A Dynamic Snow Depth Inversion Algorithm Derived from AMSR2 Passive Microwave Brightness Temperature Data and Snow Characteristics in Northeast China
Snow cover plays an important role in climate, hydrology, and ecosystem. At present, passive microwave remote sensing is the most effective method for monitoring global and regional snow depth (SD). Traditional SD inversion algorithms use empirical or semi-empirical methods to establish a fixed rela...
Uložené v:
| Vydané v: | IEEE journal of selected topics in applied earth observations and remote sensing Ročník 14; s. 1 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1939-1404, 2151-1535 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Snow cover plays an important role in climate, hydrology, and ecosystem. At present, passive microwave remote sensing is the most effective method for monitoring global and regional snow depth (SD). Traditional SD inversion algorithms use empirical or semi-empirical methods to establish a fixed relationship between SD and brightness temperature difference (TBD) given snow particle size and snow density. However, the snow characteristics present large temporal heterogeneity in Northeast China, it leads to the inadaptability of the SD retrieval algorithm, using a fixed empirical coefficient will lead to large errors in SD inversion. In this study, a novel dynamic method was proposed to retrieve SD based on AMSR2 brightness temperature data. A snow survey experiment was designed to collect snow characteristics in different periods in Northeast China, and the microwave emission model of layered snowpacks (MEMLS) was applied to simulate brightness temperature with varying snow characteristics to determine the dynamic coefficients in the SD retrieval algorithm. The validation results at 98 meteorological stations demonstrate that the novel dynamic SD inversion algorithm achieved better stability in the long-term sequence, its RMSE, Bias, and R are7.79 cm, 1.06 cm, and 0.61, respectively. Furthermore, compared with Che SD products, Chang algorithm, and AMSR2 SD products, the novel algorithm can obtain specific dynamic coefficients considering the snow metamorphism and has a higher accuracy of SD inversion in the whole winter. In conclusion, this novel SD inversion algorithm is more applicable and accurate than existing SD inversion products in Northeast China. |
|---|---|
| AbstractList | Snow cover plays an important role in climate, hydrology, and ecosystem. At present, passive microwave remote sensing is the most effective method for monitoring global and regional snow depth (SD). The traditional SD inversion algorithms use empirical or semiempirical methods to establish a fixed relationship between the SD and brightness temperature difference, given snow particle size and snow density. However, the snow characteristics present large temporal heterogeneity in Northeast China, and it leads to the inadaptability of the SD retrieval algorithm; using a fixed empirical coefficient will lead to large errors in SD inversion. In this study, a novel dynamic method was proposed to retrieve SD based on AMSR2 brightness temperature data. A snow survey experiment was designed to collect snow characteristics in different periods in Northeast China, and the microwave emission model of layered snowpacks was applied to simulate brightness temperature with varying snow characteristics to determine the dynamic coefficients in the SD retrieval algorithm. The validation results at 98 meteorological stations demonstrate that the novel dynamic SD inversion algorithm achieved better stability in the long-term sequence, its RMSE, bias, and R are 7.79 cm, 1.07 cm, and 0.61, respectively. Furthermore, compared with Che SD products, Chang algorithm, and AMSR2 SD products, the novel algorithm can obtain specific dynamic coefficients considering the snow metamorphism and has a higher accuracy of SD inversion in the whole winter. In conclusion, this novel SD inversion algorithm is more applicable and accurate than the existing SD inversion products in Northeast China. Snow cover plays an important role in climate, hydrology, and ecosystem. At present, passive microwave remote sensing is the most effective method for monitoring global and regional snow depth (SD). Traditional SD inversion algorithms use empirical or semi-empirical methods to establish a fixed relationship between SD and brightness temperature difference (TBD) given snow particle size and snow density. However, the snow characteristics present large temporal heterogeneity in Northeast China, it leads to the inadaptability of the SD retrieval algorithm, using a fixed empirical coefficient will lead to large errors in SD inversion. In this study, a novel dynamic method was proposed to retrieve SD based on AMSR2 brightness temperature data. A snow survey experiment was designed to collect snow characteristics in different periods in Northeast China, and the microwave emission model of layered snowpacks (MEMLS) was applied to simulate brightness temperature with varying snow characteristics to determine the dynamic coefficients in the SD retrieval algorithm. The validation results at 98 meteorological stations demonstrate that the novel dynamic SD inversion algorithm achieved better stability in the long-term sequence, its RMSE, Bias, and R are7.79 cm, 1.06 cm, and 0.61, respectively. Furthermore, compared with Che SD products, Chang algorithm, and AMSR2 SD products, the novel algorithm can obtain specific dynamic coefficients considering the snow metamorphism and has a higher accuracy of SD inversion in the whole winter. In conclusion, this novel SD inversion algorithm is more applicable and accurate than existing SD inversion products in Northeast China. |
| Author | Wan, Xiangkun Gu, Lingjia Wei, Yanlin Li, Xiaofeng Jiang, Tao Zheng, Ming xing Li, Xiaojie |
| Author_xml | – sequence: 1 givenname: Yanlin surname: Wei fullname: Wei, Yanlin email: weiyl18@mails.jlu.edu.cn organization: microwave remote sensing, Northeast Institute of Geography and Agroecology Chinese Academy of Sciences, 66276 Changchun, Jilin, China, (e-mail: weiyl18@mails.jlu.edu.cn) – sequence: 2 givenname: Xiaofeng surname: Li fullname: Li, Xiaofeng email: lixiaofeng@iga.ac.cn organization: Microwave remote sensing, Northeast Institute of Geography and Agroecology Chinese Academy of Sciences, 66276 Changchun, Jilin, China, (e-mail: lixiaofeng@iga.ac.cn) – sequence: 3 givenname: Lingjia surname: Gu fullname: Gu, Lingjia email: gulingjia@jlu.edu.cn organization: College of Electronic Science & Engineer, Jilin University, changchun, China, 130012 (e-mail: gulingjia@jlu.edu.cn) – sequence: 4 givenname: Ming xing surname: Zheng fullname: Zheng, Ming xing email: zhengxingming@iga.ac.cn organization: microwave remote sensing, Northeast institute of geography and agroecology, Changchun, China, (e-mail: zhengxingming@iga.ac.cn) – sequence: 5 givenname: Tao surname: Jiang fullname: Jiang, Tao email: jiangtao@iga.ac.cn organization: microwave remote senging, northeast institute of Geography and Agroecology, Changchun, China, (e-mail: jiangtao@iga.ac.cn) – sequence: 6 givenname: Xiaojie surname: Li fullname: Li, Xiaojie email: lixiaojie@iga.ac.cn organization: microwave remote sensing, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, chuangchun, China, (e-mail: lixiaojie@iga.ac.cn) – sequence: 7 givenname: Xiangkun surname: Wan fullname: Wan, Xiangkun email: wanxiangkun@iga.ac.cn organization: Microwave remote sensing, Northeast Institute of Geography and Agroecology Chinese Academy of Sciences, 66276 Changchun, Jilin, China, (e-mail: wanxiangkun@iga.ac.cn) |
| BookMark | eNqFkc1uEzEUhUeoSKSFJ-jGEusJ_psZezkkFIJaQE1YW3dmbhJHiR1sp1UfhPfFYaou2LCydY_POVf-LosL5x0WxTWjU8ao_vB1uWrvl1NOOZsK2uiGilfFhLOKlawS1UUxYVrokkkq3xSXMe4orXmjxaT43ZL5k4OD7cnS-Ucyx2PakoV7wBCtd6Tdb3ywaXvISrAPOJB18AfS3i3vOfkBMeYZubN98I-Qbx-D3WyTwxjJCg9HDJBOAckcEhBww9gx20KAPuW8mGwfiXXkmw9pixBTFq2Dt8XrNewjvns-r4qfN59Wsy_l7ffPi1l7W_aSqlQOogMGiF03gBbI1wPqRkhasU5VVAva84FSNTAJjEGPFBrV8aFmqlcgZC2uisWYO3jYmWOwBwhPxoM1fwc-bAyEvOMeTS256FW31nXDpNQMRK2pUAIGzWsUMme9H7OOwf86YUxm50_B5fUNr0StaqXEuVGMr_KPxRhw_dLKqDmzNCNLc2Zpnllml_7H1dsEKQNKAez-P97r0WsR8aVNy6zzWvwBMFiv1w |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_1016_j_isprsjprs_2023_10_012 crossref_primary_10_1029_2024EA003849 crossref_primary_10_1109_LGRS_2022_3196135 crossref_primary_10_3390_rs16061085 crossref_primary_10_3390_rs14061480 crossref_primary_10_5194_tc_18_451_2024 crossref_primary_10_1016_j_still_2024_106358 crossref_primary_10_3390_rs15030832 crossref_primary_10_1016_j_jag_2025_104533 crossref_primary_10_1016_j_jhydrol_2023_130318 crossref_primary_10_1080_17538947_2023_2299208 crossref_primary_10_1109_JSTARS_2025_3562216 crossref_primary_10_1007_s11769_023_1400_y |
| Cites_doi | 10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2 10.1016/S0034-4257(99)00046-2 10.1109/TGRS.1982.350411 10.1016/j.ympev.2012.03.019 10.1111/j.1751-8369.2010.00155.x 10.1080/01431160903548013 10.1016/j.rse.2013.12.009 10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2 10.1109/GeoInformatics.2011.5980667 10.1029/RG022i002p00195 10.1109/JSTARS.2020.2970738 10.1016/j.rse.2018.03.008 10.1007/s11430-013-4798-8 10.1016/j.rse.2016.06.005 10.1016/S0034-4257(97)00085-0 10.1016/0273-1177(89)90492-4 10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2 10.1002/j.1477-8696.1994.tb05997.x 10.1029/91JD00045 10.3390/rs9050465 10.1109/TGRS.2002.807587 10.1117/1.JRS.8.084692 10.1016/j.rse.2011.08.029 10.1016/j.rse.2012.06.027 10.1109/36.481908 10.1109/TGRS.2019.2899345 10.1016/0165-232X(82)90019-2 10.3390/rs11050599 10.1017/S026030550001301X 10.1109/TGRS.2012.2191792 10.1016/j.advwatres.2013.02.005 10.1109/TGRS.2007.900688 10.3189/172756502781831287 10.3390/rs11080977 10.1016/j.jhydrol.2011.09.023 10.1016/S0034-4257(99)00047-4 10.1109/JSTARS.2010.2040462 10.1073/pnas.0900758106 10.1016/j.rse.2011.11.014 10.3390/rs11243037 10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2 10.1002/hyp.1020 10.1109/JSTARS.2017.2707545 10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2 10.1016/j.rse.2014.01.012 10.1109/PIERS-Fall48861.2019.9021427 10.3189/172756408787814690 10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4 10.1109/TGRS.2005.860208 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2021.3079703 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Forestry |
| EISSN | 2151-1535 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_6423c8bf96714491a3690383ad926e34 10_1109_JSTARS_2021_3079703 9430726 |
| Genre | orig-research |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41871248; 41871225 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX AETIX AGSQL CITATION EJD 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c408t-d3ba1aeebbda93e2fde9734051b850930c2d008d14a11ace0a78b2d618c8a3463 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658340600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:51:39 EDT 2025 Sun Jul 13 05:17:42 EDT 2025 Tue Nov 18 22:23:50 EST 2025 Sat Nov 29 04:51:08 EST 2025 Wed Aug 27 02:29:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-d3ba1aeebbda93e2fde9734051b850930c2d008d14a11ace0a78b2d618c8a3463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4909-2263 0000-0002-7870-5268 0000-0001-5755-7107 0000-0002-7302-8042 |
| OpenAccessLink | https://doaj.org/article/6423c8bf96714491a3690383ad926e34 |
| PQID | 2536868836 |
| PQPubID | 75722 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6423c8bf96714491a3690383ad926e34 crossref_primary_10_1109_JSTARS_2021_3079703 ieee_primary_9430726 crossref_citationtrail_10_1109_JSTARS_2021_3079703 proquest_journals_2536868836 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref53 ref52 tao (ref39) 2015 kelly (ref27) 2009; 29 ref11 ref10 ref17 ref16 ref19 ref18 ref51 wang (ref38) 2018; 33 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 li (ref35) 2019; 41 ref40 cho (ref14) 2017; 9 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 |
| References_xml | – ident: ref6 doi: 10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2 – ident: ref41 doi: 10.1016/S0034-4257(99)00046-2 – ident: ref9 doi: 10.1109/TGRS.1982.350411 – ident: ref17 doi: 10.1016/j.ympev.2012.03.019 – ident: ref3 doi: 10.1111/j.1751-8369.2010.00155.x – ident: ref15 doi: 10.1080/01431160903548013 – ident: ref49 doi: 10.1016/j.rse.2013.12.009 – ident: ref36 doi: 10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2 – ident: ref37 doi: 10.1109/GeoInformatics.2011.5980667 – ident: ref8 doi: 10.1029/RG022i002p00195 – ident: ref47 doi: 10.1109/JSTARS.2020.2970738 – ident: ref22 doi: 10.1016/j.rse.2018.03.008 – ident: ref19 doi: 10.1007/s11430-013-4798-8 – volume: 33 start-page: 12 year: 2018 ident: ref38 article-title: Investigation on snow characteristics and their distribution in China publication-title: Adv Earth Sci – ident: ref29 doi: 10.1016/j.rse.2016.06.005 – ident: ref24 doi: 10.1016/S0034-4257(97)00085-0 – ident: ref45 doi: 10.1016/0273-1177(89)90492-4 – ident: ref5 doi: 10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2 – ident: ref1 doi: 10.1002/j.1477-8696.1994.tb05997.x – ident: ref11 doi: 10.1029/91JD00045 – volume: 9 year: 2017 ident: ref14 article-title: Evaluating consistency of snow water equivalent retrievals from passive microwave sensors over the North Central U.S.:SSM/I vs. SSMIS and AMSR-E vs. AMSR2 publication-title: Remote Sens doi: 10.3390/rs9050465 – ident: ref20 doi: 10.1109/TGRS.2002.807587 – year: 2015 ident: ref39 article-title: Long-term series of daily snow depth dataset in China (1979-2019) – ident: ref7 doi: 10.1117/1.JRS.8.084692 – ident: ref21 doi: 10.1016/j.rse.2011.08.029 – ident: ref52 doi: 10.1016/j.rse.2012.06.027 – ident: ref40 doi: 10.1109/36.481908 – ident: ref30 doi: 10.1109/TGRS.2019.2899345 – volume: 41 start-page: 1 year: 2019 ident: ref35 article-title: Snow cover classification based on climate variables and its distribution characteristics in China publication-title: J Glaciol Geocryol – ident: ref18 doi: 10.1016/0165-232X(82)90019-2 – ident: ref34 doi: 10.3390/rs11050599 – ident: ref48 doi: 10.1017/S026030550001301X – ident: ref13 doi: 10.1109/TGRS.2012.2191792 – ident: ref16 doi: 10.1016/j.advwatres.2013.02.005 – ident: ref51 doi: 10.1109/TGRS.2007.900688 – ident: ref44 doi: 10.3189/172756502781831287 – ident: ref32 doi: 10.3390/rs11080977 – ident: ref33 doi: 10.1016/j.jhydrol.2011.09.023 – ident: ref43 doi: 10.1016/S0034-4257(99)00047-4 – volume: 29 start-page: 307 year: 2009 ident: ref27 article-title: The AMSR-E snow depth algorithm:Description and initial results publication-title: J Remote Sens Soc Jpn – ident: ref12 doi: 10.1109/JSTARS.2010.2040462 – ident: ref4 doi: 10.1073/pnas.0900758106 – ident: ref23 doi: 10.1016/j.rse.2011.11.014 – ident: ref46 doi: 10.3390/rs11243037 – ident: ref10 doi: 10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2 – ident: ref25 doi: 10.1002/hyp.1020 – ident: ref31 doi: 10.1109/JSTARS.2017.2707545 – ident: ref2 doi: 10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2 – ident: ref53 doi: 10.1016/j.rse.2014.01.012 – ident: ref28 doi: 10.1109/PIERS-Fall48861.2019.9021427 – ident: ref26 doi: 10.3189/172756408787814690 – ident: ref50 doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4 – ident: ref42 doi: 10.1109/TGRS.2005.860208 |
| SSID | ssj0062793 |
| Score | 2.324369 |
| Snippet | Snow cover plays an important role in climate, hydrology, and ecosystem. At present, passive microwave remote sensing is the most effective method for... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Attenuation Brightness Brightness temperature Coefficients Dynamic Algorithm Dynamic stability Forestry Heterogeneity Heuristic algorithms Hydrology Metamorphism Microwave emission Microwave theory and techniques Monitoring methods Northeast China Passive Microwave Remote sensing Retrieval Snow Snow cover Snow density Snow depth Snow Depth (SD) Snowpack Surface radiation temperature Surveying Temperature data Temperature differences Temperature gradients Temperature measurement Weather stations |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bTxQxFG6AqPHFC2hcRdMHHxmYtrO9PC6s6IMSApjw1vRyBjbBWbIMEH6I_9fTTncTozHxbdJpO03OmdPz9fJ9hHyUvnV1O5ZVG0yoGuCqciBlFVTLGlBpzsjs-l_V0ZE-PzfHa2RndRcGAPLhM9hNj3kvP87DbVoq20tU4YrLdbKulBruai2jruQqE-xiPmKqRBlTGIZYbfbQxScnp4gFOdvFDoxaKmSVWSiT9Rd1lT9Ccp5nDp__3whfkGcln6STwQFekjXoNsmTJLiZVNw2yePPWbr3YYv8nNDpID9PT7v5PZ3CdX9JE89GXjGjk6uL-WLWX_7ANwuMgZGmqycUkf4Jp8eYY2MZ_ZbO7907fNrPsD4FSnoGmHsP3Mx06npHXReHbxz8TgdNZx3NG0VJMIhm6e5X5Pvhp7ODL1URZahCU-u-isI75gC8j84I4G0EowSmfcxrTD5EHXjEvCKyxjHmAtROac-jZDpoJxopXpONbt7BG0KV8Yj-6qYFGRs5dt5AQGwfvGjrFkQcEb40kg2FsTwJZ1zZjFxqYwfL2mRZWyw7IjurRtcDYce_q-8n66-qJrbtXIBmteXntYjRRNC-NVIh_jTMCWlqhPYuGi5BNCOylVxh1UnxghHZXvqSLZHhxvKxkFpqLeTbv7d6R56mAQ7LPNtko1_cwnvyKNz1s5vFh-z0vwDUB_93 priority: 102 providerName: IEEE |
| Title | A Dynamic Snow Depth Inversion Algorithm Derived from AMSR2 Passive Microwave Brightness Temperature Data and Snow Characteristics in Northeast China |
| URI | https://ieeexplore.ieee.org/document/9430726 https://www.proquest.com/docview/2536868836 https://doaj.org/article/6423c8bf96714491a3690383ad926e34 |
| Volume | 14 |
| WOSCitedRecordID | wos000658340600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxQxHG0M0YSLQYG4gKQHjw5M29l-HBfWxYMSAphwa_opJDBLllHiH-L_668fu9GQ6MXbpNP57Jv2vc7Mewi94zaaNo55E51yTReoaEzgvHEiki6INGZkd_1P4vRUXl2ps9-ivtI3YcUeuNy4Q-DHzEkbFRfA_RUxDPQcyCrjFeWBZSdQYD1LMVX6YE4BdtVjiLTqEEA-Ob8ANUjJAYBaiWVGVh2Hsl1_zVd50innkWa2gV5Wiogn5dReoWehf41enOQI3h-b6OcET0uMPL7o5494Gu6Ha5z8MvLMF57cfp2D4r--gzUL6Ms8ni3mdxgU-znFZ8CVoQx_Tt_hPRpYOsryPHV4-DIAhy4ey3hqBoNN78sxjv-0dcY3Pc4vfFLwD84R3Fvoy-zD5fHHpoYrNK5r5dB4Zg0xIVjrjWKBRh-UYEDfiJVAIljrqAd-4ElnCDEutEZISz0n0knDOs620Vo_78MbhIWyoOLaLgbuOz42VgUHGt1ZFtsYmB8hurzV2lXn8RSAcauzAmmVLu2jU_vo2j4j9H610X0x3vh79aPUhquqyTU7FwCWdMWS_heWRmgzIWC1k2RNLygfob0lInR9wh80HTMuuZSM7_yPQ--i9XQ5ZXJnD60Ni2_hLXruvg83D4v9DO79_HPiL67A_Do |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bTxQxFG4Qry9eQOMqah98ZGB62V4eF1bEuGwIYMJb08sZ2QRnyTJI_CH-X9tOdxOjMfGt6bSdSc7p6fna6fch9F64xtbNUFSN177iQGVlQYjKy4ZwkGnNyOz6EzmdqvNzfbyGtld3YQAg_3wGO6mYz_LD3N-krbLdRBUuqbiD7g45p6S_rbWMu4LKTLEbMxJdJdKYwjFEar0bnXx0chrRICU7cQgtlxpZZR3KdP1FX-WPoJxXmoMn__eNT9HjklHiUe8Cz9AatBvoQZLcTDpuG-j-xyze-2MT_RzhcS9Aj0_b-S0ew1V3gRPTRt4zw6PLr_PFrLv4Fp8sYhQMOF0-wRHrn1B8HLPsWIeP0h98tzaW9jKwT6ESn0HMvnt2Zjy2ncW2Df079n8nhMazFuejoiQZhLN493P05eDD2f5hVWQZKs9r1VWBOUssgHPBaga0CaAli4kfcSqmH6z2NMTMIhBuCbEeaiuVo0EQ5ZVlXLAXaL2dt_ASYaldxH81b0AELobWafAR3XvHmroBFgaILo1kfOEsT9IZlyZjl1qb3rImWdYUyw7Q9qrTVU_Z8e_me8n6q6aJbztXRLOaMn1NRGnMK9doISMC1cQyoesI7m3QVADjA7SZXGE1SPGCAdpa-pIpseHa0CETSijFxKu_93qHHh6eHU3M5NP082v0KH1sv-mzhda7xQ28Qff89252vXibJ8AvPHACzQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Snow+Depth+Inversion+Algorithm+Derived+From+AMSR2+Passive+Microwave+Brightness+Temperature+Data+and+Snow+Characteristics+in+Northeast+China&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wei%2C+Yanlin&rft.au=Li%2C+Xiaofeng&rft.au=Gu%2C+Lingjia&rft.au=Zheng%2C+Xingming&rft.date=2021-01-01&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=14&rft.spage=5123&rft.epage=5136&rft_id=info:doi/10.1109%2FJSTARS.2021.3079703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2021_3079703 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |