Using An Attention-Based LSTM Encoder-Decoder Network for Near Real-Time Disturbance Detection
Accurate prediction of future observations based on past data is the key to near real-time disturbance detection using satellite image time series (SITS). To overcome the limitations of existing methods, we present an attention-based long-short-term memory (LSTM) encoder-decoder model in which the h...
Uloženo v:
| Vydáno v: | IEEE journal of selected topics in applied earth observations and remote sensing Ročník 13; s. 1819 - 1832 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1939-1404, 2151-1535 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!