Multi-Objective Evolution of Strong S-Boxes Using Non-dominated Sorting Genetic Algorithm-II and Chaos for Secure Telemedicine
There exist several performance criteria for cryptographically strong substitution boxes which are often conflicting with each other. Constructing S-boxes that satisfy multiple criteria with optimal tradeoffs is one of the challenging tasks for cryptographers. In practice, the existing S-box designi...
Saved in:
| Published in: | IEEE access Vol. 10; p. 1 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | There exist several performance criteria for cryptographically strong substitution boxes which are often conflicting with each other. Constructing S-boxes that satisfy multiple criteria with optimal tradeoffs is one of the challenging tasks for cryptographers. In practice, the existing S-box designing algorithms are used to optimize only a single performance criterion, mainly the nonlinearity, which usually resulted in weak scores of other equally significant criteria. To overcome this problem, a multi-objective optimization based method is presented in this paper which constructs 8×8 S-boxes satisfying multiple criteria of balancedness, high nonlinearity, low differential uniformity, and low auto-correlation. The fulfillment of multiple objectives is done by applying the chaos-assisted non-dominated sorting genetic algorithm-II to evolve S-boxes. The performance assessment of a proposed method and comparative analysis with available optimization based and other state-of-the art algorithms demonstrate its proficiency to generate significantly better S-box solutions with good Pareto-optimal security features. Eventually, the S-boxes with minimum NL of 110, DU as low as 8, and ACF as low as 80, are obtained after the optimization. Furthermore, the obtained Pareto-optimal S-box is utilized to put forward a medical image encryption algorithm for secure telemedicine services. The suggested encryption algorithm makes use of S-box for performing the required permutation and diffusion of images. The encryption performance assessment and comparison analyses validate its effectiveness for securing medical imagery data in telemedicine networks. |
|---|---|
| AbstractList | There exist several performance criteria for cryptographically-strong substitution boxes (S-boxes), which are often conflicting with each other. Constructing S-boxes that satisfy multiple criteria with optimal tradeoffs is one of the challenging tasks for cryptographers. In practice, the existing S-box design algorithms are used to optimize performance according to a single performance criterion, mainly the nonlinearity, which usually results in weak scores for other equally-significant criteria. To overcome this problem, a multi-objective optimization-based method is presented in this paper. In this method, <tex-math notation="LaTeX">$8 \times 8$ </tex-math> S-boxes are constructed satisfying multiple criteria of balancedness, high nonlinearity, low differential uniformity, and low auto-correlation. Multiple objectives are fulfilled by applying the chaos-assisted non-dominated sorting genetic algorithm-II to introduce the S-boxes. The performance assessment of the proposed method and the comparative analysis with available optimization tools and other state-of-the-art algorithms demonstrate its proficiency in generating significantly-better S-box solutions with good Pareto-optimal security features. Eventually, the S-boxes with minimum nonlinearity (NL) of 110, differential uniformity (DU) as low as 8, and auto-correlation function (ACF) as low as 80 are obtained after the optimization. Furthermore, the obtained Pareto-optimal S-box is utilized to put forward a medical image encryption algorithm for secure telemedicine services. The suggested encryption algorithm uses an S-box to perform the required permutation and diffusion of images. The encryption performance assessment and comparison analyses validate its effectiveness for securing medical imagery data in telemedicine networks. There exist several performance criteria for cryptographically-strong substitution boxes (S-boxes), which are often conflicting with each other. Constructing S-boxes that satisfy multiple criteria with optimal tradeoffs is one of the challenging tasks for cryptographers. In practice, the existing S-box design algorithms are used to optimize performance according to a single performance criterion, mainly the nonlinearity, which usually results in weak scores for other equally-significant criteria. To overcome this problem, a multi-objective optimization-based method is presented in this paper. In this method, [Formula Omitted] S-boxes are constructed satisfying multiple criteria of balancedness, high nonlinearity, low differential uniformity, and low auto-correlation. Multiple objectives are fulfilled by applying the chaos-assisted non-dominated sorting genetic algorithm-II to introduce the S-boxes. The performance assessment of the proposed method and the comparative analysis with available optimization tools and other state-of-the-art algorithms demonstrate its proficiency in generating significantly-better S-box solutions with good Pareto-optimal security features. Eventually, the S-boxes with minimum nonlinearity (NL) of 110, differential uniformity (DU) as low as 8, and auto-correlation function (ACF) as low as 80 are obtained after the optimization. Furthermore, the obtained Pareto-optimal S-box is utilized to put forward a medical image encryption algorithm for secure telemedicine services. The suggested encryption algorithm uses an S-box to perform the required permutation and diffusion of images. The encryption performance assessment and comparison analyses validate its effectiveness for securing medical imagery data in telemedicine networks. There exist several performance criteria for cryptographically strong substitution boxes which are often conflicting with each other. Constructing S-boxes that satisfy multiple criteria with optimal tradeoffs is one of the challenging tasks for cryptographers. In practice, the existing S-box designing algorithms are used to optimize only a single performance criterion, mainly the nonlinearity, which usually resulted in weak scores of other equally significant criteria. To overcome this problem, a multi-objective optimization based method is presented in this paper which constructs 8×8 S-boxes satisfying multiple criteria of balancedness, high nonlinearity, low differential uniformity, and low auto-correlation. The fulfillment of multiple objectives is done by applying the chaos-assisted non-dominated sorting genetic algorithm-II to evolve S-boxes. The performance assessment of a proposed method and comparative analysis with available optimization based and other state-of-the art algorithms demonstrate its proficiency to generate significantly better S-box solutions with good Pareto-optimal security features. Eventually, the S-boxes with minimum NL of 110, DU as low as 8, and ACF as low as 80, are obtained after the optimization. Furthermore, the obtained Pareto-optimal S-box is utilized to put forward a medical image encryption algorithm for secure telemedicine services. The suggested encryption algorithm makes use of S-box for performing the required permutation and diffusion of images. The encryption performance assessment and comparison analyses validate its effectiveness for securing medical imagery data in telemedicine networks. |
| Author | Alkanhel, Reem Ahmad, Musheer El-Shafai, Walid Algarni, Abeer D. Soliman, Naglaa F. Abd El-Samie, Fathi E. |
| Author_xml | – sequence: 1 givenname: Musheer orcidid: 0000-0002-4915-9325 surname: Ahmad fullname: Ahmad, Musheer organization: Department of Computer Engineering, Jamia Millia Islamia, New Delhi, India – sequence: 2 givenname: Reem orcidid: 0000-0001-6395-4723 surname: Alkanhel fullname: Alkanhel, Reem organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia – sequence: 3 givenname: Walid orcidid: 0000-0001-7509-2120 surname: El-Shafai fullname: El-Shafai, Walid organization: Department of Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt – sequence: 4 givenname: Abeer D. surname: Algarni fullname: Algarni, Abeer D. organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia – sequence: 5 givenname: Fathi E. orcidid: 0000-0001-8749-9518 surname: Abd El-Samie fullname: Abd El-Samie, Fathi E. organization: Department of Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt – sequence: 6 givenname: Naglaa F. surname: Soliman fullname: Soliman, Naglaa F. organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia |
| BookMark | eNqFkU1P3DAQhiNEJSjlF3Cx1HO2_siXj9toS1eicAicrYk9WbzK2tRxEL30t9fbIFT1gmXJM6_nnbH1fMxOnXeYZVeMrhij8su6bTddt-KU85XgVKbgJDvnrJK5KEV1-k98ll1O056m1SSprM-z3z_mMdr8rt-jjvYZyebZj3O03hE_kC4G73aky7_6F5zIw2RTdutdbvzBOohoSOdDPKrX6DBaTdbjzgcbHw_5dkvAGdI-gp_I4APpUM8ByT2OeEBjtXX4KfswwDjh5et5kT1829y33_Obu-ttu77JdUGbmJvG1BJrI8BUErXRDEracATOJPKKDYLXAHVflWkPEkRfSZauKK8arHojLrLt0td42KunYA8QfikPVv0VfNgpSP_QIyqjDZRQ8AIqXTSy7DXUQveaDaXhvK5Tr89Lr6fgf844RbX3c3Dp-YrXgvEiAWhSlViqdPDTFHB4m8qoOnJTCzd15KZeuSWX_M-lbYQjjhjAju94rxavRcS3aVJSQakQfwBtF6i7 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3396452 crossref_primary_10_1049_ipr2_13126 crossref_primary_10_1109_ACCESS_2023_3346319 crossref_primary_10_3390_electronics13040702 crossref_primary_10_1007_s11082_023_04840_7 crossref_primary_10_1088_1402_4896_ad3991 crossref_primary_10_1109_ACCESS_2024_3378731 crossref_primary_10_3390_app13074643 crossref_primary_10_1371_journal_pone_0300228 crossref_primary_10_1016_j_eswa_2024_124904 crossref_primary_10_1007_s11042_023_17046_6 |
| Cites_doi | 10.1080/24751839.2018.1434723 10.1007/s11071-016-3295-y 10.1016/j.ijleo.2017.08.028 10.1007/s13319-016-0084-9 10.1007/s13369-021-05666-9 10.1007/s00521-021-06260-8 10.1016/j.sigpro.2021.108144 10.1016/j.ins.2021.01.014 10.1109/ACCESS.2020.3016401 10.1016/j.jksuci.2018.02.002 10.1109/ACCESS.2019.2936447 10.1038/s41598-020-58636-w 10.1109/ACCESS.2020.2979827 10.1016/j.procs.2015.07.394 10.1016/j.ijleo.2016.11.152 10.1007/s11042-019-08168-x 10.1109/ACCESS.2021.3083151 10.1007/978-3-642-17342-4 10.1142/S021812741950158X 10.1109/ACCESS.2019.2959137 10.1016/j.jisa.2021.102854 10.1016/j.jisa.2021.102844 10.1007/s11042-020-10048-8 10.1109/ACCESS.2020.3020746 10.1007/BF00203967 10.1109/ACCESS.2020.3019367 10.1109/TNSM.2020.2969863 10.1016/j.ins.2012.02.030 10.1007/s00521-018-3557-3 10.1007/s11071-016-3046-0 10.1109/TCYB.2018.2846186 10.1007/BF00630563 10.1007/s00521-020-05304-9 10.1007/3-540-45356-3_83 10.1007/s12065-018-0159-z 10.1109/ACCESS.2020.2987615 10.1016/j.sigpro.2021.108220 10.1007/3-540-48285-7_33 10.1016/j.ijepes.2012.06.034 10.1016/j.ins.2021.07.036 10.1007/s11071-019-05413-8 10.1109/ACCESS.2020.3004449 10.1016/j.chaos.2021.111506 10.1016/j.proeng.2012.06.133 10.1109/ACCESS.2020.3001868 10.1007/s11042-020-08718-8 10.1155/2018/9389065 10.1016/j.physa.2019.124072 10.1016/j.proeng.2011.08.745 10.3233/JIFS-169428 10.1007/s11042-019-08470-8 10.1007/s40998-018-0061-9 10.1007/s11269-019-02387-5 10.1109/SPIN.2014.6776958 10.1007/s12652-021-03494-1 10.1007/978-3-642-40576-1_13 10.1007/s11071-020-05503-y 10.1109/ACCESS.2021.3054250 10.1109/ACCESS.2021.3128177 10.1109/ACCESS.2020.3038006 10.1109/ACCESS.2020.2989676 10.1109/ACCESS.2020.2975880 10.1109/AICCSA.2014.7073265 10.1016/j.physleta.2012.01.009 10.1109/ACCESS.2020.3004526 10.1007/s11071-019-04802-3 10.1016/j.chaos.2020.109646 10.1109/4235.996017 10.1109/ACCESS.2020.2970806 10.1007/3-540-39799-X_41 10.1155/2017/6969312 10.1016/j.chaos.2006.08.003 10.1109/ACCESS.2021.3087139 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2022.3209202 |
| DatabaseName | IEEE Xplore (IEEE) Open Access资源_IEL Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_dcda5a424a6c4895bca73cbc1f5d2277 10_1109_ACCESS_2022_3209202 9903003 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD ABAZT JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-d8d79e7d3ad69ecdc1a5082ea219e261f327aa7b65b65f9a3b69119e0268e6bd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000878110700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:57 EDT 2025 Mon Jun 30 06:32:35 EDT 2025 Sat Nov 29 04:02:15 EST 2025 Tue Nov 18 21:15:18 EST 2025 Tue Nov 25 14:44:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-d8d79e7d3ad69ecdc1a5082ea219e261f327aa7b65b65f9a3b69119e0268e6bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4915-9325 0000-0001-8749-9518 0000-0001-6395-4723 0000-0001-7509-2120 0000-0001-7322-1857 |
| OpenAccessLink | https://doaj.org/article/dcda5a424a6c4895bca73cbc1f5d2277 |
| PQID | 2731242028 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2022_3209202 doaj_primary_oai_doaj_org_article_dcda5a424a6c4895bca73cbc1f5d2277 proquest_journals_2731242028 ieee_primary_9903003 crossref_citationtrail_10_1109_ACCESS_2022_3209202 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 Burnett (ref42) 2005 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 Tian (ref23) 2016; 27 ref41 ref44 ref43 ref49 ref8 ref7 Cusick (ref37) 2009 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 ref31 ref75 ref30 ref74 ref33 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 Singh (ref58) 2017; 147 ref24 ref68 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref15 doi: 10.1080/24751839.2018.1434723 – ident: ref24 doi: 10.1007/s11071-016-3295-y – volume: 147 start-page: 88 year: 2017 ident: ref58 article-title: Medical image encryption based on improved ElGamal encryption technique publication-title: Optik doi: 10.1016/j.ijleo.2017.08.028 – ident: ref73 doi: 10.1007/s13319-016-0084-9 – ident: ref40 doi: 10.1007/s13369-021-05666-9 – ident: ref48 doi: 10.1007/s00521-021-06260-8 – ident: ref64 doi: 10.1016/j.sigpro.2021.108144 – ident: ref8 doi: 10.1016/j.ins.2021.01.014 – ident: ref66 doi: 10.1109/ACCESS.2020.3016401 – ident: ref63 doi: 10.1016/j.jksuci.2018.02.002 – ident: ref9 doi: 10.1109/ACCESS.2019.2936447 – ident: ref18 doi: 10.1038/s41598-020-58636-w – ident: ref69 doi: 10.1109/ACCESS.2020.2979827 – ident: ref22 doi: 10.1016/j.procs.2015.07.394 – ident: ref4 doi: 10.1016/j.ijleo.2016.11.152 – ident: ref59 doi: 10.1007/s11042-019-08168-x – ident: ref72 doi: 10.1109/ACCESS.2021.3083151 – ident: ref2 doi: 10.1007/978-3-642-17342-4 – ident: ref50 doi: 10.1142/S021812741950158X – ident: ref3 doi: 10.1109/ACCESS.2019.2959137 – ident: ref68 doi: 10.1016/j.jisa.2021.102854 – volume: 27 start-page: 232 issue: 1 year: 2016 ident: ref23 article-title: S-box: Six-dimensional compound hyperchaotic map and artificial bee colony algorithm publication-title: J. Syst. Eng. Electron. – ident: ref27 doi: 10.1016/j.jisa.2021.102844 – ident: ref52 doi: 10.1007/s11042-020-10048-8 – ident: ref29 doi: 10.1109/ACCESS.2020.3020746 – ident: ref46 doi: 10.1007/BF00203967 – ident: ref1 doi: 10.1109/ACCESS.2020.3019367 – ident: ref33 doi: 10.1109/TNSM.2020.2969863 – ident: ref39 doi: 10.1016/j.ins.2012.02.030 – ident: ref25 doi: 10.1007/s00521-018-3557-3 – volume-title: Cryptographic Boolean Functions and Applications year: 2009 ident: ref37 – ident: ref74 doi: 10.1007/s11071-016-3046-0 – ident: ref26 doi: 10.1109/TCYB.2018.2846186 – ident: ref38 doi: 10.1007/BF00630563 – ident: ref55 doi: 10.1007/s00521-020-05304-9 – ident: ref34 doi: 10.1007/3-540-45356-3_83 – ident: ref56 doi: 10.1007/s12065-018-0159-z – ident: ref75 doi: 10.1109/ACCESS.2020.2987615 – ident: ref32 doi: 10.1016/j.sigpro.2021.108220 – ident: ref47 doi: 10.1007/3-540-48285-7_33 – ident: ref44 doi: 10.1016/j.ijepes.2012.06.034 – ident: ref5 doi: 10.1016/j.ins.2021.07.036 – ident: ref51 doi: 10.1007/s11071-019-05413-8 – ident: ref16 doi: 10.1109/ACCESS.2020.3004449 – ident: ref28 doi: 10.1016/j.chaos.2021.111506 – ident: ref60 doi: 10.1016/j.proeng.2012.06.133 – ident: ref17 doi: 10.1109/ACCESS.2020.3001868 – ident: ref57 doi: 10.1007/s11042-020-08718-8 – ident: ref54 doi: 10.1155/2018/9389065 – ident: ref10 doi: 10.1016/j.physa.2019.124072 – ident: ref36 doi: 10.1016/j.proeng.2011.08.745 – ident: ref67 doi: 10.3233/JIFS-169428 – ident: ref71 doi: 10.1007/s11042-019-08470-8 – ident: ref13 doi: 10.1007/s40998-018-0061-9 – ident: ref43 doi: 10.1007/s11269-019-02387-5 – ident: ref7 doi: 10.1109/SPIN.2014.6776958 – ident: ref30 doi: 10.1007/s12652-021-03494-1 – ident: ref6 doi: 10.1007/978-3-642-40576-1_13 – ident: ref11 doi: 10.1007/s11071-020-05503-y – ident: ref65 doi: 10.1109/ACCESS.2021.3054250 – ident: ref70 doi: 10.1109/ACCESS.2021.3128177 – ident: ref61 doi: 10.1109/ACCESS.2020.3038006 – ident: ref12 doi: 10.1109/ACCESS.2020.2989676 – ident: ref14 doi: 10.1109/ACCESS.2020.2975880 – ident: ref21 doi: 10.1109/AICCSA.2014.7073265 – ident: ref20 doi: 10.1016/j.physleta.2012.01.009 – ident: ref41 doi: 10.1109/ACCESS.2020.3004526 – ident: ref62 doi: 10.1007/s11071-019-04802-3 – ident: ref31 doi: 10.1016/j.chaos.2020.109646 – year: 2005 ident: ref42 article-title: Heuristic optimization of Boolean functions and substitution boxes for cryptography – ident: ref35 doi: 10.1109/4235.996017 – ident: ref76 doi: 10.1109/ACCESS.2020.2970806 – ident: ref45 doi: 10.1007/3-540-39799-X_41 – ident: ref49 doi: 10.1155/2017/6969312 – ident: ref19 doi: 10.1016/j.chaos.2006.08.003 – ident: ref53 doi: 10.1109/ACCESS.2021.3087139 |
| SSID | ssj0000816957 |
| Score | 2.3105474 |
| Snippet | There exist several performance criteria for cryptographically strong substitution boxes which are often conflicting with each other. Constructing S-boxes that... There exist several performance criteria for cryptographically-strong substitution boxes (S-boxes), which are often conflicting with each other. Constructing... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Autocorrelation functions Boxes Chaotic communication Chaotic map Cryptography Design optimization Encryption Genetic algorithms Medical imaging Multi-Objective Evolution Multiple criterion Multiple objective analysis Nonlinearity NSGA-II Optimization Pareto optimization Pareto optimum Performance assessment Permutations Sociology Sorting algorithms Statistics Substitution box Telemedicine |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKxaEc-GhBLBTkA8e6TWzHjo_bVSsqoQVpC-rNcuzJtqgkaHdbceK3M3a8ERIICSmHKLITR288nhmP3xDyDtck6SrvY0GTlkmtC1aXGhgutV5FAQhpB__LBz2f11dX5tMOORrPwgBASj6D43ib9vJD7-9iqOwENadI1J4PtFbDWa0xnhILSJhKZ2KhsjAn09kM_wFdQM6PBS8Mz6GT7eKTOPpzUZU_NHFaXs6f_N_AnpLH2Yyk0wH3Z2QHun3y6DdywX2yF-3IgYb5gPxMB23Zx-broODo2X2WOdq3dBHj4Uu6YKf9D1jTlEZA533HQh8zZdAopYs-0g0saaSpxlfS6e2yX91srr-xiwvqukBn165fUzSBaQrhA72EmJk-7Nw_J5_Pzy5n71kuvcC8LOoNC3XQBnQQLigDPvjSoSXHwaGCA3S6WsG1c7pRFV6tcaJRqDUNoEdXg2qCeEF2u76Dl4SWyhdaaShD7SRwg6JQoUgUjfQCQMgJ4VtMrM-85LE8xq1N_klh7ACkjUDaDOSEHI2dvg-0HP9ufhrBHptGTu30AFG0eYra4IOrnOTSKS9rUzXeaeEbX7ZV4FzrCTmIyI8vyaBPyOFWdGye_2uLRiEaTvjl-tXfe70me3GAQzDnkOxuVnfwhjz09ygYq7dJtH8BShr2TQ priority: 102 providerName: IEEE |
| Title | Multi-Objective Evolution of Strong S-Boxes Using Non-dominated Sorting Genetic Algorithm-II and Chaos for Secure Telemedicine |
| URI | https://ieeexplore.ieee.org/document/9903003 https://www.proquest.com/docview/2731242028 https://doaj.org/article/dcda5a424a6c4895bca73cbc1f5d2277 |
| Volume | 10 |
| WOSCitedRecordID | wos000878110700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLcQ2oEdpg02rYMhH3bEI7EdfxxLVzSkUZDKJm6WYzsFxBLUdmgn_vY9O25VadK4TIpyiJw4zu_lfdjPv4fQJ7BJ3FbOxYImDeFSFkSVMhAwtU5EAfBpBf_HNzmZqOtrfblR6ivmhPX0wP2HO_bO28pyyq1wXOmqdlYyV7uyqTylMu0jL6TeCKaSDlal0JXMNENloY-HoxGMCAJCSj8zWmiaJ1JWpigx9ucSK3_p5WRsTl-jV9lLxMP-7d6grdDuopcb3IF76CltnSUX9V2vsvD4MUsR7ho8jTPcMzwlJ93vsMApMQBPupZ86WLuC7iZeNpFAoEZjsTT0A0e3s-6-e3y5ic5O8O29Xh0Y7sFBqcWp0n5gK9CzDXv1-Lfou-n46vRV5KLKRDHC7UkXnmpg_TMeqGD86604JvRYEFlBQijGkaltbIWFRyNtqwWoAd1gBhNBVF79g5tt10b3iNcCldIIUPpleWBagC3ApCLmjsWAuMDRFff1bjMNB4LXtybFHEU2vRgmAiGyWAM0NH6poeeaOPfzU8iYOumkSU7XQDZMVl2zHOyM0B7Ee71Q8AyM9ByA3Swgt_kP3phwM0DVwh6Vh_-R9f7aCcOp5_MOUDby_mv8BG9cI_L28X8MAkznM-fxodpS-IfEuT4Qw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELamgcR44MfGRGEDP_A4b4njxPFjV21aRSlILWhvlmNfOtBIUNtNPO1v39lxI6QhJKQ8RJHtOPou57vz-TtCPuCaJExurS9oUjMhZcLKVALDpdYWXgBc2MH_NpHTaXl5qb5skaP-LAwAhOQzOPa3YS_ftfbGh8pOUHNmgdrzUS4ET7rTWn1ExZeQULmM1EJpok6GoxF-BTqBnB9nPFE8Bk82y09g6Y9lVR7o4rDAnD__v6m9IM-iIUmHHfIvyRY0u-TpH_SCu2THW5IdEfMeuQtHbdnn6ken4ujZbZQ62tZ05iPiCzpjp-1vWNGQSECnbcNc63Nl0Cyls9YTDiyoJ6rGIenwetEuv6-vfrLxmJrG0dGVaVcUjWAagvhA5-Bz07u9-1fk6_nZfHTBYvEFZkVSrpkrnVQgXWZcocA6mxq05TgYVHGAbledcWmMrIocr1qZrCpQbypAn66EonLZPtlu2gZeE5oWNpGFhNSVRgBXKAw5CkVSCZsBZGJA-AYTbSMzuS-Qca2Dh5Io3QGpPZA6AjkgR32nXx0xx7-bn3qw-6aeVTs8QBR1_Em1s87kRnBhCitKlVfWyMxWNq1zx7mUA7Lnke8HiaAPyMFGdHTUACuNZiGaTvjm8s3fe70nTy7mnyZ6Mp5-fEt2_GS70M4B2V4vb-CQPLa3KCTLd0HM7wE4qPmU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Evolution+of+Strong+S-Boxes+Using+Non-Dominated+Sorting+Genetic+Algorithm-II+and+Chaos+for+Secure+Telemedicine&rft.jtitle=IEEE+access&rft.au=Ahmad%2C+Musheer&rft.au=Alkanhel%2C+Reem&rft.au=El-Shafai%2C+Walid&rft.au=Algarni%2C+Abeer+D.&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=112757&rft.epage=112775&rft_id=info:doi/10.1109%2FACCESS.2022.3209202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3209202 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |