Cooling supply with a new type of evacuated solar collectors: a techno-economic optimization and analysis

Renewable cooling via absorption chillers being supplied by various green heat technologies such as solar collectors has been widely studied in the literature, but it is still challenging to get positive economic outcomes from such systems due to the large expenses of solar thermal systems. This stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international Jg. 31; H. 12; S. 18171 - 18187
Hauptverfasser: Teles, Mavd P. R., Sadi, Meisam, Ismail, Kamal A. R., Arabkoohsar, Ahmad, Silva, Brenda V. F., Kargarsharifabad, Hadi, Shoeibi, Shahin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Springer Nature B.V
Schlagworte:
ISSN:1614-7499, 0944-1344, 1614-7499
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Renewable cooling via absorption chillers being supplied by various green heat technologies such as solar collectors has been widely studied in the literature, but it is still challenging to get positive economic outcomes from such systems due to the large expenses of solar thermal systems. This study offers the use of a new generation of solar collectors, so-called eccentric reflective solar collectors, for driving single-effect absorption chillers and thereby reducing the levelized cost of cooling. This article develops the most optimal design of this system (based on several different scenarios) using multi-objective optimization techniques and employs them for a case study in Brazil to assess its proficiency compared to conventional solar-driven cooling methods. For making the benchmarking analyses fair, the conventional system is also rigorously optimized in terms of design and operation features. The results show that the eccentric solar collector would enhance the cost-effectiveness by 29%. In addition, using optimally sized storage units would be necessary to get acceptable economic performance from the system, no matter which collector type is used. For the case study, at the optimal sizing and operating conditions, the levelized cost of cooling will be 124 USD/MWh and an emission level of 18.97 kgCO 2 /MWh.
AbstractList Renewable cooling via absorption chillers being supplied by various green heat technologies such as solar collectors has been widely studied in the literature, but it is still challenging to get positive economic outcomes from such systems due to the large expenses of solar thermal systems. This study offers the use of a new generation of solar collectors, so-called eccentric reflective solar collectors, for driving single-effect absorption chillers and thereby reducing the levelized cost of cooling. This article develops the most optimal design of this system (based on several different scenarios) using multi-objective optimization techniques and employs them for a case study in Brazil to assess its proficiency compared to conventional solar-driven cooling methods. For making the benchmarking analyses fair, the conventional system is also rigorously optimized in terms of design and operation features. The results show that the eccentric solar collector would enhance the cost-effectiveness by 29%. In addition, using optimally sized storage units would be necessary to get acceptable economic performance from the system, no matter which collector type is used. For the case study, at the optimal sizing and operating conditions, the levelized cost of cooling will be 124 USD/MWh and an emission level of 18.97 kgCO /MWh.
Renewable cooling via absorption chillers being supplied by various green heat technologies such as solar collectors has been widely studied in the literature, but it is still challenging to get positive economic outcomes from such systems due to the large expenses of solar thermal systems. This study offers the use of a new generation of solar collectors, so-called eccentric reflective solar collectors, for driving single-effect absorption chillers and thereby reducing the levelized cost of cooling. This article develops the most optimal design of this system (based on several different scenarios) using multi-objective optimization techniques and employs them for a case study in Brazil to assess its proficiency compared to conventional solar-driven cooling methods. For making the benchmarking analyses fair, the conventional system is also rigorously optimized in terms of design and operation features. The results show that the eccentric solar collector would enhance the cost-effectiveness by 29%. In addition, using optimally sized storage units would be necessary to get acceptable economic performance from the system, no matter which collector type is used. For the case study, at the optimal sizing and operating conditions, the levelized cost of cooling will be 124 USD/MWh and an emission level of 18.97 kgCO 2 /MWh.
Renewable cooling via absorption chillers being supplied by various green heat technologies such as solar collectors has been widely studied in the literature, but it is still challenging to get positive economic outcomes from such systems due to the large expenses of solar thermal systems. This study offers the use of a new generation of solar collectors, so-called eccentric reflective solar collectors, for driving single-effect absorption chillers and thereby reducing the levelized cost of cooling. This article develops the most optimal design of this system (based on several different scenarios) using multi-objective optimization techniques and employs them for a case study in Brazil to assess its proficiency compared to conventional solar-driven cooling methods. For making the benchmarking analyses fair, the conventional system is also rigorously optimized in terms of design and operation features. The results show that the eccentric solar collector would enhance the cost-effectiveness by 29%. In addition, using optimally sized storage units would be necessary to get acceptable economic performance from the system, no matter which collector type is used. For the case study, at the optimal sizing and operating conditions, the levelized cost of cooling will be 124 USD/MWh and an emission level of 18.97 kgCO₂/MWh.
Renewable cooling via absorption chillers being supplied by various green heat technologies such as solar collectors has been widely studied in the literature, but it is still challenging to get positive economic outcomes from such systems due to the large expenses of solar thermal systems. This study offers the use of a new generation of solar collectors, so-called eccentric reflective solar collectors, for driving single-effect absorption chillers and thereby reducing the levelized cost of cooling. This article develops the most optimal design of this system (based on several different scenarios) using multi-objective optimization techniques and employs them for a case study in Brazil to assess its proficiency compared to conventional solar-driven cooling methods. For making the benchmarking analyses fair, the conventional system is also rigorously optimized in terms of design and operation features. The results show that the eccentric solar collector would enhance the cost-effectiveness by 29%. In addition, using optimally sized storage units would be necessary to get acceptable economic performance from the system, no matter which collector type is used. For the case study, at the optimal sizing and operating conditions, the levelized cost of cooling will be 124 USD/MWh and an emission level of 18.97 kgCO2/MWh.
Renewable cooling via absorption chillers being supplied by various green heat technologies such as solar collectors has been widely studied in the literature, but it is still challenging to get positive economic outcomes from such systems due to the large expenses of solar thermal systems. This study offers the use of a new generation of solar collectors, so-called eccentric reflective solar collectors, for driving single-effect absorption chillers and thereby reducing the levelized cost of cooling. This article develops the most optimal design of this system (based on several different scenarios) using multi-objective optimization techniques and employs them for a case study in Brazil to assess its proficiency compared to conventional solar-driven cooling methods. For making the benchmarking analyses fair, the conventional system is also rigorously optimized in terms of design and operation features. The results show that the eccentric solar collector would enhance the cost-effectiveness by 29%. In addition, using optimally sized storage units would be necessary to get acceptable economic performance from the system, no matter which collector type is used. For the case study, at the optimal sizing and operating conditions, the levelized cost of cooling will be 124 USD/MWh and an emission level of 18.97 kgCO2/MWh.Renewable cooling via absorption chillers being supplied by various green heat technologies such as solar collectors has been widely studied in the literature, but it is still challenging to get positive economic outcomes from such systems due to the large expenses of solar thermal systems. This study offers the use of a new generation of solar collectors, so-called eccentric reflective solar collectors, for driving single-effect absorption chillers and thereby reducing the levelized cost of cooling. This article develops the most optimal design of this system (based on several different scenarios) using multi-objective optimization techniques and employs them for a case study in Brazil to assess its proficiency compared to conventional solar-driven cooling methods. For making the benchmarking analyses fair, the conventional system is also rigorously optimized in terms of design and operation features. The results show that the eccentric solar collector would enhance the cost-effectiveness by 29%. In addition, using optimally sized storage units would be necessary to get acceptable economic performance from the system, no matter which collector type is used. For the case study, at the optimal sizing and operating conditions, the levelized cost of cooling will be 124 USD/MWh and an emission level of 18.97 kgCO2/MWh.
Author Teles, Mavd P. R.
Kargarsharifabad, Hadi
Ismail, Kamal A. R.
Sadi, Meisam
Arabkoohsar, Ahmad
Silva, Brenda V. F.
Shoeibi, Shahin
Author_xml – sequence: 1
  givenname: Mavd P. R.
  surname: Teles
  fullname: Teles, Mavd P. R.
  organization: Energy Department, Faculty of Mechanical Engineering, State University of Campinas, Energy Department, Aalborg University
– sequence: 2
  givenname: Meisam
  orcidid: 0000-0002-1068-7606
  surname: Sadi
  fullname: Sadi, Meisam
  email: meisam.sadi@gmail.com
  organization: Department of Engineering, Shahrood Branch, Islamic Azad University
– sequence: 3
  givenname: Kamal A. R.
  surname: Ismail
  fullname: Ismail, Kamal A. R.
  organization: Energy Department, Faculty of Mechanical Engineering, State University of Campinas
– sequence: 4
  givenname: Ahmad
  surname: Arabkoohsar
  fullname: Arabkoohsar, Ahmad
  organization: Department of Civil and Mechanical Engineering, Technical University of Denmark
– sequence: 5
  givenname: Brenda V. F.
  surname: Silva
  fullname: Silva, Brenda V. F.
  organization: Energy Department, Aalborg University
– sequence: 6
  givenname: Hadi
  surname: Kargarsharifabad
  fullname: Kargarsharifabad, Hadi
  organization: Production and Recycling of Materials and Energy Research Center, Qom Branch, Islamic Azad University
– sequence: 7
  givenname: Shahin
  surname: Shoeibi
  fullname: Shoeibi, Shahin
  organization: Energy and Sustainable Development Research Center, Semnan Branch, Islamic Azad University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36823466$$D View this record in MEDLINE/PubMed
BookMark eNqFkTlvFTEUhS0URBb4AxTIEg3NgJcZL3ToiU2KRAO15fHcSRx57MH2ED1-PU5eWJQiFNZ18Z27nHOKjmKKgNBzSl5TQuSbQikfREcY79gg6dCRR-iECtp3stf66J__MTot5YoQRjSTT9AxF4rxXogT5HcpBR8vcNnWNezxta-X2OII17juV8BpxvDDus1WmHBJwWbsUgjgasrlbSMruMuYOnAppsU7nNbqF__TVp8itnFqz4Z98eUpejzbUODZXT1D3z68_7r71J1_-fh59-68cz1RtQPiJEjBxlE5NvKeWSHGmc5WKWGJGOZeSK3dTEEp7UZpZ6LpPPZ8onoSE-Vn6NWh75rT9w1KNYsvDkKwEdJWDKcDF0wTTv6LMqkIEX3zraEv76FXacvttEbpgQkhhRoa9eKO2sYFJrNmv9i8N7_9bgA7AC6nUjLMfxBKzE2o5hCqaSPNbajmZk11T-R8vTW4ZuvDw1J-kJY2J15A_rv2A6pfYfa1vA
CitedBy_id crossref_primary_10_1016_j_psep_2024_06_013
crossref_primary_10_1016_j_desal_2024_117836
crossref_primary_10_1016_j_jobe_2025_112440
crossref_primary_10_1016_j_csite_2024_104847
crossref_primary_10_3389_fenef_2024_1471628
crossref_primary_10_1016_j_est_2024_114318
crossref_primary_10_1016_j_est_2024_115091
crossref_primary_10_1016_j_icheatmasstransfer_2024_108045
Cites_doi 10.1016/S0038-092X(01)00081-0
10.1016/j.energy.2020.119561
10.1016/j.energy.2020.118559
10.1115/1.4052982
10.1016/j.enconman.2020.113420
10.1016/j.renene.2004.09.017
10.1115/1.4054532
10.3390/en13123198
10.1016/j.solener.2017.01.022
10.3390/en13102568
10.1016/j.seta.2021.101822
10.1016/0196-8904(95)00322-3
10.1016/j.applthermaleng.2016.04.032
10.1080/01430750.2019.1630299
10.1016/j.solener.2021.02.065
10.1615/InterJEnerCleanEnv.2020033676
10.1016/j.seta.2021.101057
10.1016/j.ijhydene.2022.03.021
10.1016/j.enbuild.2018.07.039
10.1016/j.seta.2022.102105
10.1016/S0038-092X(97)00105-9
10.1016/j.jclepro.2020.124143
10.1016/j.applthermaleng.2010.09.006
10.1016/j.rser.2014.08.039
10.1002/QJ.49708938105
10.1016/j.geothermics.2021.102042
10.1016/j.apenergy.2016.10.083
10.1016/j.nexus.2021.100031
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-023-25715-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global (OCUL)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
Economics
EISSN 1614-7499
EndPage 18187
ExternalDocumentID 36823466
10_1007_s11356_023_25715_0
Genre Journal Article
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
ADHKG
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-e0c7e762bb8c2b342a66bf1fa886a065f46799cf1e889cb7af091fb43d19d6d13
IEDL.DBID M2P
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000988341700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1614-7499
0944-1344
IngestDate Sun Nov 09 09:05:02 EST 2025
Sun Nov 09 12:56:43 EST 2025
Tue Dec 02 16:05:39 EST 2025
Mon Jul 21 06:04:46 EDT 2025
Sat Nov 29 03:50:05 EST 2025
Tue Nov 18 19:39:52 EST 2025
Fri Feb 21 02:41:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Techno-economic analysis
Solar cooling
Multi-objective optimization methods
Eccentric reflective solar collector
Absorption chiller
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-e0c7e762bb8c2b342a66bf1fa886a065f46799cf1e889cb7af091fb43d19d6d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1068-7606
PMID 36823466
PQID 2952667685
PQPubID 54208
PageCount 17
ParticipantIDs proquest_miscellaneous_3153629030
proquest_miscellaneous_2780064002
proquest_journals_2952667685
pubmed_primary_36823466
crossref_primary_10_1007_s11356_023_25715_0
crossref_citationtrail_10_1007_s11356_023_25715_0
springer_journals_10_1007_s11356_023_25715_0
PublicationCentury 2000
PublicationDate 20240300
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BehzadiAArabkoohsarASadiMChakravartyKHA novel hybrid solar-biomass design for green off-grid cold production, techno-economic analysis and optimizationSol Energy202121863965110.1016/j.solener.2021.02.065
AscioneFEnergy conservation and renewable technologies for buildings to face the impact of the climate change and minimize the use of coolingSol Energy20171543410010.1016/j.solener.2017.01.022
IEA (2018) The future of cooling opportunities for energy- efficient air conditioning. https://www.iea.org/reports/the-future-of-cooling. Acessed 18 Feb 2023
Ürge-VorsatzDCabezaLFSerranoSHeating and cooling energy trends and drivers in buildingsRenew Sustain Energy Rev201541859810.1016/j.rser.2014.08.039
ChenGLiuCLiNLiFA study on heat absorbing and vapor generating characteristics of H2O/LiBr mixture in an evacuated tubeAppl Energy20171852942991:CAS:528:DC%2BC28XhvVSiurvP10.1016/j.apenergy.2016.10.083
Nedaei M, Walsh P, Assareh E (2020) Sustainable energy planning of a wind power plant by coordinating clean development strategies. Int J Energy Clean Environ 21. https://doi.org/10.1615/InterJEnerCleanEnv.2020033676
BellosETzivanidisCAntonopoulosKAExergetic, energetic and financial evaluation of a solar driven absorption cooling system with various collector typesAppl Therm Eng20161027497591:CAS:528:DC%2BC28XmtFCis74%3D10.1016/j.applthermaleng.2016.04.032
HammadMZurigatYPerformance of a second generation solar cooling unitSol Energy199862798410.1016/S0038-092X(97)00105-9
Hara ChakravartyKSadiMChakravartyHA review on integration of renewable energy processes in vapor absorption chiller for sustainable coolingSustain Energy Technol Assess20225010182210.1016/j.seta.2021.101822
KarlekarBVDesmondRMEngineering heat transfer19771Saint PaulWest Publishing Company
AssarehEAlirahmiSMAhmadiPA sustainable model for the integration of solar and geothermal energy boosted with thermoelectric generators (TEGs) for electricity, cooling and desalination purposeGeothermics20219210204210.1016/j.geothermics.2021.102042
FloridesGAKalogirouSATassouSAWrobelLCModelling and simulation of an absorption solar cooling system for CyprusSol Energy20027243511:CAS:528:DC%2BD3MXptlegtL8%3D10.1016/S0038-092X(01)00081-0
MaliskaCRTransferência de calor e mecânica dos fluidos computacional2004Rio de JaneiroLTC
Shoeibi S, Kargarsharifabad H, Sadi M, et al (2022) A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications. Sustain Energy Technol Assess 52. https://doi.org/10.1016/j.seta.2022.102105
Razmi AR, Arabkoohsar A, Nami H (2020) Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system. Energy 210. https://doi.org/10.1016/j.energy.2020.118559
RazmiARAlirahmiSMNabatMHA green hydrogen energy storage concept based on parabolic trough collector and proton exchange membrane electrolyzer/fuel cell: thermodynamic and exergoeconomic analyses with multi-objective optimizationInt J Hydrogen Energy20224726468264891:CAS:528:DC%2BB38XnvVGhtbw%3D10.1016/j.ijhydene.2022.03.021
Hanita Coatings (2022) Reflective Films. http://hanitacoatings.com/films/products/solarzone/reflective-films. Accessed 5 Jan 2022
GustavssonLSvenningssonPSubstituting fossil fuels with biomassEnergy Convers Manag1996371211121610.1016/0196-8904(95)00322-3
Cornetet MC (2009) Recomendações Para Especificação De Vidros Em Edificações Comerciais Na Região Climática De Porto Alegre-Rs. Dissertation, Universidade Federal de Santa Maria
SadiMArabkoohsarATechno-economic analysis of off-grid solar-driven cold storage systems for preventing the waste of agricultural products in hot and humid climatesJ Clean Prod202027512414310.1016/j.jclepro.2020.124143
SwinbankWCLong-wave radiation from clear skiesQ J R Meteorol Soc19638933934810.1002/QJ.49708938105
MarcOPraeneJ-PBastideALucasFModeling and experimental validation of the solar loop for absorption solar cooling system using double-glazed collectorsAppl Therm Eng20113126827710.1016/j.applthermaleng.2010.09.006
AssilzadehFKalogirouSAAliYSopianKSimulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectorsRenew Energy200530114311591:CAS:528:DC%2BD2MXht1ejtrk%3D10.1016/j.renene.2004.09.017
SadiMArabkoohsarAJoshiAKTechno-economic optimization and improvement of combined solar-powered cooling system for storage of agricultural productsSustain Energy Technol Assess20214510105710.1016/j.seta.2021.101057
Miranda, MM (2012) Fator de emissão de gases de efeito estufa da geração de energia elétrica no Brasil. Dissertation, Universidade de São Paulo
ONS (2021) Avaliação Das Condições De Atendimento Eletroenergético Do Sistema Interligado Nacional-Estudo Prospectivo Julho A Novembro De 2021. https://www.ons.org.br/AcervoDigitalDocumentosEPublicacoes/CTA-ONS%20DGL%201496-2021%20-%20Avalia%C3%A7%C3%A3o%20das%20Condi%C3%A7%C3%B5es%20de%20Atendimento%20Eletroenerg%C3%A9tico%20do%20Sistema%20Interligado%20Nacional%20-%20SIN.pdf. Acessed 18 Feb 2023
Scheller C, Melo AP, Melo AP (2015). Análise de arquivos climáticos para a simulação do desempenho energético de edificações. https://cb3e.ufsc.br/sites/default/files/Relatorio_AnaliseArquivosClimaticos_CB3E.pdf. Acessed 18 Feb 2023
BRASIL (2021) CMSE amplia possibilidade de adoção de medidas excepcionais diante da permanência de condições adversas de atendimento. Ministério de Minas e Energia. https://www.gov.br/mme/pt-br/assuntos/noticias/cmse-amplia-possibilidade-de-adocao-de-/medidas-excepcionais-diante-da-permanencia-de-condicoes-adversas-de-atendimento. Acessed 18 Feb 2023
PatankarSVNumerical heat transfer and fluid flow1980USAHemisphere Pub. Corp
AsadiRAssarehEMoltamesROptimisation of combined cooling, heating and power (CCHP) systems incorporating the solar and geothermal energy: a review studyInt J Ambient Energy20224342601:CAS:528:DC%2BC1MXht1Gqu7zN10.1080/01430750.2019.1630299
Teles MPR, Ismail KAR (2022) Experimental and numerical assessments of the effects of vacuum and solar film on the performance of a low concentration eccentric solar Collector. J Energy Resour Technol 144. https://doi.org/10.1115/1.4052982
Al-Falahi A, Alobaid F, Epple B (2020) Design and thermo-economic comparisons of an absorption air conditioning system based on parabolic trough and evacuated tube solar collectors. Energies (Basel) 13. https://doi.org/10.3390/en13123198
AlsagriASAlrobaianAAAlmohaimeedSAConcentrating solar collectors in absorption and adsorption cooling cycles: an overviewEnergy Convers Manag20202231134201:CAS:528:DC%2BB3cXis1Shtr3F10.1016/j.enconman.2020.113420
AssarehEAssarehMAlirahmiSMThermodynamic assessment of a cogeneration system with CSP driven-Brayton and Rankine cycles for electric power and hydrogen production in the framework of the energy and water nexusEnergy Nexus202251000311:CAS:528:DC%2BB38XhtlCktb7L10.1016/j.nexus.2021.100031
LiHLiXBenchmarking energy performance for cooling in large commercial buildingsEnergy Build201817617919310.1016/j.enbuild.2018.07.039
INPE (2016) Sistema de Organização Nacional de Dados Ambientais. http://sonda.ccst.inpe.br/. Acessed 18 Feb 2023
ABNT (2003) Desempenho térmico de edificações Parte 2 : Métodos de cálculo da transmitância térmica , da capacidade térmica , do atraso térmico e do fator solar de elementos e componentes de edificações. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS-ABNT, Rio de Janeiro
Park CH, Ko YJ, Kim JH, Hong H (2020) Greenhouse gas reduction effect of solar energy systems applicable to high-rise apartment housing structures in South Korea. Energies (Basel) 13. https://doi.org/10.3390/en13102568
Dantas DN (2010) Uso de biomassa da cana-de-açúcar para geração de energia elétrica: análise energética, exergética e ambiental de sistemas de cogeração em sucroalcooleiras do interior paulista. Universidade de São Paulo
SadiMChakravartyKHBehzadiAArabkoohsarATechno-economic-environmental investigation of various biomass types and innovative biomass-firing technologies for cost-effective cooling in IndiaEnergy202121911956110.1016/j.energy.2020.119561
EPE (2018) Uso de Ar Condicionado no Setor Residencial Brasileiro: Perspectivas e contribuições para o avanço em eficiência energética. Technical Report, EPE 030/2018. https://www.epe.gov.br/pt/imprensa/noticias/uso-de-ar-condicionado-no-setor-residencial-brasileiro-perspectivas-e-contribuicoes-para-o-avanco-em-eficiencia-energetica. Acessed 18 Feb 2023
Ismail KAR, Teles MPR, Lino FAM (2022) Modeling and experimental evaluation of the effects of reflective film and vacuum on the performance of concentric double tube direct flow solar collector. J Energy Resour Technol 1–13. https://doi.org/10.1115/1.4054532
IEA, NEA (2020) Projected costs of generating electricity. International Energy Agency 10.02(2010):618
A Behzadi (25715_CR9) 2021; 218
M Sadi (25715_CR36) 2020; 275
E Bellos (25715_CR10) 2016; 102
F Assilzadeh (25715_CR8) 2005; 30
BV Karlekar (25715_CR25) 1977
M Sadi (25715_CR37) 2021; 45
25715_CR40
25715_CR42
M Hammad (25715_CR18) 1998; 62
25715_CR21
F Ascione (25715_CR5) 2017; 154
25715_CR22
M Sadi (25715_CR38) 2021; 219
25715_CR23
25715_CR24
D Ürge-Vorsatz (25715_CR43) 2015; 41
O Marc (25715_CR28) 2011; 31
25715_CR29
CR Maliska (25715_CR27) 2004
E Assareh (25715_CR7) 2022; 5
GA Florides (25715_CR16) 2002; 72
WC Swinbank (25715_CR41) 1963; 89
H Li (25715_CR26) 2018; 176
AS Alsagri (25715_CR3) 2020; 223
G Chen (25715_CR12) 2017; 185
E Assareh (25715_CR6) 2021; 92
SV Patankar (25715_CR33) 1980
R Asadi (25715_CR4) 2022; 43
25715_CR30
25715_CR31
25715_CR32
AR Razmi (25715_CR34) 2022; 47
25715_CR11
25715_CR13
L Gustavsson (25715_CR17) 1996; 37
K Hara Chakravarty (25715_CR20) 2022; 50
25715_CR35
25715_CR14
25715_CR15
25715_CR2
25715_CR1
25715_CR39
25715_CR19
References_xml – reference: Hara ChakravartyKSadiMChakravartyHA review on integration of renewable energy processes in vapor absorption chiller for sustainable coolingSustain Energy Technol Assess20225010182210.1016/j.seta.2021.101822
– reference: Scheller C, Melo AP, Melo AP (2015). Análise de arquivos climáticos para a simulação do desempenho energético de edificações. https://cb3e.ufsc.br/sites/default/files/Relatorio_AnaliseArquivosClimaticos_CB3E.pdf. Acessed 18 Feb 2023
– reference: IEA, NEA (2020) Projected costs of generating electricity. International Energy Agency 10.02(2010):618
– reference: Shoeibi S, Kargarsharifabad H, Sadi M, et al (2022) A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications. Sustain Energy Technol Assess 52. https://doi.org/10.1016/j.seta.2022.102105
– reference: LiHLiXBenchmarking energy performance for cooling in large commercial buildingsEnergy Build201817617919310.1016/j.enbuild.2018.07.039
– reference: BRASIL (2021) CMSE amplia possibilidade de adoção de medidas excepcionais diante da permanência de condições adversas de atendimento. Ministério de Minas e Energia. https://www.gov.br/mme/pt-br/assuntos/noticias/cmse-amplia-possibilidade-de-adocao-de-/medidas-excepcionais-diante-da-permanencia-de-condicoes-adversas-de-atendimento. Acessed 18 Feb 2023
– reference: Ürge-VorsatzDCabezaLFSerranoSHeating and cooling energy trends and drivers in buildingsRenew Sustain Energy Rev201541859810.1016/j.rser.2014.08.039
– reference: AssarehEAlirahmiSMAhmadiPA sustainable model for the integration of solar and geothermal energy boosted with thermoelectric generators (TEGs) for electricity, cooling and desalination purposeGeothermics20219210204210.1016/j.geothermics.2021.102042
– reference: AssilzadehFKalogirouSAAliYSopianKSimulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectorsRenew Energy200530114311591:CAS:528:DC%2BD2MXht1ejtrk%3D10.1016/j.renene.2004.09.017
– reference: HammadMZurigatYPerformance of a second generation solar cooling unitSol Energy199862798410.1016/S0038-092X(97)00105-9
– reference: PatankarSVNumerical heat transfer and fluid flow1980USAHemisphere Pub. Corp
– reference: MaliskaCRTransferência de calor e mecânica dos fluidos computacional2004Rio de JaneiroLTC
– reference: ONS (2021) Avaliação Das Condições De Atendimento Eletroenergético Do Sistema Interligado Nacional-Estudo Prospectivo Julho A Novembro De 2021. https://www.ons.org.br/AcervoDigitalDocumentosEPublicacoes/CTA-ONS%20DGL%201496-2021%20-%20Avalia%C3%A7%C3%A3o%20das%20Condi%C3%A7%C3%B5es%20de%20Atendimento%20Eletroenerg%C3%A9tico%20do%20Sistema%20Interligado%20Nacional%20-%20SIN.pdf. Acessed 18 Feb 2023
– reference: EPE (2018) Uso de Ar Condicionado no Setor Residencial Brasileiro: Perspectivas e contribuições para o avanço em eficiência energética. Technical Report, EPE 030/2018. https://www.epe.gov.br/pt/imprensa/noticias/uso-de-ar-condicionado-no-setor-residencial-brasileiro-perspectivas-e-contribuicoes-para-o-avanco-em-eficiencia-energetica. Acessed 18 Feb 2023
– reference: AlsagriASAlrobaianAAAlmohaimeedSAConcentrating solar collectors in absorption and adsorption cooling cycles: an overviewEnergy Convers Manag20202231134201:CAS:528:DC%2BB3cXis1Shtr3F10.1016/j.enconman.2020.113420
– reference: INPE (2016) Sistema de Organização Nacional de Dados Ambientais. http://sonda.ccst.inpe.br/. Acessed 18 Feb 2023
– reference: BellosETzivanidisCAntonopoulosKAExergetic, energetic and financial evaluation of a solar driven absorption cooling system with various collector typesAppl Therm Eng20161027497591:CAS:528:DC%2BC28XmtFCis74%3D10.1016/j.applthermaleng.2016.04.032
– reference: RazmiARAlirahmiSMNabatMHA green hydrogen energy storage concept based on parabolic trough collector and proton exchange membrane electrolyzer/fuel cell: thermodynamic and exergoeconomic analyses with multi-objective optimizationInt J Hydrogen Energy20224726468264891:CAS:528:DC%2BB38XnvVGhtbw%3D10.1016/j.ijhydene.2022.03.021
– reference: Teles MPR, Ismail KAR (2022) Experimental and numerical assessments of the effects of vacuum and solar film on the performance of a low concentration eccentric solar Collector. J Energy Resour Technol 144. https://doi.org/10.1115/1.4052982
– reference: ABNT (2003) Desempenho térmico de edificações Parte 2 : Métodos de cálculo da transmitância térmica , da capacidade térmica , do atraso térmico e do fator solar de elementos e componentes de edificações. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS-ABNT, Rio de Janeiro
– reference: Dantas DN (2010) Uso de biomassa da cana-de-açúcar para geração de energia elétrica: análise energética, exergética e ambiental de sistemas de cogeração em sucroalcooleiras do interior paulista. Universidade de São Paulo
– reference: FloridesGAKalogirouSATassouSAWrobelLCModelling and simulation of an absorption solar cooling system for CyprusSol Energy20027243511:CAS:528:DC%2BD3MXptlegtL8%3D10.1016/S0038-092X(01)00081-0
– reference: SadiMArabkoohsarAJoshiAKTechno-economic optimization and improvement of combined solar-powered cooling system for storage of agricultural productsSustain Energy Technol Assess20214510105710.1016/j.seta.2021.101057
– reference: ChenGLiuCLiNLiFA study on heat absorbing and vapor generating characteristics of H2O/LiBr mixture in an evacuated tubeAppl Energy20171852942991:CAS:528:DC%2BC28XhvVSiurvP10.1016/j.apenergy.2016.10.083
– reference: SwinbankWCLong-wave radiation from clear skiesQ J R Meteorol Soc19638933934810.1002/QJ.49708938105
– reference: AsadiRAssarehEMoltamesROptimisation of combined cooling, heating and power (CCHP) systems incorporating the solar and geothermal energy: a review studyInt J Ambient Energy20224342601:CAS:528:DC%2BC1MXht1Gqu7zN10.1080/01430750.2019.1630299
– reference: AssarehEAssarehMAlirahmiSMThermodynamic assessment of a cogeneration system with CSP driven-Brayton and Rankine cycles for electric power and hydrogen production in the framework of the energy and water nexusEnergy Nexus202251000311:CAS:528:DC%2BB38XhtlCktb7L10.1016/j.nexus.2021.100031
– reference: Park CH, Ko YJ, Kim JH, Hong H (2020) Greenhouse gas reduction effect of solar energy systems applicable to high-rise apartment housing structures in South Korea. Energies (Basel) 13. https://doi.org/10.3390/en13102568
– reference: SadiMChakravartyKHBehzadiAArabkoohsarATechno-economic-environmental investigation of various biomass types and innovative biomass-firing technologies for cost-effective cooling in IndiaEnergy202121911956110.1016/j.energy.2020.119561
– reference: GustavssonLSvenningssonPSubstituting fossil fuels with biomassEnergy Convers Manag1996371211121610.1016/0196-8904(95)00322-3
– reference: MarcOPraeneJ-PBastideALucasFModeling and experimental validation of the solar loop for absorption solar cooling system using double-glazed collectorsAppl Therm Eng20113126827710.1016/j.applthermaleng.2010.09.006
– reference: KarlekarBVDesmondRMEngineering heat transfer19771Saint PaulWest Publishing Company
– reference: SadiMArabkoohsarATechno-economic analysis of off-grid solar-driven cold storage systems for preventing the waste of agricultural products in hot and humid climatesJ Clean Prod202027512414310.1016/j.jclepro.2020.124143
– reference: Cornetet MC (2009) Recomendações Para Especificação De Vidros Em Edificações Comerciais Na Região Climática De Porto Alegre-Rs. Dissertation, Universidade Federal de Santa Maria
– reference: Nedaei M, Walsh P, Assareh E (2020) Sustainable energy planning of a wind power plant by coordinating clean development strategies. Int J Energy Clean Environ 21. https://doi.org/10.1615/InterJEnerCleanEnv.2020033676
– reference: BehzadiAArabkoohsarASadiMChakravartyKHA novel hybrid solar-biomass design for green off-grid cold production, techno-economic analysis and optimizationSol Energy202121863965110.1016/j.solener.2021.02.065
– reference: Razmi AR, Arabkoohsar A, Nami H (2020) Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system. Energy 210. https://doi.org/10.1016/j.energy.2020.118559
– reference: Hanita Coatings (2022) Reflective Films. http://hanitacoatings.com/films/products/solarzone/reflective-films. Accessed 5 Jan 2022
– reference: Miranda, MM (2012) Fator de emissão de gases de efeito estufa da geração de energia elétrica no Brasil. Dissertation, Universidade de São Paulo
– reference: AscioneFEnergy conservation and renewable technologies for buildings to face the impact of the climate change and minimize the use of coolingSol Energy20171543410010.1016/j.solener.2017.01.022
– reference: IEA (2018) The future of cooling opportunities for energy- efficient air conditioning. https://www.iea.org/reports/the-future-of-cooling. Acessed 18 Feb 2023
– reference: Al-Falahi A, Alobaid F, Epple B (2020) Design and thermo-economic comparisons of an absorption air conditioning system based on parabolic trough and evacuated tube solar collectors. Energies (Basel) 13. https://doi.org/10.3390/en13123198
– reference: Ismail KAR, Teles MPR, Lino FAM (2022) Modeling and experimental evaluation of the effects of reflective film and vacuum on the performance of concentric double tube direct flow solar collector. J Energy Resour Technol 1–13. https://doi.org/10.1115/1.4054532
– volume: 72
  start-page: 43
  year: 2002
  ident: 25715_CR16
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(01)00081-0
– ident: 25715_CR29
– volume: 219
  start-page: 119561
  year: 2021
  ident: 25715_CR38
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119561
– ident: 25715_CR31
– ident: 25715_CR35
  doi: 10.1016/j.energy.2020.118559
– ident: 25715_CR42
  doi: 10.1115/1.4052982
– volume: 223
  start-page: 113420
  year: 2020
  ident: 25715_CR3
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113420
– volume: 30
  start-page: 1143
  year: 2005
  ident: 25715_CR8
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2004.09.017
– ident: 25715_CR19
– ident: 25715_CR39
– volume-title: Numerical heat transfer and fluid flow
  year: 1980
  ident: 25715_CR33
– ident: 25715_CR24
  doi: 10.1115/1.4054532
– ident: 25715_CR15
– ident: 25715_CR2
  doi: 10.3390/en13123198
– ident: 25715_CR1
– ident: 25715_CR13
– volume: 154
  start-page: 34
  year: 2017
  ident: 25715_CR5
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.01.022
– ident: 25715_CR32
  doi: 10.3390/en13102568
– ident: 25715_CR21
– ident: 25715_CR11
– volume: 50
  start-page: 101822
  year: 2022
  ident: 25715_CR20
  publication-title: Sustain Energy Technol Assess
  doi: 10.1016/j.seta.2021.101822
– volume: 37
  start-page: 1211
  year: 1996
  ident: 25715_CR17
  publication-title: Energy Convers Manag
  doi: 10.1016/0196-8904(95)00322-3
– ident: 25715_CR23
– volume: 102
  start-page: 749
  year: 2016
  ident: 25715_CR10
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.04.032
– volume: 43
  start-page: 42
  year: 2022
  ident: 25715_CR4
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2019.1630299
– volume-title: Engineering heat transfer
  year: 1977
  ident: 25715_CR25
– volume: 218
  start-page: 639
  year: 2021
  ident: 25715_CR9
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2021.02.065
– ident: 25715_CR30
  doi: 10.1615/InterJEnerCleanEnv.2020033676
– volume: 45
  start-page: 101057
  year: 2021
  ident: 25715_CR37
  publication-title: Sustain Energy Technol Assess
  doi: 10.1016/j.seta.2021.101057
– volume: 47
  start-page: 26468
  year: 2022
  ident: 25715_CR34
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.03.021
– volume: 176
  start-page: 179
  year: 2018
  ident: 25715_CR26
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.07.039
– ident: 25715_CR40
  doi: 10.1016/j.seta.2022.102105
– volume-title: Transferência de calor e mecânica dos fluidos computacional
  year: 2004
  ident: 25715_CR27
– volume: 62
  start-page: 79
  year: 1998
  ident: 25715_CR18
  publication-title: Sol Energy
  doi: 10.1016/S0038-092X(97)00105-9
– volume: 275
  start-page: 124143
  year: 2020
  ident: 25715_CR36
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.124143
– ident: 25715_CR14
– volume: 31
  start-page: 268
  year: 2011
  ident: 25715_CR28
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2010.09.006
– ident: 25715_CR22
– volume: 41
  start-page: 85
  year: 2015
  ident: 25715_CR43
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.08.039
– volume: 89
  start-page: 339
  year: 1963
  ident: 25715_CR41
  publication-title: Q J R Meteorol Soc
  doi: 10.1002/QJ.49708938105
– volume: 92
  start-page: 102042
  year: 2021
  ident: 25715_CR6
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2021.102042
– volume: 185
  start-page: 294
  year: 2017
  ident: 25715_CR12
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.10.083
– volume: 5
  start-page: 100031
  year: 2022
  ident: 25715_CR7
  publication-title: Energy Nexus
  doi: 10.1016/j.nexus.2021.100031
SSID ssj0020927
Score 2.4553907
Snippet Renewable cooling via absorption chillers being supplied by various green heat technologies such as solar collectors has been widely studied in the literature,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18171
SubjectTerms Absorption
Applied Solar Energy
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Brazil
Case studies
Chillers
Cold Temperature
Cooling
cost effectiveness
Design optimization
Earth and Environmental Science
Economic analysis
economic performance
Economics
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
heat
Hot Temperature
Multiple objective analysis
Optimization techniques
Phase Transition
Solar collectors
Solar Energy
Solar heating
Storage units
Sunlight
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFH-UrIdd1q1bV3dp0WC3TWBLiiz1NkLKTqG03ejNyLI0Aptd4iTQ_75Ptpwwug66g096gof8Pn5Peh8An3SYo-21o-itSyoEqyjCEE-F4b5yQhttbTdsIp_P1e2tvoxFYe2Q7T48SXaWelfslvFJSJjlFMUsm1AM1F-gu1NhYMPV9Y9tmJVqlsfymL_v-9MFPcKVj95EO1dzcfB_TL6GVxFakq-9LLyBPVcfwtFsV8mGi1GV27ewmDZhXs9P0oa5nvckXMgSQxBlk3AtSxpP3MbYNWLRirQhACZBZrpL_vYcKbvurw11sbKZNGh8fseqTmLqCr--38k7-H4xu5l-o3HuArUiVSvqUps7NJJlqSwruWBGytJn3iglDUIWj8ZVa-szp5S2ZW48gg5fCl5lupJVxo9gVDe1OwaSVhZDIpULk3qB-0uBcMsLbaXIUstsAtnwKwobm5KH2Ri_il075XCiBZ5o0Z1okSbwebvnrm_J8U_q8fCHi6iebcH0hIXkXjVJ4ON2GRUrvJaY2jVrpMlV98yZsqdpOPoLyTQaygTe99KzZYlLxbiQMoEvg6jsGHia35PnkX-AlwxhVp8VN4bRarl2p7BvN6tFuzzrFOMB1fQJDg
  priority: 102
  providerName: Springer Nature
Title Cooling supply with a new type of evacuated solar collectors: a techno-economic optimization and analysis
URI https://link.springer.com/article/10.1007/s11356-023-25715-0
https://www.ncbi.nlm.nih.gov/pubmed/36823466
https://www.proquest.com/docview/2952667685
https://www.proquest.com/docview/2780064002
https://www.proquest.com/docview/3153629030
Volume 31
WOSCitedRecordID wos000988341700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7WY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: M0C
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (subscripiton)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: PATMY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (subscription)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: M2P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFgkuPAqFQFkZiRtY-LWJzQXBaisuXa3KazlFjmNXlSApzW4l_j3jxLsrVLUXDrEUZayMNOPxZ88L4JWJfbSD8RR364oqJWqKMCRQZWWovTLWONc3myhmM71YmHm6cOtSWOXaJvaGum5dvCN_K8xYxHhMPX5__pvGrlHRu5paaOzAHiIbHkO6jsV8c-BiZmjZapSiXCqVkmaG1DkuxzH8VlJUWj6m7N-N6QravOIp7Tego_v_y_oDuJegJ_kw6MpDuOWbfbizzkzu9uFgus16Q8K07LtHcDZpY2-fU9LFHqB_SLy8JZYgIifxCpe0gfhL61aIW2vSxcMyifrVOwS6d0jZV4ptqU__Ii0aql8pA5TYpsZnqI3yGL4eTb9MPtHUo4E6xfSSeuYKjwa1qrQTlVTC5nkVeLBa5xbhTUBDbIwL3GttXFXYgAAlVErW3NR5zeUB7DZt458CYbXD45MulGVB4fxKITQLyrhcceaEy4CvBVS6VMA89tH4WW5LL0ehlijUshdqyTJ4vZlzPpTvuJH6cC3AMi3lrtxKL4OXm8-4CKNnxTa-XSFNoXuXKBPX00jcW3Jh0Khm8GTQqQ1LMtdCqjzP4M1aybYMXM_vs5v5fQ53BUKwIWLuEHaXFyv_Am67y-VZdzGCneL7jzguin7UOOoJH8Hex-lsfoJvx2wy6hcUjiefv_0FndEgEQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9UwFD9BNIEXVBScotZEn7Rxa3u71sQYgxAIeMMDJrzNrh-GBDZk90L4p_wbPd3HvTEE3njwYU8725ru13NOez5-AG915NEO2lO01iUVgjmKbkigwvDgvNBGW9uSTeTjsTo60gcL8GeohYlplYNObBW1q208I__I9IjFfEw1-nL2m0bWqBhdHSg0Oljs-atL3LI1n3e_4f99x9j21uHmDu1ZBagVqZpQn9rcowooS2VZyQUzUpYhC0YpadAgB1QdWtuQeaW0LXMT0KSGUnCXaSddxvG99-C-iJ3FYqogO5ht8FLdUcRqIWjGheiLdLpSvYyPYrovp7hIshFN_zWE17zba5HZ1uBtP_zfpuoRrPSuNfnarYXHsOCrVVgaKq-bVVjbmlf1oWCv1poncLxZR-6iX6SJHKdXJB5OE0Nwx0HiETWpA_EXxk7RL3ekiYcBJK6fNuDRfELJthNuTX3_LVKjIj7tK1yJqRxeXe-Xp_DjTqZgDRaruvLPgKTO4vZQ5cKkQeDzpUDXMwhtpchSy2wC2QCIwvYN2iNPyEkxby0dQVQgiIoWREWawPvZM2dde5JbpTcGwBS9qmqKOVoSeDO7jUomRo5M5espyuSqDfmm7GYZjrZTMo1GI4H1DsOzIXGpGBdSJvBhAPV8ADeP9_nt430NSzuH3_eL_d3x3gtYZuhudtmBG7A4OZ_6l_DAXkyOm_NX7TIl8POuwf4XeG92yQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiiXAoVCoICR4ARWHdub2JUQQtuuqIpWPYDUW3D8qCpBUprdov41fh3jPHaFqvbWA4ecMkks5_PM2PP4AN7oyKMdtKdorUsqJXcU3ZBApRHBeamNtrYlm8inU3V0pA9X4M9QCxPTKged2CpqV9t4Rr7N9YjHfEw12g59WsTh7uTj6S8aGaRipHWg0-ggcuAvfuP2rfmwv4v_-i3nk72v48-0ZxigVjI1o57Z3KM6KEtleSkkN1lWhjQYpTKDxjmgGtHahtQrpW2Zm4DmNZRSuFS7zKUC33sLbucSzWZMG2TjxWaP6Y4uVktJUyFlX7DTle2lYhRTfwXFBZOOKPvXKF7ydC9FaVvjN7n_P0_bA1jvXW7yqVsjD2HFVxuwNlRkNxuwubes9kPBXt01j-BkXEdOo2PSRO7TCxIPrYkhuBMh8eia1IH4c2Pn6K870sRDAhLXVRsIaXZQsu2QW1Pff4vUqKB_9pWvxFQOr64nzGP4diNTsAmrVV35p0CYs7htVLk0LEh8vpTokgapbSZTZrlNIB3AUdi-cXvkD_lRLFtOR0AVCKiiBVTBEni3eOa0a1tyrfTWAJ6iV2FNsUROAq8Xt1H5xIiSqXw9R5lctaFgxq-WEWhTM67RmCTwpMPzYkgiU1zILEvg_QDw5QCuHu-z68f7Cu4ixosv-9OD53CPoxfaJQ1uwersbO5fwB17Pjtpzl62K5bA95vG-l8tv39r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooling+supply+with+a+new+type+of+evacuated+solar+collectors%3A+a+techno-economic+optimization+and+analysis&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Teles%2C+Mavd+P+R&rft.au=Sadi%2C+Meisam&rft.au=Ismail%2C+Kamal+A+R&rft.au=Arabkoohsar%2C+Ahmad&rft.date=2024-03-01&rft.eissn=1614-7499&rft.volume=31&rft.issue=12&rft.spage=18171&rft_id=info:doi/10.1007%2Fs11356-023-25715-0&rft_id=info%3Apmid%2F36823466&rft.externalDocID=36823466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon