Superresolution of Radar Forward-Looking Imaging Based on Accelerated TV-Sparse Method

Total variation-sparse (TV-sparse)-based multiconstraint devonvolution method has been used to realize superresolution imaging and preserve target contour information simultaneously of radar forward-looking imaging. However, due to the existence of matrix inversion, it suffers from high computationa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 14; s. 92 - 102
Hlavní autoři: Zhang, Yin, Zhang, Qiping, Zhang, Yongchao, Huang, Yulin, Yang, Jianyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1939-1404, 2151-1535
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Total variation-sparse (TV-sparse)-based multiconstraint devonvolution method has been used to realize superresolution imaging and preserve target contour information simultaneously of radar forward-looking imaging. However, due to the existence of matrix inversion, it suffers from high computational complexity, which restricts the ability of radar real-time imaging. In this article, an Gohberg-Semencul (GS) decomposition-based fast TV-sparse (FTV-sparse) method is proposed to reduce the computational complexity of TV-sparse method. The acceleration strategy utilizes the low displacement rank features of Toeplitz matrix, realizing fast matrix inversion by using a GS representation. It reduces the computational complexity of traditional TV-sparse method from O(N 3 ) to O(N 2 ), benefiting for improvement of the computing efficiency. The simulation and experimental data processing results show that the proposed FTV-sparse method has almost no resolution loss compared with the traditional TV sparse method. Hardware test results show that the proposed FTV-sparse method significantly improves the computational efficiency of TVsparse method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2020.3033823