photogrammetry and the Centre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute, Masala, Finland
BookMark eNp9kUtvEzEUhUeoSKSFX9CNJTawmNSvie1lVLXQKhKPCWJpOePr4mhqF9sTqXt-OG6msGDBxpZ8z3fuvT6nzUmIAZrmnOAlIVhd3Pbb9dd-STGRSyqJ6pR80Swo6UhLOtadNAuimGoJx_xVc5rzHuMVFYotml9fJhOKL6b4A6B1zpDzPYSCokP9EEtGn30A9K6eU0b943iAXJLPaLN8j77_iGlEfUnTUKYEyAdk0HVMVYKuwsGnGI5e37IPd2gLKR1hM6KNyZBqAxNCLb1uXjozZnjzfJ812-ur7eXHdvPpw83letMOHMvSAjNqJwBbIqVVAu8Gaayg2A2Oc2VWO2otVo5IZpWjDDi4uqRYMSFW1Cp21tzMtjaavX5I_t6kRx2N18eHmO60ScUPI2gnJAeyssCt4B1ncuiEspJ2bscEcax6vZ29HlL8OdW19D5OKdTpNSW0JiC56qpKzaohxZwTOD0cvzqGkowfNcH6KT8956ef8tPP-VWW_cP-mfj_1PlMeQD4S0jGiewU-w3oPqp7
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1093_forestry_cpad062
crossref_primary_10_1016_j_rsase_2018_07_010
crossref_primary_10_1109_JSTQE_2022_3144167
crossref_primary_10_1016_j_rse_2019_111309
crossref_primary_10_3390_f10100848
crossref_primary_10_1093_aob_mcab037
crossref_primary_10_1088_1742_6596_1648_4_042103
crossref_primary_10_1016_j_plaphe_2025_100064
crossref_primary_10_1080_07038992_2018_1557040
crossref_primary_10_1016_j_ecoinf_2023_102389
crossref_primary_10_2478_forj_2021_0017
crossref_primary_10_1007_s10342_022_01481_5
crossref_primary_10_3390_f13030397
crossref_primary_10_1109_TGRS_2024_3439438
crossref_primary_10_1016_j_rse_2025_114654
crossref_primary_10_1186_s40663_019_0173_3
crossref_primary_10_3390_rs15153737
crossref_primary_10_1016_j_ophoto_2023_100040
crossref_primary_10_3390_rs10111735
crossref_primary_10_1016_j_rse_2020_112102
crossref_primary_10_1016_j_jtbi_2020_110567
crossref_primary_10_1016_j_compag_2020_105882
crossref_primary_10_1016_j_fecs_2025_100369
crossref_primary_10_1080_02827581_2025_2553745
crossref_primary_10_1093_forestry_cpy044
crossref_primary_10_1016_j_atech_2023_100201
crossref_primary_10_1093_forestry_cpac026
crossref_primary_10_3390_rs13224598
crossref_primary_10_1088_1742_6596_1648_2_022001
crossref_primary_10_1016_j_rse_2019_111474
crossref_primary_10_1016_j_jag_2022_102917
crossref_primary_10_1016_j_rse_2024_114121
crossref_primary_10_3390_rs14143344
crossref_primary_10_1093_forestry_cpaa046
crossref_primary_10_1109_JSTARS_2022_3163404
crossref_primary_10_1109_MGRS_2022_3168135
crossref_primary_10_1186_s40529_025_00472_0
crossref_primary_10_1007_s40725_024_00225_5
crossref_primary_10_1016_j_ijmecsci_2024_109570
Cites_doi 10.3390/rs5020491
10.1080/02827589950152700
10.1139/x2012-072
10.1109/JSTARS.2016.2565519
10.3390/f8060184
10.1016/j.isprsjprs.2007.10.004
10.1007/s00107-004-0546-2
10.1145/358669.358692
10.3390/s130201614
10.1007/s11390-007-9095-6
10.5194/isprsannals-III-8-117-2016
10.1016/j.isprsjprs.2016.01.006
10.1109/LGRS.2013.2297418
10.1109/TGRS.2011.2161613
10.5194/isprs-archives-XLII-2-W3-113-2017
10.1080/02827581.2017.1355409
10.1080/02827580310019563
10.1093/aob/mcu062
10.1080/02827580410030172
10.3390/rs6043475
10.1007/s00468-013-0854-4
10.5194/isprsannals-II-3-W4-189-2015
10.1016/j.rse.2009.01.017
10.1007/BF00193865
10.3390/rs5115424
10.5589/m13-014
10.1016/j.jag.2017.07.015
10.3390/rs6054323
10.1093/bioinformatics/btl355
10.1016/j.foreco.2009.03.054
10.1016/j.isprsjprs.2016.11.012
10.1016/j.compag.2012.08.005
10.1090/S0025-5718-1965-0178586-1
10.3390/f6113923
10.13073/0015-7473-60.5.420
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2018.2819598
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Forestry
EISSN 2151-1535
EndPage 3607
ExternalDocumentID oai_doaj_org_article_f784e16de4d745438c579d825fb371f3
10_1109_JSTARS_2018_2819598
8341859
Genre orig-research
GrantInformation_xml – fundername: Competence Based Growth Through Integrated Disruptive Technologies of 3-D Digitalization, Robotics, Geospatial Information and Image Processing/Computing Point Cloud Ecosystem
  grantid: 293389
– fundername: European Community's Seventh Framework Programme (FP7/2007–2013)
  grantid: 606971
– fundername: Finnish Academy projects “Centre of Excellence in Laser Scanning Research (CoE-LaSR)”
  grantid: 272195
– fundername: Interaction of Lidar/Radar Beams with Forests Using Mini-UAV and Mobile Forest Tomography
  grantid: 259348
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-e3a9b7e0d188d970bc8ad720fcf449a6b2dd09f183d9f23e4ef2797637762d93
IEDL.DBID RIE
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447950200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:52:30 EDT 2025
Sat Nov 01 15:17:35 EDT 2025
Tue Nov 18 22:12:13 EST 2025
Sat Nov 29 04:51:00 EST 2025
Wed Aug 27 02:50:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/3.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e3a9b7e0d188d970bc8ad720fcf449a6b2dd09f183d9f23e4ef2797637762d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2730-8892
0000-0002-4045-6067
OpenAccessLink https://ieeexplore.ieee.org/document/8341859
PQID 2121958495
PQPubID 75722
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_JSTARS_2018_2819598
crossref_primary_10_1109_JSTARS_2018_2819598
ieee_primary_8341859
proquest_journals_2121958495
doaj_primary_oai_doaj_org_article_f784e16de4d745438c579d825fb371f3
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref37
ref15
benjamin (ref4) 2007; 57
abegg (ref12) 2017; 8
ref14
ref31
ref30
ref33
olofsson (ref36) 2014; 6
ref11
ref32
ref10
uusitalo (ref40) 1997; 259
liang (ref38) 2013; 13
ref2
ref1
ref16
ref18
pyörälä (ref39) 2017; 33
ref23
ref26
ref25
ref41
ref22
ref21
todoroki (ref6) 2005; 55
ref28
ref27
ref29
ref8
ref7
côté (ref24) 2013; 39
ref9
(ref3) 2016
luther (ref13) 2013; 87
gorte (ref17) 2004; 35
ref5
côté (ref19) 2009; 113
raumonen (ref20) 2013; 5
References_xml – volume: 5
  start-page: 491
  year: 2013
  ident: ref20
  article-title: Fast automatic precision tree models from terrestrial laser scanner data
  publication-title: Remote Sens
  doi: 10.3390/rs5020491
– ident: ref33
  doi: 10.1080/02827589950152700
– ident: ref9
  doi: 10.1139/x2012-072
– ident: ref34
  doi: 10.1109/JSTARS.2016.2565519
– volume: 8
  start-page: 184
  year: 2017
  ident: ref12
  article-title: Terrestrial laser scanning for forest Inventories-Tree diameter distribution and scanner location impact on occlusion
  publication-title: Forests
  doi: 10.3390/f8060184
– ident: ref18
  doi: 10.1016/j.isprsjprs.2007.10.004
– ident: ref2
  doi: 10.1007/s00107-004-0546-2
– ident: ref32
  doi: 10.1145/358669.358692
– volume: 87
  year: 2013
  ident: ref13
  article-title: Predicting wood quantity and quality attributes of balsam fir and black spruce using airborne laser scanner data
  publication-title: Forestry
– volume: 13
  start-page: 1614
  year: 2013
  ident: ref38
  article-title: Automatic stem mapping by merging several terrestrial laser scans at the feature and decision levels
  publication-title: SENSORS
  doi: 10.3390/s130201614
– ident: ref16
  doi: 10.1007/s11390-007-9095-6
– volume: 55
  start-page: 38
  year: 2005
  ident: ref6
  article-title: Predicting internal lumber grade from log surface knots: Actual and simulated results
  publication-title: Forest Products J
– ident: ref29
  doi: 10.5194/isprsannals-III-8-117-2016
– ident: ref10
  doi: 10.1016/j.isprsjprs.2016.01.006
– ident: ref15
  doi: 10.1109/LGRS.2013.2297418
– ident: ref28
  doi: 10.1109/TGRS.2011.2161613
– ident: ref22
  doi: 10.5194/isprs-archives-XLII-2-W3-113-2017
– volume: 33
  start-page: 291
  year: 2017
  ident: ref39
  article-title: Comparison of terrestrial laser scanning and X-ray scanning in measuring Scots pine (Pinus sylvestris L.) branch structure
  publication-title: Scand J Forest Res
  doi: 10.1080/02827581.2017.1355409
– ident: ref8
  doi: 10.1080/02827580310019563
– volume: 57
  start-page: 34
  year: 2007
  ident: ref4
  article-title: A method to assess lumber grade recovery improvement potential for black spruce logs based on branchiness
  publication-title: Forest Products J
– ident: ref21
  doi: 10.1093/aob/mcu062
– ident: ref7
  doi: 10.1080/02827580410030172
– ident: ref14
  doi: 10.3390/rs6043475
– ident: ref27
  doi: 10.1007/s00468-013-0854-4
– ident: ref23
  doi: 10.5194/isprsannals-II-3-W4-189-2015
– volume: 113
  start-page: 1067
  year: 2009
  ident: ref19
  article-title: The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2009.01.017
– ident: ref5
  doi: 10.1007/BF00193865
– volume: 35
  start-page: 929
  year: 2004
  ident: ref17
  article-title: Structuring laser-scanned trees using 3D mathematical morphology
  publication-title: Int Arch Photogramm Remote Sens
– ident: ref26
  doi: 10.3390/rs5115424
– volume: 39
  start-page: 41
  year: 2013
  ident: ref24
  article-title: Validation of L-architect model for balsam fir and black spruce trees with structural measurements
  publication-title: Can J Remote Sens
  doi: 10.5589/m13-014
– ident: ref37
  doi: 10.1016/j.jag.2017.07.015
– volume: 6
  start-page: 4323
  year: 2014
  ident: ref36
  article-title: Tree stem and height measurements using terrestrial laser scanning and the ransac algorithm
  publication-title: Remote Sens
  doi: 10.3390/rs6054323
– ident: ref31
  doi: 10.1093/bioinformatics/btl355
– volume: 259
  start-page: 1
  year: 1997
  ident: ref40
  article-title: Preharvest measurement of pine stands for sawing production planning
  publication-title: Acta Forestalia Fennica
– ident: ref41
  doi: 10.1016/j.foreco.2009.03.054
– ident: ref11
  doi: 10.1016/j.isprsjprs.2016.11.012
– ident: ref25
  doi: 10.1016/j.compag.2012.08.005
– ident: ref30
  doi: 10.1090/S0025-5718-1965-0178586-1
– ident: ref35
  doi: 10.3390/f6113923
– year: 2016
  ident: ref3
  article-title: Grading rules for Pine (Pinus Sylvestris) and Spruce (Picea Abies) Sawn Timber
– ident: ref1
  doi: 10.13073/0015-7473-60.5.420
SSID ssj0062793
Score 2.406619
Snippet State-of-the-art technology available at sawmills enables measurements of whorl numbers and the maximum branch diameter for individual logs, but such...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3598
SubjectTerms Accuracy
Branch
Branches
Data
Data models
Detection
Evaluation
Evergreen trees
forestry
Forests
Geospatial analysis
Insertion
Laser modes
Lasers
LiDAR
Measurement by laser beam
Methods
modeling
Occlusion
Parameters
Pine trees
Procurement
Remote sensing
Sawmills
Scanning
Three dimensional models
Three-dimensional displays
Vegetation
Wood
wood procurement
wood quality
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB5CaEovIY-Wuk3CHHJooZvsQ7akoxvyOISQ1obmJrTSiAbMuthxIPf-8Iy0a7cl0Fxy2cOyWi2ab2Y07Oj7AA41Fz02L7g64WSbCXKUWfI-i-Ii1lnrlLJJbEJeXambG339l9RX7Alr6YHbhTsOUgkqBp6El6IvKuX6Unuua0JdySIknk_e9SyLqTYGD0qGXccxVOT6mEE-_D6KjVzqKP050uqfPJTo-jt9lSdBOWWasy3Y7LaIOGw_bRvWqNmB11FDMwqz7cDGeVLjfdiF398WtkmnxDhm4XBFsonTgFGpfo7XvInET3xdzHH0MImcGuzVeHn0GX_8nM4mOEr8sYsZ4W2DFttZ8PTP8TdMTQU4pqTiEeGKl5z5ZjxBK3f0FsZnp-OTi6yTVcicyNVdRpXVtaTcF0p5LfPaKetlmQcXhNB2UJfe5zqwr3sdyooEBV5OjkOSA6fX1TtYb6YNvQesfWH7VahJFpZHel1UztXeaipFrcn3oFyusXEd5XhUvpiYVHrk2rSGMdEwpjNMD76sBv1qGTf-__jXaLzVo5EuO91gEJkOROY5EPVgN5p-9RJVRU4f3YO9JRRM59pzw7k-EvRwYfnhJab-CG_K5CuxP3AP1tnqtA-v3P3d7Xx2kFD9CKdS-zE
  priority: 102
  providerName: Directory of Open Access Journals
Title Quantitative Assessment of Scots Pine (Pinus Sylvestris L.) Whorl Structure in a Forest Environment Using Terrestrial Laser Scanning
URI https://ieeexplore.ieee.org/document/8341859
https://www.proquest.com/docview/2121958495
https://doaj.org/article/f784e16de4d745438c579d825fb371f3
Volume 11
WOSCitedRecordID wos000447950200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB2S0JZe-pG0dNsk6NBDC_HGtrQr6bgpSXsIIe0uNDchSyMSWLxlN1vIvT-8I1nrEloKuRhjJNvwRiONNPMewHtNQY8tK4pOaLItBDosLHpfRHER66x1StkkNiEvLtTVlb7cgqO-FgYRU_IZDuNtOsv3C7eOW2XHikeqFb0N21LKrlZr43XHtUwEu7Qe0UWkjMkMQ1Wpj8nEJ9-mMY1LDdO5kVb3ZqFE1p_VVf5yyWmeOXv-sD98Ac_yepJNOgN4CVvY7sKTKLgZVdx24fHnJN17twe_vq5tm0rKyMGxSc_IyRaBRVn7FbukFSf7QNf1ik3v5pGAg1wAOx9-ZN-vF8s5myay2fUS2U3LLOu-wk7_1MqxlIHAZpgkP6Jts3OaJpf0gU4b6RXMzk5nn74UWYOhcKJUtwVyqxuJpa-U8lqWjVPWy7oMLgih7bipvS91IMfgdag5CgyEBDktSV7Wa_4adtpFi2-ANb6yIx4alJWlnl5X3LnGW421aDT6AdQbSIzL_ORRJmNuUpxSatPhaCKOJuM4gKO-04-OnuP_zU8i1n3TyK2dHhCIJg9VE6QSWI09Ci_FSHDlRlJ7iqRDw2UV-AD2IvD9SzLmA9jfWI7JfmBlaGEQ2XwoCn37717v4GmdhkpMD9yHHcIRD-CR-3l7s1oeph2Cw2TovwFVkvuk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4a47YXLhuIbgP8wANISxcnbm0_dmhjiFINWom9WY59LCZVKWpXpL3zwzl20iAEQuIliiI7jvQdn0tsfx_AK01Fj805VScUbDOBDjOL3mdRXMQ6a51SNolNyMlEXV7qiy046s7CIGLafIb9eJvW8v3CreOvsmNVRqoVfQtuD4QoeHNaa-N3h4VMFLuUkegsksa0HEM818dk5KPP07iRS_XTypFWv8WhRNff6qv84ZRTpDl7-H_f-AgetBklGzUm8Bi2sN6Fe1FyM-q47cLdd0m892YPfnxa2zodKiMXx0YdJydbBBaF7VfsgnJO9pqu6xWb3swjBQc5ATbuv2Ffvi6WczZNdLPrJbKrmlnWjMJOf52WY2kPApthEv2I1s3GFCiXNECjjvQEZmens7fnWavCkDmRq-sMS6sribnnSnkt88op62WRBxeE0HZYFd7nOpBr8DoUJQoMhAS5LUl-1uvyKWzXixqfAas8t4MyVCi5pZ5e89K5yluNhag0-h4UG0iMaxnKo1DG3KRKJdemwdFEHE2LYw-Ouk7fGoKOfzc_iVh3TSO7dnpAIJp2spoglUA-9Ci8FANRKjeQ2lMtHapS8lD2YC8C372kxbwHhxvLMa0nWBlKDSKfD9Wh-3_v9RLun88-js34_eTDAewUaeLEzYKHsE2Y4nO4475fX62WL5K5_wSbff32
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Assessment+of+Scots+Pine+%28+Pinus+Sylvestris+L.%29+Whorl+Structure+in+a+Forest+Environment+Using+Terrestrial+Laser+Scanning&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Pyorala%2C+Jiri&rft.au=Liang%2C+Xinlian&rft.au=Vastaranta%2C+Mikko&rft.au=Saarinen%2C+Ninni&rft.date=2018-10-01&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=11&rft.issue=10&rft.spage=3598&rft.epage=3607&rft_id=info:doi/10.1109%2FJSTARS.2018.2819598&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2018_2819598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon