M-Decomposed Least Squares and Recursive Least Squares Identification Algorithms for Large-Scale Systems

Two M-decomposed based identification algorithms are proposed for large-scale systems in this study. Since the least squares algorithms involve matrix inversion calculation, they can be inefficient for large-scale systems whose information matrices are ill-conditioned. To overcome this difficulty, t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 9; s. 139466 - 139472
Hlavní autori: Ji, Yuejiang, Lv, Lixin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Two M-decomposed based identification algorithms are proposed for large-scale systems in this study. Since the least squares algorithms involve matrix inversion calculation, they can be inefficient for large-scale systems whose information matrices are ill-conditioned. To overcome this difficulty, the M-decomposed based least squares algorithm is developed, where the parameter vector is divided into M sub-vectors. Each sub-vector is estimated using the least squares algorithm, with the assumption that the other sub-vectors are known. The proposed algorithm has less computational efforts than those of the traditional least squares algorithm. To update the parameters with new arrived data, an M-decomposed based recursive least squares algorithm is also provided, this algorithm avoids matrix inversion calculation thus is more efficient. The simulation examples show the effectiveness of the proposed algorithms.
AbstractList Two M-decomposed based identification algorithms are proposed for large-scale systems in this study. Since the least squares algorithms involve matrix inversion calculation, they can be inefficient for large-scale systems whose information matrices are ill-conditioned. To overcome this difficulty, the M-decomposed based least squares algorithm is developed, where the parameter vector is divided into M sub-vectors. Each sub-vector is estimated using the least squares algorithm, with the assumption that the other sub-vectors are known. The proposed algorithm has less computational efforts than those of the traditional least squares algorithm. To update the parameters with new arrived data, an M-decomposed based recursive least squares algorithm is also provided, this algorithm avoids matrix inversion calculation thus is more efficient. The simulation examples show the effectiveness of the proposed algorithms.
Author Ji, Yuejiang
Lv, Lixin
Author_xml – sequence: 1
  givenname: Yuejiang
  orcidid: 0000-0002-6580-5315
  surname: Ji
  fullname: Ji, Yuejiang
  email: jyj1981917@126.com
  organization: Wuxi Vocational College of Science and Technology, Wuxi, China
– sequence: 2
  givenname: Lixin
  orcidid: 0000-0002-1571-6007
  surname: Lv
  fullname: Lv, Lixin
  organization: Wuxi Vocational College of Science and Technology, Wuxi, China
BookMark eNqFUU1r3DAQFSWFpml-QS6Gnr3VpyUdl23aLmwp1O1ZjOXxRovX2kjaQv59nTiEkkvnMsPMvPeGee_JxRQnJOSG0RVj1H5abza3bbvilLOVYExoqt-QS84aWwslmot_6nfkOucDncPMLaUvyd33-jP6eDzFjH21Q8ilau_PkDBXMPXVT_TnlMMffDXb9jiVMAQPJcSpWo_7mEK5O-ZqiKnaQdpj3XoYsWofcsFj_kDeDjBmvH7OV-T3l9tfm2_17sfX7Wa9q72kptS9b0QnhJIeGIDyYBRoUHJAo9HaDiTrKSg0SigroFda88FLIwfvaS97cUW2C28f4eBOKRwhPbgIwT01Yto7SCX4EZ0w2CEqazpppRcCPAXLrW-UVXzoYOb6uHCdUrw_Yy7uEM9pms93XBnOZaO5nrfEsuVTzDnh8KLKqHt0yC0OuUeH3LNDM8q-QvlQnp5ZEoTxP9ibBRsQ8UXNqvmDshF_ARcYoXQ
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_en15228686
crossref_primary_10_1109_ACCESS_2024_3484751
crossref_primary_10_3390_app122312345
Cites_doi 10.1155/2018/7353171
10.1109/ACCESS.2019.2938322
10.1016/j.jfranklin.2020.09.005
10.1016/j.cam.2018.06.016
10.1137/1.9780898718003
10.1109/TII.2019.2931792
10.1016/j.automatica.2019.108517
10.1007/978-1-84996-513-2
10.1002/acs.3203
10.1109/TSMC.2018.2882844
10.1007/s12555-019-0970-z
10.1007/s11071-020-05755-8
10.1109/TNNLS.2019.2904952
10.1007/s00034-019-01329-1
10.1109/ACCESS.2020.2976862
10.1016/j.automatica.2004.05.001
10.1002/rnc.5266
10.1080/00207721.2019.1671999
10.1016/j.automatica.2020.109034
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3113707
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
WRHA-DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: WRHA-DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 139472
ExternalDocumentID oai_doaj_org_article_38ebee598b494c33ac0a929c65952fba
10_1109_ACCESS_2021_3113707
9540846
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation for Colleges and Universities in Jiangsu Province
  grantid: 18KJB120009
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-dc63b3354ca1aa5ca85a7a54fe87e99ba41d0a5e853593ad5772fc484fcc0d4d3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707437400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:29 EDT 2025
Sun Jun 29 13:24:53 EDT 2025
Tue Nov 18 21:42:24 EST 2025
Sat Nov 29 06:12:38 EST 2025
Wed Aug 27 02:29:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-dc63b3354ca1aa5ca85a7a54fe87e99ba41d0a5e853593ad5772fc484fcc0d4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1571-6007
0000-0002-6580-5315
OpenAccessLink https://ieeexplore.ieee.org/document/9540846
PQID 2582246727
PQPubID 4845423
PageCount 7
ParticipantIDs crossref_primary_10_1109_ACCESS_2021_3113707
proquest_journals_2582246727
crossref_citationtrail_10_1109_ACCESS_2021_3113707
doaj_primary_oai_doaj_org_article_38ebee598b494c33ac0a929c65952fba
ieee_primary_9540846
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
chen (ref3) 2021; 70
ref2
ref17
ref16
ref19
ref18
chen (ref4) 2021
ref24
ref23
billings (ref25) 2014
ref20
ref22
ref21
goodwin (ref26) 1984
ref8
ref7
chen (ref6) 2019; 64
ref9
söderström (ref5) 1989
ding (ref1) 2018
References_xml – year: 1989
  ident: ref5
  publication-title: Systen Identification
– ident: ref12
  doi: 10.1155/2018/7353171
– year: 2021
  ident: ref4
  article-title: Robust standard gradient descent algorithm for ARX models using Aitken acceleration technique
  publication-title: IEEE Trans Cybern
– ident: ref22
  doi: 10.1109/ACCESS.2019.2938322
– ident: ref20
  doi: 10.1016/j.jfranklin.2020.09.005
– ident: ref14
  doi: 10.1016/j.cam.2018.06.016
– ident: ref16
  doi: 10.1137/1.9780898718003
– ident: ref8
  doi: 10.1109/TII.2019.2931792
– ident: ref9
  doi: 10.1016/j.automatica.2019.108517
– ident: ref2
  doi: 10.1007/978-1-84996-513-2
– ident: ref18
  doi: 10.1002/acs.3203
– year: 1984
  ident: ref26
  publication-title: Adaptive Filtering Prediction and Control
– ident: ref15
  doi: 10.1109/TSMC.2018.2882844
– ident: ref17
  doi: 10.1007/s12555-019-0970-z
– ident: ref13
  doi: 10.1007/s11071-020-05755-8
– ident: ref7
  doi: 10.1109/TNNLS.2019.2904952
– ident: ref11
  doi: 10.1007/s00034-019-01329-1
– ident: ref10
  doi: 10.1109/ACCESS.2020.2976862
– volume: 64
  start-page: 526
  year: 2019
  ident: ref6
  article-title: A regularized variable projection algorithm for separable nonlinear least-squares problems
  publication-title: IEEE Trans Autom Control
– ident: ref23
  doi: 10.1016/j.automatica.2004.05.001
– year: 2014
  ident: ref25
  publication-title: Nonlinear System Identification NARMAX Methods in the Time Frequency and Spatio-Temporal Domains
– volume: 70
  year: 2021
  ident: ref3
  article-title: Varying infimum gradient descent algorithm for agent-server systems with uncertain communication network
  publication-title: IEEE Trans Instrum Meas
– ident: ref21
  doi: 10.1002/rnc.5266
– ident: ref19
  doi: 10.1080/00207721.2019.1671999
– ident: ref24
  doi: 10.1016/j.automatica.2020.109034
– year: 2018
  ident: ref1
  publication-title: System Identification - Iterative Search Principle and Identification Methods
SSID ssj0000816957
Score 2.2265406
Snippet Two M-decomposed based identification algorithms are proposed for large-scale systems in this study. Since the least squares algorithms involve matrix...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 139466
SubjectTerms Algorithms
computational effort
Convergence
Decomposition
large-scale system
Large-scale systems
Least squares
M-decomposed least squares
Mathematical analysis
Mathematical model
Matrix decomposition
Parameter estimation
Parameters
sub-parameter-vector
Symmetric matrices
SummonAdditionalLinks – databaseName: WRHA-DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlJQ-MWMSxndhjKSCGghAPic06Ow4gQQtt4ffjS0xVgQQLa-LE8d3lXj5_R8iBdjXXRnmW1waYzGVguigki3rQR_NsQtHizPbLy0t9f2-uZlp9YU1YCw_cEu5I6DhNUEY7aaQXAnwG0aR7xMHLa9e4RllpZoKpRgdrXhhVJpghnpmjbq8XVxQDwpzHOJWLEhvIzpiiBrE_tVj5oZcbY3O2QpaTl0i77detkrkwWCNLM9iB6-Txgp0ELAgfjkNF-9iCh968veNxIgqDil5jIh1r07_da0_m1ilVR7vPD8PR0-TxZUyj-0r7WBjObiLjAk1g5hvk7uz0tnfOUtsE5mWmJ6zyhXBCKOmBAygPWkEJStZBl8EYB5JXGagQDbUyAioVHezaSy1r77NKVmKTzA-Gg7BFqBO6QPwaxZ2UpXcawGVVDRA8d5DLDsm_KGh9whTH1hbPtoktMmNbslsku01k75DD6UOvLaTG78OPkTXToYiH3VyIUmKTlNi_pKRD1pGx05eY6KhGz6tDdr8YbdO_O7a5wspa3KHe_o-pd8giLqdN2-yS-cnoPeyRBf8xeRqP9hux_QTLyO-V
  priority: 102
  providerName: Directory of Open Access Journals
Title M-Decomposed Least Squares and Recursive Least Squares Identification Algorithms for Large-Scale Systems
URI https://ieeexplore.ieee.org/document/9540846
https://www.proquest.com/docview/2582246727
https://doaj.org/article/38ebee598b494c33ac0a929c65952fba
Volume 9
WOSCitedRecordID wos000707437400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: WRHA-DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc4lEJBLJTKB441TWI7sY_L0qqHbYUoSL1Z40dopXaX7oMjvx1P4kYVoEq9RFFiR5N8dubh8TcAH7RrS22U51VrkMtKRq7rWvL0H_RJPZtY9zyz0-bsTF9cmC8bcDDshYkxdsln8SOddmv5Ye7XFCo7NMm8SPpyEzabpu73ag3xFCogYVSTiYXKwhyOJ5P0DskFrMrkmZaioZKx95RPx9Gfi6r88yfu1Mvx88cJtgPb2Yxk4x73F7ARZy_h2T1ywV24POWfI2WMz5cxsCnV6GHnt2vab8RwFthXirRT8vpf9_qtu22O5bHx9Y_54mp1ebNkyb5lU8oc5-cJ2cgy2_kr-H589G1ywnNdBe6TmCsefC2cEEp6LBGVR62wQSXbqJtojENZhgJVTJpcGYFBJQu89VLL1vsiyCBew9ZsPotvgDmhayK4UaWTsvFOI7oitIjRlw4rOYLq7oNbn0nHqfbFte2cj8LYHiVLKNmM0ggOhk4_e86Nh5t_IiSHpkSY3V1IENk8_6zQabRGZbRL0noh0BeYLENPdIpV63AEuwTr8JCM6Aj27saFzZN7aStFqbe0hP32_73ewVMSsI_U7MHWarGO7-GJ_7W6Wi72O7c_HU9_H-13Y_gPsVPuSw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkR74FUqFgr4wLGmSWwn9nFZqIpIV4gWqTdr7Di0Urtb9tHfjydxowoQErcosaNJPtszHs98A_BOuzbXRnletAa5LGTguiwlj-ugj-rZhLLnma2r6VSfnZmvG7A_5MKEELrgs_CeLruz_Gbu1-QqOzDRvIj68h7cp8pZKVtr8KhQCQmjqkQtlGfmYDyZxK-Im8Aij3vTXFRUNPaO-ulY-lNZlT_W4k7BHD7-P9GewKNkSLJxj_xT2AizZ7B9h15wB86P-cdAMePzZWhYTVV62MnPNWUcMZw17Bv52il8_bdnffJum7x5bHz5Y764WJ1fLVm0cFlNseP8JGIbWOI7fw7fDz-dTo54qqzAfRRzxRtfCieEkh5zROVRK6xQyTboKhjjUOZNhipEXa6MwEZFG7z1UsvW-6yRjdiFzdl8Fl4Ac0KXRHGjcidl5Z1GdFnTIgafOyzkCIrbH259oh2n6heXttt-ZMb2KFlCySaURrA_dLruWTf-3fwDITk0Jcrs7kaEyKYZaIWO4zUoo12U1guBPsNoG3oiVCxahyPYIViHlyRER7B3Oy5smt5LWygKvqVD7Jd_7_UWHh6dHte2_jz98gq2SNjeb7MHm6vFOryGB_5mdbFcvOnG8C8BMe9u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M-Decomposed+Least+Squares+and+Recursive+Least+Squares+Identification+Algorithms+for+Large-Scale+Systems&rft.jtitle=IEEE+access&rft.au=Ji%2C+Yuejiang&rft.au=Lv%2C+Lixin&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=139466&rft.epage=139472&rft_id=info:doi/10.1109%2FACCESS.2021.3113707&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3113707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon