Performance Enhancement of MmWave MIMO Systems Using Deep Learning Framework
In order to obtain beamforming gains and prevent high pathloss in millimeter wave (mmWave) systems, large number of antennas is employed. Digital precoders are difficult to implement with many antennas because of hardware constraints, while analog precoders have limited performance. In this paper, h...
Saved in:
| Published in: | IEEE access Vol. 9; p. 1 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In order to obtain beamforming gains and prevent high pathloss in millimeter wave (mmWave) systems, large number of antennas is employed. Digital precoders are difficult to implement with many antennas because of hardware constraints, while analog precoders have limited performance. In this paper, hybrid precoding based on a deep learning framework, HybridPrecodingNet, is proposed, which uses large-scale information to predict the parameters of hybrid precoders and decoders. The statistics of the channel covariance matrix are applied to design the hybrid precoders and decoders. The proposed HybridPrecodingNet at the receiver is applied for the channel estimation and design of hybrid decoders. In our proposed framework, the structure of HybridPrecodingNet is trained to learn how to optimize the hybrid precoder and decoder for maximum spectral efficiency. Comparison between different precoding techniques is provided. Results show that HybridPrecodingNet approaches the sub-optimal solution and gives significant spectral efficiency enhancement. |
|---|---|
| AbstractList | In order to obtain beamforming gains and prevent high pathloss in millimeter wave (mmWave) systems, large number of antennas is employed. Digital precoders are difficult to implement with many antennas because of hardware constraints, while analog precoders have limited performance. In this paper, hybrid precoding based on a deep learning framework, HybridPrecodingNet, is proposed, which uses large-scale information to predict the parameters of hybrid precoders and decoders. The statistics of the channel covariance matrix are applied to design the hybrid precoders and decoders. The proposed HybridPrecodingNet at the receiver is applied for the channel estimation and design of hybrid decoders. In our proposed framework, the structure of HybridPrecodingNet is trained to learn how to optimize the hybrid precoder and decoder for maximum spectral efficiency. Comparison between different precoding techniques is provided. Results show that HybridPrecodingNet approaches the sub-optimal solution and gives significant spectral efficiency enhancement. |
| Author | El-Mashed, Mohamed G. Faragallah, Osama S. El-sayed, Hala S. |
| Author_xml | – sequence: 1 givenname: Osama S. surname: Faragallah fullname: Faragallah, Osama S. organization: Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia – sequence: 2 givenname: Hala S. surname: El-sayed fullname: El-sayed, Hala S. organization: Department of Electrical Engineering, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt. (e-mail: hall_hhh@yahoo.com) – sequence: 3 givenname: Mohamed G. surname: El-Mashed fullname: El-Mashed, Mohamed G. organization: Department of Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt |
| BookMark | eNp9kUtPGzEUha0KpFLgF7AZqesEv8aOlygNJVIiKgXE0nKur2FCxk7tgYp_35kOraouejf3ofsdHel8IkcxRSTkgtEpY9RcXs3ni81myilnU0EN19R8ICecKTMRtVBHf80fyXkpO9rXrD_V-oSsvmEOKbcuAlaL-DT0FmNXpVCt2wf3itV6ub6tNm-lw7ZU96WJj9UXxEO1QpfjsF1n1-KPlJ_PyHFw-4Ln7_2U3F8v7uY3k9Xt1-X8ajUBSWfdBBkDymupAb0BZXwtGJ8FuRUAWxMME4JJAKmZ155CbfoBNZPCawmOe3FKlqOuT25nD7lpXX6zyTX21yHlR-ty18AeLXhQ3szQhEAl3QqjkSsegJkaYetCr_V51Drk9P0FS2d36SXH3r4dLCpJlTb9lxm_IKdSMgYLTee6JsUuu2ZvGbVDFnbMwg5Z2Pcselb8w_52_H_qYqQaRPxDGKkUE1L8BPxAlmE |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_s22010309 crossref_primary_10_1109_ACCESS_2022_3217244 crossref_primary_10_1109_ACCESS_2024_3475389 crossref_primary_10_1109_TITS_2022_3184314 crossref_primary_10_1007_s11277_024_11086_3 |
| Cites_doi | 10.1109/TCOMM.2015.2502954 10.1109/ACCESS.2020.3000601 10.1109/PIMRC.2019.8904413 10.1186/s13634-020-00669-4 10.3390/sym11091099 10.1109/ACCESS.2019.2944061 10.1109/JSAC.2017.2698958 10.1109/JSTSP.2016.2523903 10.1109/TWC.2014.011714.130846 10.1109/TSP.2018.2864610 10.1109/CVPR.2018.00262 10.1155/2016/9767065 10.1109/LCOMM.2019.2915977 10.1109/TCOMM.2020.2974457 10.1109/TVT.2019.2893928 10.1109/ACCESS.2019.2903166 10.1109/ICC.2017.7996970 10.1109/ICC.2017.7997065 10.1109/JSAC.2016.2549418 10.1109/TWC.2015.2455980 10.1109/ACCESS.2020.3045045 10.1109/TSP.2014.2370947 10.1109/COMST.2018.2843719 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3092709 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_cdc6d98e9ff040b397e262fc195ecbaf 10_1109_ACCESS_2021_3092709 9466134 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Deanship of Scientific Research Taif University Researchers Supporting Project grantid: TURSP-2020/08 |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-e11c02547ced9c69d53128f4b3ccb9f913314cc471d7d0c5971de7143d74ca2d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673917800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:43:05 EDT 2025 Sun Nov 30 04:49:07 EST 2025 Tue Nov 18 20:56:27 EST 2025 Sat Nov 29 06:12:23 EST 2025 Wed Aug 27 02:26:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-e11c02547ced9c69d53128f4b3ccb9f913314cc471d7d0c5971de7143d74ca2d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2776-783X 0000-0002-6733-764X 0000-0003-1982-335X |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9466134 |
| PQID | 2547640679 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_9466134 crossref_primary_10_1109_ACCESS_2021_3092709 doaj_primary_oai_doaj_org_article_cdc6d98e9ff040b397e262fc195ecbaf crossref_citationtrail_10_1109_ACCESS_2021_3092709 proquest_journals_2547640679 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref23 sachin (ref20) 2020; 7 ref25 ref22 wenyan (ref21) 2020; 68 ref8 ref7 ref9 ref4 ref3 ref6 ref5 rappaport (ref24) 2014 |
| References_xml | – ident: ref16 doi: 10.1109/TCOMM.2015.2502954 – volume: 7 start-page: 4419 year: 2020 ident: ref20 article-title: Deep learning based hybrid precoding for millimeter wave massive MIMO systems publication-title: Int Res J Eng Technol – ident: ref18 doi: 10.1109/ACCESS.2020.3000601 – ident: ref9 doi: 10.1109/PIMRC.2019.8904413 – ident: ref10 doi: 10.1186/s13634-020-00669-4 – ident: ref12 doi: 10.3390/sym11091099 – ident: ref19 doi: 10.1109/ACCESS.2019.2944061 – ident: ref13 doi: 10.1109/JSAC.2017.2698958 – ident: ref15 doi: 10.1109/JSTSP.2016.2523903 – ident: ref14 doi: 10.1109/TWC.2014.011714.130846 – ident: ref6 doi: 10.1109/TSP.2018.2864610 – ident: ref25 doi: 10.1109/CVPR.2018.00262 – ident: ref3 doi: 10.1155/2016/9767065 – ident: ref22 doi: 10.1109/LCOMM.2019.2915977 – volume: 68 start-page: 2838 year: 2020 ident: ref21 article-title: Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2020.2974457 – ident: ref23 doi: 10.1109/TVT.2019.2893928 – ident: ref11 doi: 10.1109/ACCESS.2019.2903166 – ident: ref8 doi: 10.1109/ICC.2017.7996970 – ident: ref17 doi: 10.1109/ICC.2017.7997065 – year: 2014 ident: ref24 publication-title: Millimeter Wave Wireless Communications – ident: ref4 doi: 10.1109/JSAC.2016.2549418 – ident: ref7 doi: 10.1109/TWC.2015.2455980 – ident: ref1 doi: 10.1109/ACCESS.2020.3045045 – ident: ref5 doi: 10.1109/TSP.2014.2370947 – ident: ref2 doi: 10.1109/COMST.2018.2843719 |
| SSID | ssj0000816957 |
| Score | 2.2454002 |
| Snippet | In order to obtain beamforming gains and prevent high pathloss in millimeter wave (mmWave) systems, large number of antennas is employed. Digital precoders are... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Antennas Array signal processing Beamforming Covariance matrix Decoder Decoders Deep learning Digital precoders Hardware HybridPrecodingNet Millimeter waves mmWave MmWave and Spectral Efficiency Neural networks Optimization Performance enhancement Precoding Radio frequency Spectral efficiency |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgPrG-yMGjq8luutkctbYoWO1B0VvIThIVtC1t7e83s5vWgqAXTwtL9pEvk0xmmHwfIScyzS0Y6ZMy9ywRClhSCGcS3MpmRuTBqYhKbELe3RXPz6q3IPWFNWE1PXAN3DlYyK0qnPI-2FsZ3KdL89QDV00HpfG4-jKpFoKpag0ueK6aMtIMcabOL1qt0KMQEKb8LGMqlViCuOCKKsb-KLHyY12unE1ng6zHXSK9qP9ukyy5_hZZW-AO3Ca3ve-Sf9ruv-IVM3104Gn348lMHe3edO9ppCSnVW0AvXJuSCOn6gvtzCqzdshjp_3Quk6iNEICghWTxHEOeI5dgrMKcmXDVEoLL8oMoFRehciTC4Dgeay0DELUwK1DqXMrBZjUZrtkuT_ouz1CXSashwKJ4jieazVQmIAPGOOaAWXWIOkMJQ2RNxzlK951FT8wpWtoNUKrI7QNcjp_aFjTZvze_BLhnzdFzuvqRrAEHS1B_2UJDbKNgzd_CTLn80w0yOFsMHWcn2ON0OUCk2j7__HpA7KK3alTM4dkeTL6dEdkBaaTt_HouDLNL7Jf5XU priority: 102 providerName: Directory of Open Access Journals |
| Title | Performance Enhancement of MmWave MIMO Systems Using Deep Learning Framework |
| URI | https://ieeexplore.ieee.org/document/9466134 https://www.proquest.com/docview/2547640679 https://doaj.org/article/cdc6d98e9ff040b397e262fc195ecbaf |
| Volume | 9 |
| WOSCitedRecordID | wos000673917800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4tAeWihUXQrIB44E8vDG8ZFud9VKLOVQBDfLGY9pJdhFsHDkt9fjeFOkVpV6SaLIjhx_seeRmW8ADlRZO7TKZ23t80xqzLNGks1Yla2srINQkbHYhDo7a66u9PkKHPa5MEQUg8_oiC_jv3w3x0d2lR0zF3pRyVVYVarucrV6fwoXkNBDlYiFilwfn4xG4R2CCVgWR1WuS8VBhy-ET-ToT0VV_tiJo3iZvP2_gW3Am6RGipMO901Yodk7eP2CXHALTs9_5wSI8ewHn_kxYu7F9PbSPpGYfp1-E4mzXMTgAfGZ6E4k0tVrMVmGbm3DxWT8ffQlS7UTMpR5s8ioKJAT3RWS01hrF9Za2XjZVoit9jqYpoVEDKLJKZdjMCsKR1wL3SmJtnTVe1ibzWf0AQRV0nlsmEmu4MRXi40N04nW0hCDPjGAcjmpBhOxONe3uDHRwMi16ZAwjIRJSAzgsO901_Fq_Lv5J0arb8qk2PFGgMGkNWbQYe10Q9r7sDW1QdOisi59GOOQsLV-AFsMXf-QhNoAdpfYm7SAHwxPXS3Zy7bz914f4RUPsPPG7MLa4v6R9mAdnxY_H-73o2kfjtPn8X78Tn8BBe7i_g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RWqntoS-KupS2PvRIIHG8SXyELStQd7ccqMrNcsZjigS7CBZ-fz2ON0VqVamnRJFtOf5izyMz3wB8rmXl0NY-ayufZ0pjnjWKbMaqbGlVFYSKisUm6tmsOTvTJ2uw0-fCEFEMPqNdvo3_8t0C79hVtsdc6EWpHsHjoVIy77K1eo8Kl5DQwzpRCxW53tsfjcJbBCNQFrtlrmXNYYcPxE9k6U9lVf44i6OAGb_8v6m9ghdJkRT7HfKvYY3mb-D5A3rBDZic_M4KEIfzn3zlYcTCi-nVD3tPYno8_SYSa7mI4QPiC9G1SLSr52K8Ct56C9_Hh6ejoyxVT8hQ5c0yo6JATnWvkZzGSruw22TjVVsittrrYJwWCjEIJ1e7HINhUTjiauiuVmilKzdhfb6Y0zsQVCrnsWEuuYJTXy02NiwnWktDDBrFAORqUQ0manGucHFpoomRa9MhYRgJk5AYwE7f6bpj1vh38wNGq2_KtNjxQYDBpF1m0GHldEPa-3A4tUHXIllJH-Y4JGytH8AGQ9cPklAbwPYKe5O28K3hpasU-9m2_t7rEzw9Op1OzOR49vU9POPJdr6ZbVhf3tzRB3iC98uL25uP8Tv9BUaK5B8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Enhancement+of+MmWave+MIMO+Systems+Using+Deep+Learning+Framework&rft.jtitle=IEEE+access&rft.au=Faragallah%2C+Osama+S&rft.au=El-Sayed%2C+Hala+S&rft.au=El-Mashed%2C+Mohamed+G&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=9&rft.spage=92460&rft_id=info:doi/10.1109%2FACCESS.2021.3092709&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |