Using An Attention-Based LSTM Encoder-Decoder Network for Near Real-Time Disturbance Detection
Accurate prediction of future observations based on past data is the key to near real-time disturbance detection using satellite image time series (SITS). To overcome the limitations of existing methods, we present an attention-based long-short-term memory (LSTM) encoder-decoder model in which the h...
Saved in:
| Published in: | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 13; pp. 1819 - 1832 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate prediction of future observations based on past data is the key to near real-time disturbance detection using satellite image time series (SITS). To overcome the limitations of existing methods, we present an attention-based long-short-term memory (LSTM) encoder-decoder model in which the historical time series of a pixel is encoded with a bidirectional LSTM encoder while the future time series is produced by another LSTM decoder. An attention mechanism is integrated into the encoder-decoder model to align the input time series with the output time series and to dynamically choose the most relevant contextual information while forecasting. Based on the proposed model, we develop a framework for near real-time disturbance detection and verify its effectiveness in the case of burned area mapping. The prediction accuracy of the proposed model is evaluated using moderate resolution imaging spectroradiometer (MODIS) time series and compared with state-of-the-art models. Experimental results show that our model achieves the best results in terms of lower prediction error and higher model fitness. We also evaluate the disturbance detection ability of the proposed framework. The proposed approach improves the detection rate of disturbances while suppressing false alarms, and increases the temporal accuracy. We suggest that the proposed methods provide new tools for enhancing current early warning systems in real time. |
|---|---|
| AbstractList | Accurate prediction of future observations based on past data is the key to near real-time disturbance detection using satellite image time series (SITS). To overcome the limitations of existing methods, we present an attention-based long-short-term memory (LSTM) encoder-decoder model in which the historical time series of a pixel is encoded with a bidirectional LSTM encoder while the future time series is produced by another LSTM decoder. An attention mechanism is integrated into the encoder-decoder model to align the input time series with the output time series and to dynamically choose the most relevant contextual information while forecasting. Based on the proposed model, we develop a framework for near real-time disturbance detection and verify its effectiveness in the case of burned area mapping. The prediction accuracy of the proposed model is evaluated using moderate resolution imaging spectroradiometer (MODIS) time series and compared with state-of-the-art models. Experimental results show that our model achieves the best results in terms of lower prediction error and higher model fitness. We also evaluate the disturbance detection ability of the proposed framework. The proposed approach improves the detection rate of disturbances while suppressing false alarms, and increases the temporal accuracy. We suggest that the proposed methods provide new tools for enhancing current early warning systems in real time. |
| Author | Lin, Lei Wu, Bin Yuan, Yuan Jia, Yan Huo, Lian-Zhi Kong, Yun-Long Zhou, Zeng-Guang |
| Author_xml | – sequence: 1 givenname: Yuan orcidid: 0000-0003-1860-3275 surname: Yuan fullname: Yuan, Yuan email: yuanyuan@njupt.edu.cn organization: School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 2 givenname: Lei orcidid: 0000-0002-7012-4901 surname: Lin fullname: Lin, Lei email: linlei1214@163.com organization: Beijing Qihoo Technology Co. Ltd., Beijing, China – sequence: 3 givenname: Lian-Zhi orcidid: 0000-0001-6705-6453 surname: Huo fullname: Huo, Lian-Zhi email: huolz@aircas.ac.cn organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Yun-Long surname: Kong fullname: Kong, Yun-Long email: kongyl@aircas.ac.cn organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Zeng-Guang surname: Zhou fullname: Zhou, Zeng-Guang email: zhouzg@aircas.ac.cn organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 6 givenname: Bin orcidid: 0000-0002-5597-6997 surname: Wu fullname: Wu, Bin email: ihadl@sina.com organization: Aerospace DongFangHong Satellite Co. Ltd., Beijing, China – sequence: 7 givenname: Yan surname: Jia fullname: Jia, Yan email: jiayan@njupt.edu.cn organization: School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China |
| BookMark | eNqFkU1v1DAQhi1UJLYLv6CXSJyzePyRxMelH7RoAam7vWI5zrjyso2L7RXi39dpqh64cJrRaN5nPt5TcjKGEQk5A7oCoOrT1-1ufbtdMcroiqmu40y8IQsGEmqQXJ6QBSiuahBUvCOnKe0pbVir-IL8vEt-vK_WY7XOGcfsw1h_NgmHarPdfasuRxsGjPUFPsfqO-Y_If6qXJhyE6tbNId65x-wuvApH2NvRltyzGgn1nvy1plDwg8vcUnuri5359f15seXm_P1praCdrlGMEo6IQfoHZdW9GLglrPWSj6IvneupQ7AIiikrLFtOQxg6ACcKC1o-JLczNwhmL1-jP7BxL86GK-fCyHeaxOztwfUzEjomxYMNE1hi47RlhaYhcF13GFhfZxZjzH8PmLKeh-OcSzrayaobDmo8s0l4XOXjSGliO51KlA9maJnU_Rkin4xpajUPyrrs5k-laPxh_9oz2atR8TXaYq2rOEdfwILjpt6 |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_1109_TMECH_2024_3496533 crossref_primary_10_3390_buildings15142537 crossref_primary_10_1007_s00521_024_09707_w crossref_primary_10_1109_JSTARS_2025_3603094 crossref_primary_10_1007_s11063_022_10749_1 crossref_primary_10_1109_TVT_2022_3152347 crossref_primary_10_1016_j_jag_2021_102651 crossref_primary_10_1002_widm_1528 crossref_primary_10_3390_rs16132387 crossref_primary_10_1016_j_autcon_2024_105819 crossref_primary_10_1109_JTEHM_2023_3276943 crossref_primary_10_1016_j_ecoinf_2022_101552 crossref_primary_10_3390_rs14215560 crossref_primary_10_1109_JSTARS_2021_3128522 crossref_primary_10_1016_j_jag_2025_104426 crossref_primary_10_1016_j_asoc_2021_107216 crossref_primary_10_1080_01431161_2024_2368930 crossref_primary_10_1016_j_tust_2025_106536 crossref_primary_10_1080_01431161_2025_2528256 crossref_primary_10_1088_1361_6501_ada78a crossref_primary_10_1002_cjce_70101 crossref_primary_10_1109_TIE_2021_3076713 crossref_primary_10_1109_LGRS_2021_3100485 crossref_primary_10_1016_j_cherd_2024_11_003 crossref_primary_10_1016_j_engappai_2025_111346 crossref_primary_10_1038_s41598_022_25421_w crossref_primary_10_1038_s41598_022_26534_y |
| Cites_doi | 10.3390/rs9121330 10.1109/JSTARS.2012.2187177 10.1016/j.rse.2015.02.009 10.1109/78.650093 10.1016/j.rse.2015.05.005 10.1016/j.rse.2014.09.010 10.1109/TGRS.2016.2601622 10.1186/1475-2875-11-165 10.3390/rs10030471 10.1109/TGRS.2017.2783902 10.3390/rs11091104 10.3390/rs10030452 10.1109/TGRS.2005.847791 10.1016/j.rse.2012.02.022 10.5194/essd-10-2015-2018 10.3390/rs11141639 10.1109/TIP.2011.2176743 10.5194/isprs-archives-XLI-B7-987-2016 10.3390/rs71115318 10.1016/j.isprsjprs.2017.06.013 10.1007/s40808-018-0431-3 10.3115/v1/D14-1179 10.1016/j.rse.2015.03.011 10.1016/j.rse.2010.08.003 10.1016/j.rse.2014.01.011 10.1109/TNNLS.2016.2582924 10.1109/LGRS.2017.2728698 10.3390/ijgi7110420 10.1109/JSTARS.2010.2053918 10.1016/j.neunet.2014.09.003 10.1016/j.mcm.2009.10.031 10.1109/LGRS.2018.2794581 10.1109/ICASSP.2016.7472621 10.3390/f8080275 10.3390/rs11101257 10.1016/j.rse.2019.02.003 10.1016/j.cageo.2004.05.006 10.1109/JSTARS.2015.2428306 10.1109/ICCV.2015.515 10.18653/v1/K16-1028 10.1016/j.jag.2014.11.011 10.1016/j.eneco.2013.07.028 10.1016/j.rse.2010.07.008 10.1016/j.rse.2014.11.005 10.1016/j.neucom.2018.02.105 10.1109/Multi-Temp.2013.6866022 10.1016/j.rse.2015.02.012 10.1016/j.rse.2006.04.014 10.3390/rs10081217 10.1016/j.procs.2017.01.175 10.1145/3219819.3219845 10.1016/j.isprsjprs.2019.10.003 10.1016/j.jag.2011.06.007 10.18653/v1/D15-1166 10.1016/j.rse.2016.03.040 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2020.2988324 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 1832 |
| ExternalDocumentID | oai_doaj_org_article_2a51b671a1664bb4820701d8c1df83fe 10_1109_JSTARS_2020_2988324 9072638 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20170897; BK20180765 funderid: 10.13039/501100004608 – fundername: NUPTSF grantid: NY217014 – fundername: Research Project of Surveying Mapping and Geoinformation of Jiangsu Province grantid: JSCHKY201905 – fundername: National Natural Science Foundation of China grantid: 41901356; 41971396; 41701512 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c408t-e1a95f45d1bf35c4b4d3c327c53d4bbff70f11ce19e026c715111d811f4c53ea3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537282600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:42:40 EDT 2025 Fri Jul 25 10:35:39 EDT 2025 Tue Nov 18 22:23:38 EST 2025 Sat Nov 29 04:51:04 EST 2025 Wed Aug 27 02:50:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-e1a95f45d1bf35c4b4d3c327c53d4bbff70f11ce19e026c715111d811f4c53ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6705-6453 0000-0002-7012-4901 0000-0003-1860-3275 0000-0002-5597-6997 |
| OpenAccessLink | https://doaj.org/article/2a51b671a1664bb4820701d8c1df83fe |
| PQID | 2405731919 |
| PQPubID | 75722 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSTARS_2020_2988324 ieee_primary_9072638 proquest_journals_2405731919 crossref_primary_10_1109_JSTARS_2020_2988324 doaj_primary_oai_doaj_org_article_2a51b671a1664bb4820701d8c1df83fe |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref15 ref58 ref14 kingma (ref59) 2014 ref55 ref11 adhikari (ref24) 2013 ref10 ref17 ref16 ref18 ref51 cui (ref54) 2018 ref46 chalapathy (ref37) 2019 ref45 ref48 ref42 ref41 ref44 liu (ref50) 2017; 9 ref49 ref8 ref7 ref9 yu (ref57) 2012; 21 ref4 ref3 ref6 ref5 ref40 kvalseth (ref65) 1985; 39 ref35 ref34 ashish (ref53) 2017 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 v (ref19) 2011 ref23 ref26 ref25 ref64 ref20 ref63 ref22 ref21 ref28 ref27 ref29 bahdanau (ref47) 2014 sutskever (ref43) 2014 ref60 ref62 ref61 graves (ref52) 2014 |
| References_xml | – volume: 9 year: 2017 ident: ref50 article-title: Bidirectional-convolutional LSTM based spectral-spatial feature learning for hyperspectral image classification publication-title: Remote Sens doi: 10.3390/rs9121330 – ident: ref6 doi: 10.1109/JSTARS.2012.2187177 – ident: ref60 doi: 10.1016/j.rse.2015.02.009 – ident: ref48 doi: 10.1109/78.650093 – ident: ref12 doi: 10.1016/j.rse.2015.05.005 – ident: ref14 doi: 10.1016/j.rse.2014.09.010 – year: 2013 ident: ref24 article-title: An introductory study on time series modeling and forecasting – ident: ref27 doi: 10.1109/TGRS.2016.2601622 – ident: ref20 doi: 10.1186/1475-2875-11-165 – ident: ref33 doi: 10.3390/rs10030471 – ident: ref28 doi: 10.1109/TGRS.2017.2783902 – volume: 39 start-page: 279 year: 1985 ident: ref65 article-title: Cautionary note about R2 publication-title: Amer Statistician – ident: ref9 doi: 10.3390/rs11091104 – ident: ref39 doi: 10.3390/rs10030452 – year: 2014 ident: ref52 article-title: Neural turing machines – start-page: 95 year: 2011 ident: ref19 article-title: A Gaussian process based online change detection algorithm for monitoring periodic time series publication-title: Proc SIAM Int Conf Data Mining – ident: ref3 doi: 10.1109/TGRS.2005.847791 – ident: ref1 doi: 10.1016/j.rse.2012.02.022 – ident: ref56 doi: 10.5194/essd-10-2015-2018 – ident: ref49 doi: 10.3390/rs11141639 – volume: 21 start-page: 2481 year: 2012 ident: ref57 article-title: Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2176743 – ident: ref25 doi: 10.5194/isprs-archives-XLI-B7-987-2016 – ident: ref21 doi: 10.3390/rs71115318 – ident: ref10 doi: 10.1016/j.isprsjprs.2017.06.013 – ident: ref40 doi: 10.1007/s40808-018-0431-3 – ident: ref42 doi: 10.3115/v1/D14-1179 – ident: ref58 doi: 10.1016/j.rse.2015.03.011 – ident: ref13 doi: 10.1016/j.rse.2010.08.003 – ident: ref16 doi: 10.1016/j.rse.2014.01.011 – start-page: 3104 year: 2014 ident: ref43 article-title: Sequence to sequence learning with neural networks publication-title: Proc Neural Inf Process Syst – ident: ref34 doi: 10.1109/TNNLS.2016.2582924 – ident: ref30 doi: 10.1109/LGRS.2017.2728698 – ident: ref38 doi: 10.3390/ijgi7110420 – ident: ref5 doi: 10.1109/JSTARS.2010.2053918 – ident: ref36 doi: 10.1016/j.neunet.2014.09.003 – ident: ref18 doi: 10.1016/j.mcm.2009.10.031 – year: 2014 ident: ref47 article-title: Neural machine translation by jointly learning to align and translate – ident: ref32 doi: 10.1109/LGRS.2018.2794581 – ident: ref45 doi: 10.1109/ICASSP.2016.7472621 – ident: ref63 doi: 10.3390/f8080275 – ident: ref22 doi: 10.3390/rs11101257 – ident: ref64 doi: 10.1016/j.rse.2019.02.003 – ident: ref4 doi: 10.1016/j.cageo.2004.05.006 – ident: ref2 doi: 10.1109/JSTARS.2015.2428306 – ident: ref46 doi: 10.1109/ICCV.2015.515 – ident: ref44 doi: 10.18653/v1/K16-1028 – ident: ref55 doi: 10.1016/j.jag.2014.11.011 – ident: ref41 doi: 10.1016/j.eneco.2013.07.028 – ident: ref11 doi: 10.1016/j.rse.2010.07.008 – ident: ref15 doi: 10.1016/j.rse.2014.11.005 – ident: ref29 doi: 10.1016/j.neucom.2018.02.105 – year: 2019 ident: ref37 article-title: Deep learning for anomaly detection: A survey – ident: ref61 doi: 10.1109/Multi-Temp.2013.6866022 – year: 2018 ident: ref54 article-title: Stacked bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction – ident: ref62 doi: 10.1016/j.rse.2015.02.012 – ident: ref26 doi: 10.1016/j.rse.2006.04.014 – ident: ref31 doi: 10.3390/rs10081217 – ident: ref23 doi: 10.1016/j.procs.2017.01.175 – ident: ref35 doi: 10.1145/3219819.3219845 – ident: ref8 doi: 10.1016/j.isprsjprs.2019.10.003 – ident: ref7 doi: 10.1016/j.jag.2011.06.007 – ident: ref51 doi: 10.18653/v1/D15-1166 – ident: ref17 doi: 10.1016/j.rse.2016.03.040 – year: 2014 ident: ref59 article-title: Adam: A method for stochastic optimization – start-page: 6000 year: 2017 ident: ref53 article-title: Attention is all you need publication-title: Proc Adv Neural Inf Process Syst |
| SSID | ssj0062793 |
| Score | 2.4302182 |
| Snippet | Accurate prediction of future observations based on past data is the key to near real-time disturbance detection using satellite image time series (SITS). To... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1819 |
| SubjectTerms | Accuracy Attention mechanism Coders Detection Early warning systems encoder–decoder False alarms Forecasting Hidden Markov models Image detection Long short-term memory long-short-term memory (LSTM) Mapping Methods Model accuracy near real-time disturbance detection Predictions Predictive models Real time Real-time systems Remote sensing satellite image time series (SITS) Satellite imagery Satellites Spaceborne remote sensing Spectroradiometers Time series Time series analysis Warning systems |
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9UwFD5sQ8EXN53idVPy4OOyNT_aNI933k0f5kW2KXsyJGkCA-mk6xX87z1Jcy-IIuypoSSl6fmSfCc95wvAOx-9V03HKQu2pdJ2mmrfaupFsJI5oVnW0vt6oZbL9uZGf96Co00uTAghB5-F41TM__K7O79KW2Un6MhxxMs2bCvVTLla61m34SoL7CIf0TRJxhSFIVbpE4T4_PIKfUFeHXPdIoblH6tQFusvp6v8NSXndeZ892FvuAdPC58k8wkAz2Ar9M_h8Yd8Xu-vffiWQwLIvCfzcZwiG-kpLlwdubi6_kTO-pTSPtBFyFeynILCCTJZLNuBXCKPpClNhCwQD6vBJZCQRRhzBFf_Ar6cn12__0jLkQrUy6odaWBW11HWHXNR1F462QkvuPK16KRzMaoqMuYD0wGdM6-QDzDWtYxFiVWCFS9hp7_rwysgyLOc5NxpqaJUtXSijY11SA9i46TzM-DrT2x80RtPx158N9nvqLSZ7GKSXUyxywyONo1-THIb_69-mmy3qZq0svMNNIopQ89wWzPXKGZZ02AfJXIeVWGnPOtiK2KYwX4y5OYhxYYzOFwjwZRxfW944rc4azH9-t-tDuBJesFpk-YQdsZhFd7AI_9zvL0f3mbI_gZ6Febl priority: 102 providerName: IEEE |
| Title | Using An Attention-Based LSTM Encoder-Decoder Network for Near Real-Time Disturbance Detection |
| URI | https://ieeexplore.ieee.org/document/9072638 https://www.proquest.com/docview/2405731919 https://doaj.org/article/2a51b671a1664bb4820701d8c1df83fe |
| Volume | 13 |
| WOSCitedRecordID | wos000537282600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXRFsQW9rKhx4xzdhOHB-3bB-HdoXagnrCsh1bQkKhSlMk_j1jO7uiQiqXnhJFTuJ8M5lHMv6GkAMfvVdNxxkE2zJpO820bzXzIlgJTmjIXHpfz9Vy2d7c6M9_tfpKNWGFHrgAd8htDa5RYKFppHMSPZaqoGs9dLEVMSTrWym9SqaKDW44qt3EMQSVPkQln19eYTbIq49ct6jF8oEfynT9U3-Vf4xy9jQnr8mrKUSk8zK1TfIs9FvkxWluwft7m3zLf_npvKfzcSzFiuwIfVFHz6-uL-hxn1apD2wR8pYuS503xeAU9-1ALzE0ZGnlB12giO8Hl-ROF2HMRVn9G_Ll5Pj60xmbuiQwL6t2ZAGsrqOsO3BR1F462QkvuPK16BCwGFUVAXwAHTDf8gpdPCB-AFHikGDFW7LR_-zDO0IxdHKSc6elilLV0ok2Ntahx4-Nk87PCF9hZvxEIZ46WfwwOZWotClAmwS0mYCekQ_rk24Lg8bjw4-SMNZDE_11PoBKYSalMP9TihnZTqJcX0RXiqOhmZHdlWjN9KreGZ5CVjREoHee4tbvycv0OOUrzS7ZGIf7sEee-1_j97thP2vpfl5l-AeeOuiM |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VAqIXvlrEQgEfONZt7DhxfNyyLUVsV6hdUE9Y8ZeEhFKUZivx7xk73pUQCIlTrMiO4syz_cYZvwF4a4O1snacMt82VLROUWUbRW3pW8FMqVjS0vsyl4tFc3WlPm3BweYsjPc-BZ_5w1hM__LdtV3FrbIjdOQ44uUO3I2Zs6rxtNZ63q25TBK7yEgUjaIxWWOIFeoIQT69uERvkBeHXDWIYvHbOpTk-nN-lT8m5bTSnD76v3d8DA8zoyTTEQJPYMt3T-H--5Sx9-cufE1BAWTakekwjLGN9BiXLkfml8tzctLFQ-09nfl0JYsxLJwgl8Vy25MLZJI0HhQhM0TEqjcRJmTmhxTD1e3B59OT5bszmpMqUCuKZqCetaoKonLMhLKywghX2pJLW5VOGBOCLAJj1jPl0T2zEhkBY65hLAis4tvyGWx3151_DgSZlhGcGyVkELISpmxC3RokCKE2wtgJ8PUn1jYrjsfEF9918jwKpUe76GgXne0ygYNNox-j4Ma_qx9H222qRrXsdAONovPg07ytmKkla1ldYx8Fsh5ZYKcsc6Epg5_AbjTk5iHZhhPYXyNB55F9o3lkuDhvMfXi763ewIOz5flczz8sPr6Enfiy45bNPmwP_cq_gnv2dvh2079O8P0FrxXqMA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+An+Attention-Based+LSTM+Encoder-Decoder+Network+for+Near+Real-Time+Disturbance+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Yuan%2C+Yuan&rft.au=Lin%2C+Lei&rft.au=Huo%2C+Lian-Zhi&rft.au=Kong%2C+Yun-Long&rft.date=2020&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=13&rft.spage=1819&rft.epage=1832&rft_id=info:doi/10.1109%2FJSTARS.2020.2988324&rft.externalDocID=9072638 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |