Performance Enhancement of MmWave MIMO Systems Using Deep Learning Framework

In order to obtain beamforming gains and prevent high pathloss in millimeter wave (mmWave) systems, large number of antennas is employed. Digital precoders are difficult to implement with many antennas because of hardware constraints, while analog precoders have limited performance. In this paper, h...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 9; p. 1
Main Authors: Faragallah, Osama S., El-sayed, Hala S., El-Mashed, Mohamed G.
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In order to obtain beamforming gains and prevent high pathloss in millimeter wave (mmWave) systems, large number of antennas is employed. Digital precoders are difficult to implement with many antennas because of hardware constraints, while analog precoders have limited performance. In this paper, hybrid precoding based on a deep learning framework, HybridPrecodingNet, is proposed, which uses large-scale information to predict the parameters of hybrid precoders and decoders. The statistics of the channel covariance matrix are applied to design the hybrid precoders and decoders. The proposed HybridPrecodingNet at the receiver is applied for the channel estimation and design of hybrid decoders. In our proposed framework, the structure of HybridPrecodingNet is trained to learn how to optimize the hybrid precoder and decoder for maximum spectral efficiency. Comparison between different precoding techniques is provided. Results show that HybridPrecodingNet approaches the sub-optimal solution and gives significant spectral efficiency enhancement.
AbstractList In order to obtain beamforming gains and prevent high pathloss in millimeter wave (mmWave) systems, large number of antennas is employed. Digital precoders are difficult to implement with many antennas because of hardware constraints, while analog precoders have limited performance. In this paper, hybrid precoding based on a deep learning framework, HybridPrecodingNet, is proposed, which uses large-scale information to predict the parameters of hybrid precoders and decoders. The statistics of the channel covariance matrix are applied to design the hybrid precoders and decoders. The proposed HybridPrecodingNet at the receiver is applied for the channel estimation and design of hybrid decoders. In our proposed framework, the structure of HybridPrecodingNet is trained to learn how to optimize the hybrid precoder and decoder for maximum spectral efficiency. Comparison between different precoding techniques is provided. Results show that HybridPrecodingNet approaches the sub-optimal solution and gives significant spectral efficiency enhancement.
Author El-Mashed, Mohamed G.
Faragallah, Osama S.
El-sayed, Hala S.
Author_xml – sequence: 1
  givenname: Osama S.
  surname: Faragallah
  fullname: Faragallah, Osama S.
  organization: Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
– sequence: 2
  givenname: Hala S.
  surname: El-sayed
  fullname: El-sayed, Hala S.
  organization: Department of Electrical Engineering, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt. (e-mail: hall_hhh@yahoo.com)
– sequence: 3
  givenname: Mohamed G.
  surname: El-Mashed
  fullname: El-Mashed, Mohamed G.
  organization: Department of Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
BookMark eNp9kUtPGzEUha0KpFLgF7AZqesEv8aOlygNJVIiKgXE0nKur2FCxk7tgYp_35kOraouejf3ofsdHel8IkcxRSTkgtEpY9RcXs3ni81myilnU0EN19R8ICecKTMRtVBHf80fyXkpO9rXrD_V-oSsvmEOKbcuAlaL-DT0FmNXpVCt2wf3itV6ub6tNm-lw7ZU96WJj9UXxEO1QpfjsF1n1-KPlJ_PyHFw-4Ln7_2U3F8v7uY3k9Xt1-X8ajUBSWfdBBkDymupAb0BZXwtGJ8FuRUAWxMME4JJAKmZ155CbfoBNZPCawmOe3FKlqOuT25nD7lpXX6zyTX21yHlR-ty18AeLXhQ3szQhEAl3QqjkSsegJkaYetCr_V51Drk9P0FS2d36SXH3r4dLCpJlTb9lxm_IKdSMgYLTee6JsUuu2ZvGbVDFnbMwg5Z2Pcselb8w_52_H_qYqQaRPxDGKkUE1L8BPxAlmE
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_s22010309
crossref_primary_10_1109_ACCESS_2022_3217244
crossref_primary_10_1109_ACCESS_2024_3475389
crossref_primary_10_1109_TITS_2022_3184314
crossref_primary_10_1007_s11277_024_11086_3
Cites_doi 10.1109/TCOMM.2015.2502954
10.1109/ACCESS.2020.3000601
10.1109/PIMRC.2019.8904413
10.1186/s13634-020-00669-4
10.3390/sym11091099
10.1109/ACCESS.2019.2944061
10.1109/JSAC.2017.2698958
10.1109/JSTSP.2016.2523903
10.1109/TWC.2014.011714.130846
10.1109/TSP.2018.2864610
10.1109/CVPR.2018.00262
10.1155/2016/9767065
10.1109/LCOMM.2019.2915977
10.1109/TCOMM.2020.2974457
10.1109/TVT.2019.2893928
10.1109/ACCESS.2019.2903166
10.1109/ICC.2017.7996970
10.1109/ICC.2017.7997065
10.1109/JSAC.2016.2549418
10.1109/TWC.2015.2455980
10.1109/ACCESS.2020.3045045
10.1109/TSP.2014.2370947
10.1109/COMST.2018.2843719
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3092709
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_cdc6d98e9ff040b397e262fc195ecbaf
10_1109_ACCESS_2021_3092709
9466134
Genre orig-research
GrantInformation_xml – fundername: Deanship of Scientific Research Taif University Researchers Supporting Project
  grantid: TURSP-2020/08
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-e11c02547ced9c69d53128f4b3ccb9f913314cc471d7d0c5971de7143d74ca2d3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673917800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:43:05 EDT 2025
Sun Nov 30 04:49:07 EST 2025
Tue Nov 18 20:56:27 EST 2025
Sat Nov 29 06:12:23 EST 2025
Wed Aug 27 02:26:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e11c02547ced9c69d53128f4b3ccb9f913314cc471d7d0c5971de7143d74ca2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2776-783X
0000-0002-6733-764X
0000-0003-1982-335X
OpenAccessLink https://ieeexplore.ieee.org/document/9466134
PQID 2547640679
PQPubID 4845423
PageCount 1
ParticipantIDs ieee_primary_9466134
crossref_primary_10_1109_ACCESS_2021_3092709
doaj_primary_oai_doaj_org_article_cdc6d98e9ff040b397e262fc195ecbaf
crossref_citationtrail_10_1109_ACCESS_2021_3092709
proquest_journals_2547640679
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref23
sachin (ref20) 2020; 7
ref25
ref22
wenyan (ref21) 2020; 68
ref8
ref7
ref9
ref4
ref3
ref6
ref5
rappaport (ref24) 2014
References_xml – ident: ref16
  doi: 10.1109/TCOMM.2015.2502954
– volume: 7
  start-page: 4419
  year: 2020
  ident: ref20
  article-title: Deep learning based hybrid precoding for millimeter wave massive MIMO systems
  publication-title: Int Res J Eng Technol
– ident: ref18
  doi: 10.1109/ACCESS.2020.3000601
– ident: ref9
  doi: 10.1109/PIMRC.2019.8904413
– ident: ref10
  doi: 10.1186/s13634-020-00669-4
– ident: ref12
  doi: 10.3390/sym11091099
– ident: ref19
  doi: 10.1109/ACCESS.2019.2944061
– ident: ref13
  doi: 10.1109/JSAC.2017.2698958
– ident: ref15
  doi: 10.1109/JSTSP.2016.2523903
– ident: ref14
  doi: 10.1109/TWC.2014.011714.130846
– ident: ref6
  doi: 10.1109/TSP.2018.2864610
– ident: ref25
  doi: 10.1109/CVPR.2018.00262
– ident: ref3
  doi: 10.1155/2016/9767065
– ident: ref22
  doi: 10.1109/LCOMM.2019.2915977
– volume: 68
  start-page: 2838
  year: 2020
  ident: ref21
  article-title: Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2020.2974457
– ident: ref23
  doi: 10.1109/TVT.2019.2893928
– ident: ref11
  doi: 10.1109/ACCESS.2019.2903166
– ident: ref8
  doi: 10.1109/ICC.2017.7996970
– ident: ref17
  doi: 10.1109/ICC.2017.7997065
– year: 2014
  ident: ref24
  publication-title: Millimeter Wave Wireless Communications
– ident: ref4
  doi: 10.1109/JSAC.2016.2549418
– ident: ref7
  doi: 10.1109/TWC.2015.2455980
– ident: ref1
  doi: 10.1109/ACCESS.2020.3045045
– ident: ref5
  doi: 10.1109/TSP.2014.2370947
– ident: ref2
  doi: 10.1109/COMST.2018.2843719
SSID ssj0000816957
Score 2.2454002
Snippet In order to obtain beamforming gains and prevent high pathloss in millimeter wave (mmWave) systems, large number of antennas is employed. Digital precoders are...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Antennas
Array signal processing
Beamforming
Covariance matrix
Decoder
Decoders
Deep learning
Digital precoders
Hardware
HybridPrecodingNet
Millimeter waves
mmWave
MmWave and Spectral Efficiency
Neural networks
Optimization
Performance enhancement
Precoding
Radio frequency
Spectral efficiency
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgPrG-yMGjq8luutkctbYoWO1B0VvIThIVtC1t7e83s5vWgqAXTwtL9pEvk0xmmHwfIScyzS0Y6ZMy9ywRClhSCGcS3MpmRuTBqYhKbELe3RXPz6q3IPWFNWE1PXAN3DlYyK0qnPI-2FsZ3KdL89QDV00HpfG4-jKpFoKpag0ueK6aMtIMcabOL1qt0KMQEKb8LGMqlViCuOCKKsb-KLHyY12unE1ng6zHXSK9qP9ukyy5_hZZW-AO3Ca3ve-Sf9ruv-IVM3104Gn348lMHe3edO9ppCSnVW0AvXJuSCOn6gvtzCqzdshjp_3Quk6iNEICghWTxHEOeI5dgrMKcmXDVEoLL8oMoFRehciTC4Dgeay0DELUwK1DqXMrBZjUZrtkuT_ouz1CXSashwKJ4jieazVQmIAPGOOaAWXWIOkMJQ2RNxzlK951FT8wpWtoNUKrI7QNcjp_aFjTZvze_BLhnzdFzuvqRrAEHS1B_2UJDbKNgzd_CTLn80w0yOFsMHWcn2ON0OUCk2j7__HpA7KK3alTM4dkeTL6dEdkBaaTt_HouDLNL7Jf5XU
  priority: 102
  providerName: Directory of Open Access Journals
Title Performance Enhancement of MmWave MIMO Systems Using Deep Learning Framework
URI https://ieeexplore.ieee.org/document/9466134
https://www.proquest.com/docview/2547640679
https://doaj.org/article/cdc6d98e9ff040b397e262fc195ecbaf
Volume 9
WOSCitedRecordID wos000673917800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4tAeWihUXQrIB44E8vDG8ZFud9VKLOVQBDfLGY9pJdhFsHDkt9fjeFOkVpV6SaLIjhx_seeRmW8ADlRZO7TKZ23t80xqzLNGks1Yla2srINQkbHYhDo7a66u9PkKHPa5MEQUg8_oiC_jv3w3x0d2lR0zF3pRyVVYVarucrV6fwoXkNBDlYiFilwfn4xG4R2CCVgWR1WuS8VBhy-ET-ToT0VV_tiJo3iZvP2_gW3Am6RGipMO901Yodk7eP2CXHALTs9_5wSI8ewHn_kxYu7F9PbSPpGYfp1-E4mzXMTgAfGZ6E4k0tVrMVmGbm3DxWT8ffQlS7UTMpR5s8ioKJAT3RWS01hrF9Za2XjZVoit9jqYpoVEDKLJKZdjMCsKR1wL3SmJtnTVe1ibzWf0AQRV0nlsmEmu4MRXi40N04nW0hCDPjGAcjmpBhOxONe3uDHRwMi16ZAwjIRJSAzgsO901_Fq_Lv5J0arb8qk2PFGgMGkNWbQYe10Q9r7sDW1QdOisi59GOOQsLV-AFsMXf-QhNoAdpfYm7SAHwxPXS3Zy7bz914f4RUPsPPG7MLa4v6R9mAdnxY_H-73o2kfjtPn8X78Tn8BBe7i_g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RWqntoS-KupS2PvRIIHG8SXyELStQd7ccqMrNcsZjigS7CBZ-fz2ON0VqVamnRJFtOf5izyMz3wB8rmXl0NY-ayufZ0pjnjWKbMaqbGlVFYSKisUm6tmsOTvTJ2uw0-fCEFEMPqNdvo3_8t0C79hVtsdc6EWpHsHjoVIy77K1eo8Kl5DQwzpRCxW53tsfjcJbBCNQFrtlrmXNYYcPxE9k6U9lVf44i6OAGb_8v6m9ghdJkRT7HfKvYY3mb-D5A3rBDZic_M4KEIfzn3zlYcTCi-nVD3tPYno8_SYSa7mI4QPiC9G1SLSr52K8Ct56C9_Hh6ejoyxVT8hQ5c0yo6JATnWvkZzGSruw22TjVVsittrrYJwWCjEIJ1e7HINhUTjiauiuVmilKzdhfb6Y0zsQVCrnsWEuuYJTXy02NiwnWktDDBrFAORqUQ0manGucHFpoomRa9MhYRgJk5AYwE7f6bpj1vh38wNGq2_KtNjxQYDBpF1m0GHldEPa-3A4tUHXIllJH-Y4JGytH8AGQ9cPklAbwPYKe5O28K3hpasU-9m2_t7rEzw9Op1OzOR49vU9POPJdr6ZbVhf3tzRB3iC98uL25uP8Tv9BUaK5B8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Enhancement+of+MmWave+MIMO+Systems+Using+Deep+Learning+Framework&rft.jtitle=IEEE+access&rft.au=Faragallah%2C+Osama+S&rft.au=El-Sayed%2C+Hala+S&rft.au=El-Mashed%2C+Mohamed+G&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=9&rft.spage=92460&rft_id=info:doi/10.1109%2FACCESS.2021.3092709&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon