A Kriging-Assisted Reference Vector Guided Multi-Objective Evolutionary Fuzzy Clustering Algorithm for Image Segmentation

In order to reduce the computational complexity of multi-objective evolutionary optimization-based clustering algorithms, a Kriging-assisted reference vector guided multi-objective robust spatial fuzzy clustering algorithm (KRV-MRSFC) is proposed and then successfully applied to image segmentation....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 7; s. 21465 - 21481
Hlavní autoři: Zhao, Feng, Zeng, Zhe, Liu, Han Qiang, Fan, Jiu Lun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In order to reduce the computational complexity of multi-objective evolutionary optimization-based clustering algorithms, a Kriging-assisted reference vector guided multi-objective robust spatial fuzzy clustering algorithm (KRV-MRSFC) is proposed and then successfully applied to image segmentation. We first construct objective functions with noise robust local spatial information derived from the image to improve the robustness to noise and then use the Kriging model to approximate each objective function to decrease the computational cost. Meanwhile, in order to improve the approximation accuracy of the Kriging model, an angle-penalized distance-based expected improvement sampling criterion is presented in the KRV-MRSFC, which can select individuals with better exploitation and exploration to update the Kriging model. In addition, KRV-MRSFC adopts a clustering validity index with noise robust local image spatial information to select the optimal solution from the final non-dominated solution set to perform image segmentation. The experiments performed on Berkeley and real magnetic resonance images indicate that the proposed method not only achieves satisfactory segmentation performance on noisy images but also requires a low time cost.
AbstractList In order to reduce the computational complexity of multi-objective evolutionary optimization-based clustering algorithms, a Kriging-assisted reference vector guided multi-objective robust spatial fuzzy clustering algorithm (KRV-MRSFC) is proposed and then successfully applied to image segmentation. We first construct objective functions with noise robust local spatial information derived from the image to improve the robustness to noise and then use the Kriging model to approximate each objective function to decrease the computational cost. Meanwhile, in order to improve the approximation accuracy of the Kriging model, an angle-penalized distance-based expected improvement sampling criterion is presented in the KRV-MRSFC, which can select individuals with better exploitation and exploration to update the Kriging model. In addition, KRV-MRSFC adopts a clustering validity index with noise robust local image spatial information to select the optimal solution from the final non-dominated solution set to perform image segmentation. The experiments performed on Berkeley and real magnetic resonance images indicate that the proposed method not only achieves satisfactory segmentation performance on noisy images but also requires a low time cost.
Author Liu, Han Qiang
Fan, Jiu Lun
Zeng, Zhe
Zhao, Feng
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0002-0323-9573
  surname: Zhao
  fullname: Zhao, Feng
  email: fzhao.xupt@gmail.com
  organization: Key Laboratory of Electronic Information Application Technology for Scene Investigation, Ministry of Public Security, Xi'an University of Posts and Telecommunications, Xi'an, China
– sequence: 2
  givenname: Zhe
  surname: Zeng
  fullname: Zeng, Zhe
  organization: Key Laboratory of Electronic Information Application Technology for Scene Investigation, Ministry of Public Security, Xi'an University of Posts and Telecommunications, Xi'an, China
– sequence: 3
  givenname: Han Qiang
  surname: Liu
  fullname: Liu, Han Qiang
  organization: School of Computer Science, Shaanxi Normal University, Xi'an, China
– sequence: 4
  givenname: Jiu Lun
  surname: Fan
  fullname: Fan, Jiu Lun
  organization: Key Laboratory of Electronic Information Application Technology for Scene Investigation, Ministry of Public Security, Xi'an University of Posts and Telecommunications, Xi'an, China
BookMark eNp9kUFr3DAQhU1JoWmaX5CLoGdvJWslWUdjNsnShEA39CpkeeRq8VqpJAc2v77aOi2hh85Fw2O-xxPvY3E2-QmK4orgFSFYfmnadrPbrSpM5KqqpWBSvCvOK8JlSRnlZ2_2D8VljHucp84SE-fFsUFfgxvcNJRNjC4m6NE3sBBgMoC-g0k-oJvZ9Vm_n8fkyodun1X3DGjz7Mc5OT_pcETX88vLEbXjnC1CtkPNOPjg0o8Dstlie9ADoB0MB5iSPkGfivdWjxEuX9-L4vF689jelncPN9u2uSvNGtep7G2HBTNEAhOs6qkUhnADmmouKBYSKOCaCm11bwmxBhi3FeUdr40B6OlFsV1se6_36im4Q06rvHbqt-DDoHRIzoygKGaSAghB1mJtTdUJXdfMmr4igK3ustfnxesp-J8zxKT2fg5TTq-qNWOcYEpIvpLLlQk-xgBWGbd8OQXtRkWwOvWmlt7UqTf12ltm6T_sn8T_p64WygHAX6LmlOVQ9BdLGqhW
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_asoc_2021_107778
crossref_primary_10_1109_ACCESS_2019_2953914
crossref_primary_10_1109_ACCESS_2020_2968936
crossref_primary_10_1109_ACCESS_2019_2924957
crossref_primary_10_1016_j_knosys_2023_110522
crossref_primary_10_1109_ACCESS_2019_2963363
crossref_primary_10_1016_j_engappai_2024_108104
crossref_primary_10_1108_EC_06_2021_0337
crossref_primary_10_3390_math9020149
crossref_primary_10_1109_ACCESS_2020_2995660
crossref_primary_10_1016_j_eswa_2023_120419
crossref_primary_10_1080_0305215X_2023_2247369
crossref_primary_10_1016_j_agwat_2020_106623
crossref_primary_10_1109_TFUZZ_2020_2973121
Cites_doi 10.1109/TFUZZ.2018.2796074
10.1109/TEVC.2013.2248012
10.1109/34.295913
10.1016/j.swevo.2011.05.001
10.1016/j.asoc.2010.01.007
10.1109/TIP.2010.2040763
10.1109/TEVC.2016.2622301
10.1007/3-540-45356-3_83
10.1109/TFUZZ.2018.2852289
10.1109/34.868688
10.1109/42.996338
10.1109/TEVC.2015.2395073
10.1016/j.patcog.2003.04.001
10.1109/TSMCC.2005.855506
10.1109/TCYB.2017.2710978
10.1109/CVPR.2012.6247942
10.1109/TEVC.2018.2802784
10.1109/TSMCB.2004.831165
10.1109/TEVC.2016.2519378
10.1109/TPAMI.2010.161
10.1109/TSMCC.2004.841917
10.1016/0098-3004(84)90020-7
10.2307/1268522
10.1109/78.127962
10.1109/CEC.2009.4983250
10.1109/ICAPR.2009.51
10.1109/TSMC.1979.4310076
10.1016/j.compchemeng.2017.09.017
10.1016/j.asoc.2015.01.039
10.1016/S0020-0255(02)00208-6
10.1109/TEVC.2017.2675628
10.1109/TEVC.2006.877146
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2897597
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL) - 2025 collection
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 2169-3536
EndPage 21481
ExternalDocumentID oai_doaj_org_article_30593ee771474fc2b7a885fcd21e0fab
10_1109_ACCESS_2019_2897597
8635556
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61571361; 61671377; 61202153; 61102095
  funderid: 10.13039/501100001809
– fundername: Xi'an University of Posts and Telecommunications
  grantid: xyt2016-01
  funderid: 10.13039/501100008780
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-dfb075c19e5752d397c16cea3a673079e3e0837afadf11fce56f236b68cceed3
IEDL.DBID DOA
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460582900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:39 EDT 2025
Sun Nov 09 07:22:09 EST 2025
Sat Nov 29 03:33:42 EST 2025
Tue Nov 18 22:38:27 EST 2025
Wed Aug 27 02:54:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-dfb075c19e5752d397c16cea3a673079e3e0837afadf11fce56f236b68cceed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0323-9573
OpenAccessLink https://doaj.org/article/30593ee771474fc2b7a885fcd21e0fab
PQID 2455610311
PQPubID 4845423
PageCount 17
ParticipantIDs crossref_primary_10_1109_ACCESS_2019_2897597
crossref_citationtrail_10_1109_ACCESS_2019_2897597
proquest_journals_2455610311
ieee_primary_8635556
doaj_primary_oai_doaj_org_article_30593ee771474fc2b7a885fcd21e0fab
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref14
ref31
deb (ref26) 2000
ref11
mukhopadhyay (ref15) 2011; 11
ref10
ref2
ref1
ref39
ref17
ref19
ref18
cornell (ref28) 2011
zhao (ref16) 2015; 30
luo (ref38) 0
deb (ref29) 1995; 9
ref24
ref23
lophaven (ref36) 2002
ref25
wang (ref20) 0
ref41
ref22
ref21
deb (ref30) 1996; 26
ref27
guo (ref33) 0
ref8
tian (ref32) 0
ref7
ref9
worth (ref40) 2009
ref4
ref3
ref6
ref5
References_xml – start-page: 2
  year: 2002
  ident: ref36
  article-title: DACE: A MATLAB Kriging toolbox
– ident: ref41
  doi: 10.1109/TFUZZ.2018.2796074
– year: 0
  ident: ref32
  article-title: Multi-objective infill criterion driven Gaussian process assisted particle swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans Evol Comput
– ident: ref31
  doi: 10.1109/TEVC.2013.2248012
– ident: ref4
  doi: 10.1109/34.295913
– ident: ref17
  doi: 10.1016/j.swevo.2011.05.001
– volume: 11
  start-page: 872
  year: 2011
  ident: ref15
  article-title: A multiobjective approach to MR brain image segmentation
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.01.007
– ident: ref11
  doi: 10.1109/TIP.2010.2040763
– ident: ref23
  doi: 10.1109/TEVC.2016.2622301
– year: 0
  ident: ref33
  article-title: Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems
  publication-title: IEEE Trans Cybern
– start-page: 849
  year: 2000
  ident: ref26
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: Parallel Problem Solving from Nature PPSN VI
  doi: 10.1007/3-540-45356-3_83
– ident: ref35
  doi: 10.1109/TFUZZ.2018.2852289
– ident: ref5
  doi: 10.1109/34.868688
– ident: ref9
  doi: 10.1109/42.996338
– start-page: 30
  year: 2011
  ident: ref28
  publication-title: Experiments with Mixtures Designs Models and the Analysis of Mixture Data
– year: 0
  ident: ref20
  article-title: A random forest-assisted evolutionary algorithm for data-driven constrained multiobjective combinatorial optimization of trauma systems
  publication-title: IEEE Trans Cybern
– ident: ref27
  doi: 10.1109/TEVC.2015.2395073
– year: 0
  ident: ref38
  article-title: Evolutionary optimization of expensive multiobjective problems with co-sub-Pareto front Gaussian process surrogates
  publication-title: IEEE Trans Cybern
– ident: ref7
  doi: 10.1016/j.patcog.2003.04.001
– ident: ref37
  doi: 10.1109/TSMCC.2005.855506
– ident: ref19
  doi: 10.1109/TCYB.2017.2710978
– ident: ref2
  doi: 10.1109/CVPR.2012.6247942
– ident: ref21
  doi: 10.1109/TEVC.2018.2802784
– ident: ref10
  doi: 10.1109/TSMCB.2004.831165
– year: 2009
  ident: ref40
  publication-title: The internet brain segmentation repository (ibsr)
– ident: ref25
  doi: 10.1109/TEVC.2016.2519378
– ident: ref39
  doi: 10.1109/TPAMI.2010.161
– ident: ref24
  doi: 10.1109/TSMCC.2004.841917
– ident: ref8
  doi: 10.1016/0098-3004(84)90020-7
– ident: ref34
  doi: 10.2307/1268522
– ident: ref6
  doi: 10.1109/78.127962
– ident: ref1
  doi: 10.1109/CEC.2009.4983250
– ident: ref14
  doi: 10.1109/ICAPR.2009.51
– ident: ref3
  doi: 10.1109/TSMC.1979.4310076
– volume: 26
  start-page: 30
  year: 1996
  ident: ref30
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Comput Sci Inf
– volume: 9
  start-page: 115
  year: 1995
  ident: ref29
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– ident: ref18
  doi: 10.1016/j.compchemeng.2017.09.017
– volume: 30
  start-page: 48
  year: 2015
  ident: ref16
  article-title: A multiobjective spatial fuzzy clustering algorithm for image segmentation
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.01.039
– ident: ref13
  doi: 10.1016/S0020-0255(02)00208-6
– ident: ref22
  doi: 10.1109/TEVC.2017.2675628
– ident: ref12
  doi: 10.1109/TEVC.2006.877146
SSID ssj0000816957
Score 2.2137008
Snippet In order to reduce the computational complexity of multi-objective evolutionary optimization-based clustering algorithms, a Kriging-assisted reference vector...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21465
SubjectTerms Approximation algorithms
Clustering
Clustering algorithms
Computing costs
Evolutionary algorithms
Evolutionary computation
fuzzy clustering
Image segmentation
Kriging model
Linear programming
Magnetic resonance imaging
Model accuracy
multi-objective optimization
Multiple objective analysis
Noise
Optimization
reference vector guided evolutionary algorithm
Sociology
Spatial data
Statistics
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FYdy4NGCWCjIB45NGzsPx8dl1QUEKkhUqLfIccbbon2gZVNp--uZcdyoEgiJW2TFlqNvPPPZ8XwD8NZ5tBZNk1hjaYOCtNIbaVXi86qpLEVA1Uvmf9bn59Xlpfm6A8dDLgwihstneMKP4V9-u3IdH5WdVhwdi3IXdrUu-1yt4TyFC0iYQkdhIZma0_FkQt_At7fMCW0rdMHCTveCT9Doj0VV_vDEIbxMH__fxJ7Ao0gjxbjH_Sns4PIAHt4TFzyAfeaRvQzzIWzH4lMogTVLCBCGthWDxqz4Ho7uxfvuuqX2kJObfGl-9L5QnN1E87TrrZh2t7dbMZl3LLBAw4nxfLZaX2-uFoLor_i4IP8kvuFsEXOals_gYnp2MfmQxKoLicvTapO0viEa4aRBYnKqJb7iZOnQZrYkb6ANZki0TVtvWy-ld1iUXmVlU1aOA272HPaWqyW-ACEVKudLa1hwh3iHsWmWE2NyladNjcQRqDs0ahcVybkwxrwOO5PU1D2ENUNYRwhHcDx0-tkLcvz79XcM8_Aqq2mHBsKvjouzzriuIaLWMte5d6rRtqoK71olMfW2GcEhYz4MEuEewdGd0dRx5f-qVc4FR8lVypd_7_UK9nmC_THOEext1h2-hgfuhkxi_SYY9W9ovfdU
  priority: 102
  providerName: IEEE
Title A Kriging-Assisted Reference Vector Guided Multi-Objective Evolutionary Fuzzy Clustering Algorithm for Image Segmentation
URI https://ieeexplore.ieee.org/document/8635556
https://www.proquest.com/docview/2455610311
https://doaj.org/article/30593ee771474fc2b7a885fcd21e0fab
Volume 7
WOSCitedRecordID wos000460582900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQxYEeEPQhAqXygSPbrr0P28cQJVABBYmq6s3yeschVZKiNKmUHvjtzHjdKFIluHDZg-X1rmfGM99Y9jeMvfMBnAPTZM44TFAAV3ojnMxCqRvtMALKjjL_izo_11dX5vtWqS86E9bRA3eCOy2o5hyAUqJUZfCyUU7rKvhWCsiDa8j75spsJVPRB2tRm0olmiGRm9P-YIAzorNc5gSTDFURzdNWKIqM_anEyiO_HIPN6AV7nlAi73d_95I9gfke293iDtxn6z7_HItajTMUMSmr5RvWWH4ZN-P5x9WkxfZ4yzb71lx33o0P75LBucWaj1b392s-mK6IMgGH4_3p-GYxWf6ccQS0_GyGHof_gPEs3VKaH7CL0fBi8ClLdRQyX-Z6mbWhQWDghQHEZrJFBOJF7cEVrsb1rQwUgEBMueDaIETwUNVBFnVTa08htDhkO_ObObxiXEiQPtTOEIUOIgnj8qJEDOR1wDRFQI_JB4lanzjGqdTF1MZcIze2U4MlNdikhh57v3npV0ex8ffuH0hVm67Ejx0b0Gpsshr7L6vpsX1S9GYQTbirqnvs6EHxNq3lWytLKiGKzk-8_h-ffsOe0XS6bZwjtrNcrOAte-rvlpPbxXE0Y3x-_T08jpcR_wBEgviU
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5qFawPVVvF06p58LHbbrI_83gevbb0PAUP6VvIZidn5X7IeVu4_vVOsulSsAh9W8ImZPkmM1-ymW8APhmLWqOsIi01bVCQVnrFtYhsWlalpggoWsn8UTEel5eX8tsWHHa5MIjoL5_hkXv0__LrpWncUdlx6aJjlj-Cx1mairjN1upOVFwJCZkVQVqIx_K4PxjQV7j7W_KINhZF5qSd7oQfr9Ifyqr844t9gBk-f9jUXsBuIJKs3yL_ErZwsQfP7sgL7sGOY5KtEPM-bPrswhfBmkYEiQO3Zp3KLPvhD-_ZaXNVU7vPyo2-Vr9ab8hOroOB6tWGDZubmw0bzBonsUDDsf5sulxdrX_OGRFgdj4nD8W-43QespoWr2AyPJkMzqJQdyEyaVyuo9pWRCQMl0hcTtTEWAzPDepE5-QPCokJEnErtNW15dwazHIrkrzKS-NCbvIathfLBb4BxgUKY3MtneQOMQ-p4yQlzmRKS9sajj0Qt2goEzTJXWmMmfJ7k1iqFkLlIFQBwh4cdp1-t5Ic_3_9s4O5e9XpafsGwk-F5akSV9kQsSh4WqTWiKrQZZlZUwuOsdVVD_Yd5t0gAe4eHNwajQpr_48SqSs5Ss6Sv72_10d4ejb5MlKj8_HFO9hxk20PdQ5ge71q8D08MddkHqsP3sD_AmQb-ps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Kriging-Assisted+Reference+Vector+Guided+Multi-Objective+Evolutionary+Fuzzy+Clustering+Algorithm+for+Image+Segmentation&rft.jtitle=IEEE+access&rft.au=Zhao%2C+Feng&rft.au=Zeng%2C+Zhe&rft.au=Liu%2C+Han+Qiang&rft.au=Fan%2C+Jiu+Lun&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=21465&rft.epage=21481&rft_id=info:doi/10.1109%2FACCESS.2019.2897597&rft.externalDocID=8635556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon