A Dynamic Snow Depth Inversion Algorithm Derived from AMSR2 Passive Microwave Brightness Temperature Data and Snow Characteristics in Northeast China

Snow cover plays an important role in climate, hydrology, and ecosystem. At present, passive microwave remote sensing is the most effective method for monitoring global and regional snow depth (SD). Traditional SD inversion algorithms use empirical or semi-empirical methods to establish a fixed rela...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 14; s. 1
Hlavní autori: Wei, Yanlin, Li, Xiaofeng, Gu, Lingjia, Zheng, Ming xing, Jiang, Tao, Li, Xiaojie, Wan, Xiangkun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1939-1404, 2151-1535
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Snow cover plays an important role in climate, hydrology, and ecosystem. At present, passive microwave remote sensing is the most effective method for monitoring global and regional snow depth (SD). Traditional SD inversion algorithms use empirical or semi-empirical methods to establish a fixed relationship between SD and brightness temperature difference (TBD) given snow particle size and snow density. However, the snow characteristics present large temporal heterogeneity in Northeast China, it leads to the inadaptability of the SD retrieval algorithm, using a fixed empirical coefficient will lead to large errors in SD inversion. In this study, a novel dynamic method was proposed to retrieve SD based on AMSR2 brightness temperature data. A snow survey experiment was designed to collect snow characteristics in different periods in Northeast China, and the microwave emission model of layered snowpacks (MEMLS) was applied to simulate brightness temperature with varying snow characteristics to determine the dynamic coefficients in the SD retrieval algorithm. The validation results at 98 meteorological stations demonstrate that the novel dynamic SD inversion algorithm achieved better stability in the long-term sequence, its RMSE, Bias, and R are7.79 cm, 1.06 cm, and 0.61, respectively. Furthermore, compared with Che SD products, Chang algorithm, and AMSR2 SD products, the novel algorithm can obtain specific dynamic coefficients considering the snow metamorphism and has a higher accuracy of SD inversion in the whole winter. In conclusion, this novel SD inversion algorithm is more applicable and accurate than existing SD inversion products in Northeast China.
AbstractList Snow cover plays an important role in climate, hydrology, and ecosystem. At present, passive microwave remote sensing is the most effective method for monitoring global and regional snow depth (SD). The traditional SD inversion algorithms use empirical or semiempirical methods to establish a fixed relationship between the SD and brightness temperature difference, given snow particle size and snow density. However, the snow characteristics present large temporal heterogeneity in Northeast China, and it leads to the inadaptability of the SD retrieval algorithm; using a fixed empirical coefficient will lead to large errors in SD inversion. In this study, a novel dynamic method was proposed to retrieve SD based on AMSR2 brightness temperature data. A snow survey experiment was designed to collect snow characteristics in different periods in Northeast China, and the microwave emission model of layered snowpacks was applied to simulate brightness temperature with varying snow characteristics to determine the dynamic coefficients in the SD retrieval algorithm. The validation results at 98 meteorological stations demonstrate that the novel dynamic SD inversion algorithm achieved better stability in the long-term sequence, its RMSE, bias, and R are 7.79 cm, 1.07 cm, and 0.61, respectively. Furthermore, compared with Che SD products, Chang algorithm, and AMSR2 SD products, the novel algorithm can obtain specific dynamic coefficients considering the snow metamorphism and has a higher accuracy of SD inversion in the whole winter. In conclusion, this novel SD inversion algorithm is more applicable and accurate than the existing SD inversion products in Northeast China.
Snow cover plays an important role in climate, hydrology, and ecosystem. At present, passive microwave remote sensing is the most effective method for monitoring global and regional snow depth (SD). Traditional SD inversion algorithms use empirical or semi-empirical methods to establish a fixed relationship between SD and brightness temperature difference (TBD) given snow particle size and snow density. However, the snow characteristics present large temporal heterogeneity in Northeast China, it leads to the inadaptability of the SD retrieval algorithm, using a fixed empirical coefficient will lead to large errors in SD inversion. In this study, a novel dynamic method was proposed to retrieve SD based on AMSR2 brightness temperature data. A snow survey experiment was designed to collect snow characteristics in different periods in Northeast China, and the microwave emission model of layered snowpacks (MEMLS) was applied to simulate brightness temperature with varying snow characteristics to determine the dynamic coefficients in the SD retrieval algorithm. The validation results at 98 meteorological stations demonstrate that the novel dynamic SD inversion algorithm achieved better stability in the long-term sequence, its RMSE, Bias, and R are7.79 cm, 1.06 cm, and 0.61, respectively. Furthermore, compared with Che SD products, Chang algorithm, and AMSR2 SD products, the novel algorithm can obtain specific dynamic coefficients considering the snow metamorphism and has a higher accuracy of SD inversion in the whole winter. In conclusion, this novel SD inversion algorithm is more applicable and accurate than existing SD inversion products in Northeast China.
Author Wan, Xiangkun
Gu, Lingjia
Wei, Yanlin
Li, Xiaofeng
Jiang, Tao
Zheng, Ming xing
Li, Xiaojie
Author_xml – sequence: 1
  givenname: Yanlin
  surname: Wei
  fullname: Wei, Yanlin
  email: weiyl18@mails.jlu.edu.cn
  organization: microwave remote sensing, Northeast Institute of Geography and Agroecology Chinese Academy of Sciences, 66276 Changchun, Jilin, China, (e-mail: weiyl18@mails.jlu.edu.cn)
– sequence: 2
  givenname: Xiaofeng
  surname: Li
  fullname: Li, Xiaofeng
  email: lixiaofeng@iga.ac.cn
  organization: Microwave remote sensing, Northeast Institute of Geography and Agroecology Chinese Academy of Sciences, 66276 Changchun, Jilin, China, (e-mail: lixiaofeng@iga.ac.cn)
– sequence: 3
  givenname: Lingjia
  surname: Gu
  fullname: Gu, Lingjia
  email: gulingjia@jlu.edu.cn
  organization: College of Electronic Science & Engineer, Jilin University, changchun, China, 130012 (e-mail: gulingjia@jlu.edu.cn)
– sequence: 4
  givenname: Ming xing
  surname: Zheng
  fullname: Zheng, Ming xing
  email: zhengxingming@iga.ac.cn
  organization: microwave remote sensing, Northeast institute of geography and agroecology, Changchun, China, (e-mail: zhengxingming@iga.ac.cn)
– sequence: 5
  givenname: Tao
  surname: Jiang
  fullname: Jiang, Tao
  email: jiangtao@iga.ac.cn
  organization: microwave remote senging, northeast institute of Geography and Agroecology, Changchun, China, (e-mail: jiangtao@iga.ac.cn)
– sequence: 6
  givenname: Xiaojie
  surname: Li
  fullname: Li, Xiaojie
  email: lixiaojie@iga.ac.cn
  organization: microwave remote sensing, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, chuangchun, China, (e-mail: lixiaojie@iga.ac.cn)
– sequence: 7
  givenname: Xiangkun
  surname: Wan
  fullname: Wan, Xiangkun
  email: wanxiangkun@iga.ac.cn
  organization: Microwave remote sensing, Northeast Institute of Geography and Agroecology Chinese Academy of Sciences, 66276 Changchun, Jilin, China, (e-mail: wanxiangkun@iga.ac.cn)
BookMark eNqFkc1uEzEUhUeoSKSFJ-jGEusJ_psZezkkFIJaQE1YW3dmbhJHiR1sp1UfhPfFYaou2LCydY_POVf-LosL5x0WxTWjU8ao_vB1uWrvl1NOOZsK2uiGilfFhLOKlawS1UUxYVrokkkq3xSXMe4orXmjxaT43ZL5k4OD7cnS-Ucyx2PakoV7wBCtd6Tdb3ywaXvISrAPOJB18AfS3i3vOfkBMeYZubN98I-Qbx-D3WyTwxjJCg9HDJBOAckcEhBww9gx20KAPuW8mGwfiXXkmw9pixBTFq2Dt8XrNewjvns-r4qfN59Wsy_l7ffPi1l7W_aSqlQOogMGiF03gBbI1wPqRkhasU5VVAva84FSNTAJjEGPFBrV8aFmqlcgZC2uisWYO3jYmWOwBwhPxoM1fwc-bAyEvOMeTS256FW31nXDpNQMRK2pUAIGzWsUMme9H7OOwf86YUxm50_B5fUNr0StaqXEuVGMr_KPxRhw_dLKqDmzNCNLc2Zpnllml_7H1dsEKQNKAez-P97r0WsR8aVNy6zzWvwBMFiv1w
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2023_10_012
crossref_primary_10_1029_2024EA003849
crossref_primary_10_1109_LGRS_2022_3196135
crossref_primary_10_3390_rs16061085
crossref_primary_10_3390_rs14061480
crossref_primary_10_5194_tc_18_451_2024
crossref_primary_10_1016_j_still_2024_106358
crossref_primary_10_3390_rs15030832
crossref_primary_10_1016_j_jag_2025_104533
crossref_primary_10_1016_j_jhydrol_2023_130318
crossref_primary_10_1080_17538947_2023_2299208
crossref_primary_10_1109_JSTARS_2025_3562216
crossref_primary_10_1007_s11769_023_1400_y
Cites_doi 10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2
10.1016/S0034-4257(99)00046-2
10.1109/TGRS.1982.350411
10.1016/j.ympev.2012.03.019
10.1111/j.1751-8369.2010.00155.x
10.1080/01431160903548013
10.1016/j.rse.2013.12.009
10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2
10.1109/GeoInformatics.2011.5980667
10.1029/RG022i002p00195
10.1109/JSTARS.2020.2970738
10.1016/j.rse.2018.03.008
10.1007/s11430-013-4798-8
10.1016/j.rse.2016.06.005
10.1016/S0034-4257(97)00085-0
10.1016/0273-1177(89)90492-4
10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2
10.1002/j.1477-8696.1994.tb05997.x
10.1029/91JD00045
10.3390/rs9050465
10.1109/TGRS.2002.807587
10.1117/1.JRS.8.084692
10.1016/j.rse.2011.08.029
10.1016/j.rse.2012.06.027
10.1109/36.481908
10.1109/TGRS.2019.2899345
10.1016/0165-232X(82)90019-2
10.3390/rs11050599
10.1017/S026030550001301X
10.1109/TGRS.2012.2191792
10.1016/j.advwatres.2013.02.005
10.1109/TGRS.2007.900688
10.3189/172756502781831287
10.3390/rs11080977
10.1016/j.jhydrol.2011.09.023
10.1016/S0034-4257(99)00047-4
10.1109/JSTARS.2010.2040462
10.1073/pnas.0900758106
10.1016/j.rse.2011.11.014
10.3390/rs11243037
10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2
10.1002/hyp.1020
10.1109/JSTARS.2017.2707545
10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2
10.1016/j.rse.2014.01.012
10.1109/PIERS-Fall48861.2019.9021427
10.3189/172756408787814690
10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4
10.1109/TGRS.2005.860208
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2021.3079703
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Forestry
EISSN 2151-1535
EndPage 1
ExternalDocumentID oai_doaj_org_article_6423c8bf96714491a3690383ad926e34
10_1109_JSTARS_2021_3079703
9430726
Genre orig-research
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41871248; 41871225
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
CITATION
EJD
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-d3ba1aeebbda93e2fde9734051b850930c2d008d14a11ace0a78b2d618c8a3463
IEDL.DBID DOA
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658340600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:51:39 EDT 2025
Sun Jul 13 05:17:42 EDT 2025
Tue Nov 18 22:23:50 EST 2025
Sat Nov 29 04:51:08 EST 2025
Wed Aug 27 02:29:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-d3ba1aeebbda93e2fde9734051b850930c2d008d14a11ace0a78b2d618c8a3463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4909-2263
0000-0002-7870-5268
0000-0001-5755-7107
0000-0002-7302-8042
OpenAccessLink https://doaj.org/article/6423c8bf96714491a3690383ad926e34
PQID 2536868836
PQPubID 75722
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_6423c8bf96714491a3690383ad926e34
crossref_primary_10_1109_JSTARS_2021_3079703
ieee_primary_9430726
crossref_citationtrail_10_1109_JSTARS_2021_3079703
proquest_journals_2536868836
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref53
ref52
tao (ref39) 2015
kelly (ref27) 2009; 29
ref11
ref10
ref17
ref16
ref19
ref18
ref51
wang (ref38) 2018; 33
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
li (ref35) 2019; 41
ref40
cho (ref14) 2017; 9
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
References_xml – ident: ref6
  doi: 10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO;2
– ident: ref41
  doi: 10.1016/S0034-4257(99)00046-2
– ident: ref9
  doi: 10.1109/TGRS.1982.350411
– ident: ref17
  doi: 10.1016/j.ympev.2012.03.019
– ident: ref3
  doi: 10.1111/j.1751-8369.2010.00155.x
– ident: ref15
  doi: 10.1080/01431160903548013
– ident: ref49
  doi: 10.1016/j.rse.2013.12.009
– ident: ref36
  doi: 10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2
– ident: ref37
  doi: 10.1109/GeoInformatics.2011.5980667
– ident: ref8
  doi: 10.1029/RG022i002p00195
– ident: ref47
  doi: 10.1109/JSTARS.2020.2970738
– ident: ref22
  doi: 10.1016/j.rse.2018.03.008
– ident: ref19
  doi: 10.1007/s11430-013-4798-8
– volume: 33
  start-page: 12
  year: 2018
  ident: ref38
  article-title: Investigation on snow characteristics and their distribution in China
  publication-title: Adv Earth Sci
– ident: ref29
  doi: 10.1016/j.rse.2016.06.005
– ident: ref24
  doi: 10.1016/S0034-4257(97)00085-0
– ident: ref45
  doi: 10.1016/0273-1177(89)90492-4
– ident: ref5
  doi: 10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2
– ident: ref1
  doi: 10.1002/j.1477-8696.1994.tb05997.x
– ident: ref11
  doi: 10.1029/91JD00045
– volume: 9
  year: 2017
  ident: ref14
  article-title: Evaluating consistency of snow water equivalent retrievals from passive microwave sensors over the North Central U.S.:SSM/I vs. SSMIS and AMSR-E vs. AMSR2
  publication-title: Remote Sens
  doi: 10.3390/rs9050465
– ident: ref20
  doi: 10.1109/TGRS.2002.807587
– year: 2015
  ident: ref39
  article-title: Long-term series of daily snow depth dataset in China (1979-2019)
– ident: ref7
  doi: 10.1117/1.JRS.8.084692
– ident: ref21
  doi: 10.1016/j.rse.2011.08.029
– ident: ref52
  doi: 10.1016/j.rse.2012.06.027
– ident: ref40
  doi: 10.1109/36.481908
– ident: ref30
  doi: 10.1109/TGRS.2019.2899345
– volume: 41
  start-page: 1
  year: 2019
  ident: ref35
  article-title: Snow cover classification based on climate variables and its distribution characteristics in China
  publication-title: J Glaciol Geocryol
– ident: ref18
  doi: 10.1016/0165-232X(82)90019-2
– ident: ref34
  doi: 10.3390/rs11050599
– ident: ref48
  doi: 10.1017/S026030550001301X
– ident: ref13
  doi: 10.1109/TGRS.2012.2191792
– ident: ref16
  doi: 10.1016/j.advwatres.2013.02.005
– ident: ref51
  doi: 10.1109/TGRS.2007.900688
– ident: ref44
  doi: 10.3189/172756502781831287
– ident: ref32
  doi: 10.3390/rs11080977
– ident: ref33
  doi: 10.1016/j.jhydrol.2011.09.023
– ident: ref43
  doi: 10.1016/S0034-4257(99)00047-4
– volume: 29
  start-page: 307
  year: 2009
  ident: ref27
  article-title: The AMSR-E snow depth algorithm:Description and initial results
  publication-title: J Remote Sens Soc Jpn
– ident: ref12
  doi: 10.1109/JSTARS.2010.2040462
– ident: ref4
  doi: 10.1073/pnas.0900758106
– ident: ref23
  doi: 10.1016/j.rse.2011.11.014
– ident: ref46
  doi: 10.3390/rs11243037
– ident: ref10
  doi: 10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2
– ident: ref25
  doi: 10.1002/hyp.1020
– ident: ref31
  doi: 10.1109/JSTARS.2017.2707545
– ident: ref2
  doi: 10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2
– ident: ref53
  doi: 10.1016/j.rse.2014.01.012
– ident: ref28
  doi: 10.1109/PIERS-Fall48861.2019.9021427
– ident: ref26
  doi: 10.3189/172756408787814690
– ident: ref50
  doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4
– ident: ref42
  doi: 10.1109/TGRS.2005.860208
SSID ssj0062793
Score 2.324369
Snippet Snow cover plays an important role in climate, hydrology, and ecosystem. At present, passive microwave remote sensing is the most effective method for...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Attenuation
Brightness
Brightness temperature
Coefficients
Dynamic Algorithm
Dynamic stability
Forestry
Heterogeneity
Heuristic algorithms
Hydrology
Metamorphism
Microwave emission
Microwave theory and techniques
Monitoring methods
Northeast China
Passive Microwave
Remote sensing
Retrieval
Snow
Snow cover
Snow density
Snow depth
Snow Depth (SD)
Snowpack
Surface radiation temperature
Surveying
Temperature data
Temperature differences
Temperature gradients
Temperature measurement
Weather stations
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bTxQxFG6AqPHFC2hcRdMHHxmYtrO9PC6s6IMSApjw1vRyBjbBWbIMEH6I_9fTTncTozHxbdJpO03OmdPz9fJ9hHyUvnV1O5ZVG0yoGuCqciBlFVTLGlBpzsjs-l_V0ZE-PzfHa2RndRcGAPLhM9hNj3kvP87DbVoq20tU4YrLdbKulBruai2jruQqE-xiPmKqRBlTGIZYbfbQxScnp4gFOdvFDoxaKmSVWSiT9Rd1lT9Ccp5nDp__3whfkGcln6STwQFekjXoNsmTJLiZVNw2yePPWbr3YYv8nNDpID9PT7v5PZ3CdX9JE89GXjGjk6uL-WLWX_7ANwuMgZGmqycUkf4Jp8eYY2MZ_ZbO7907fNrPsD4FSnoGmHsP3Mx06npHXReHbxz8TgdNZx3NG0VJMIhm6e5X5Pvhp7ODL1URZahCU-u-isI75gC8j84I4G0EowSmfcxrTD5EHXjEvCKyxjHmAtROac-jZDpoJxopXpONbt7BG0KV8Yj-6qYFGRs5dt5AQGwfvGjrFkQcEb40kg2FsTwJZ1zZjFxqYwfL2mRZWyw7IjurRtcDYce_q-8n66-qJrbtXIBmteXntYjRRNC-NVIh_jTMCWlqhPYuGi5BNCOylVxh1UnxghHZXvqSLZHhxvKxkFpqLeTbv7d6R56mAQ7LPNtko1_cwnvyKNz1s5vFh-z0vwDUB_93
  priority: 102
  providerName: IEEE
Title A Dynamic Snow Depth Inversion Algorithm Derived from AMSR2 Passive Microwave Brightness Temperature Data and Snow Characteristics in Northeast China
URI https://ieeexplore.ieee.org/document/9430726
https://www.proquest.com/docview/2536868836
https://doaj.org/article/6423c8bf96714491a3690383ad926e34
Volume 14
WOSCitedRecordID wos000658340600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxQxHG0M0YSLQYG4gKQHjw5M29l-HBfWxYMSAphwa_opJDBLllHiH-L_668fu9GQ6MXbpNP57Jv2vc7Mewi94zaaNo55E51yTReoaEzgvHEiki6INGZkd_1P4vRUXl2ps9-ivtI3YcUeuNy4Q-DHzEkbFRfA_RUxDPQcyCrjFeWBZSdQYD1LMVX6YE4BdtVjiLTqEEA-Ob8ANUjJAYBaiWVGVh2Hsl1_zVd50innkWa2gV5Wiogn5dReoWehf41enOQI3h-b6OcET0uMPL7o5494Gu6Ha5z8MvLMF57cfp2D4r--gzUL6Ms8ni3mdxgU-znFZ8CVoQx_Tt_hPRpYOsryPHV4-DIAhy4ey3hqBoNN78sxjv-0dcY3Pc4vfFLwD84R3Fvoy-zD5fHHpoYrNK5r5dB4Zg0xIVjrjWKBRh-UYEDfiJVAIljrqAd-4ElnCDEutEZISz0n0knDOs620Vo_78MbhIWyoOLaLgbuOz42VgUHGt1ZFtsYmB8hurzV2lXn8RSAcauzAmmVLu2jU_vo2j4j9H610X0x3vh79aPUhquqyTU7FwCWdMWS_heWRmgzIWC1k2RNLygfob0lInR9wh80HTMuuZSM7_yPQ--i9XQ5ZXJnD60Ni2_hLXruvg83D4v9DO79_HPiL67A_Do
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bTxQxFG4Qry9eQOMqah98ZGB62V4eF1bEuGwIYMJb08sZ2QRnyTJI_CH-X9tOdxOjMfGt6bSdSc7p6fna6fch9F64xtbNUFSN177iQGVlQYjKy4ZwkGnNyOz6EzmdqvNzfbyGtld3YQAg_3wGO6mYz_LD3N-krbLdRBUuqbiD7g45p6S_rbWMu4LKTLEbMxJdJdKYwjFEar0bnXx0chrRICU7cQgtlxpZZR3KdP1FX-WPoJxXmoMn__eNT9HjklHiUe8Cz9AatBvoQZLcTDpuG-j-xyze-2MT_RzhcS9Aj0_b-S0ew1V3gRPTRt4zw6PLr_PFrLv4Fp8sYhQMOF0-wRHrn1B8HLPsWIeP0h98tzaW9jKwT6ESn0HMvnt2Zjy2ncW2Df079n8nhMazFuejoiQZhLN493P05eDD2f5hVWQZKs9r1VWBOUssgHPBaga0CaAli4kfcSqmH6z2NMTMIhBuCbEeaiuVo0EQ5ZVlXLAXaL2dt_ASYaldxH81b0AELobWafAR3XvHmroBFgaILo1kfOEsT9IZlyZjl1qb3rImWdYUyw7Q9qrTVU_Z8e_me8n6q6aJbztXRLOaMn1NRGnMK9doISMC1cQyoesI7m3QVADjA7SZXGE1SPGCAdpa-pIpseHa0CETSijFxKu_93qHHh6eHU3M5NP082v0KH1sv-mzhda7xQ28Qff89252vXibJ8AvPHACzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Snow+Depth+Inversion+Algorithm+Derived+From+AMSR2+Passive+Microwave+Brightness+Temperature+Data+and+Snow+Characteristics+in+Northeast+China&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wei%2C+Yanlin&rft.au=Li%2C+Xiaofeng&rft.au=Gu%2C+Lingjia&rft.au=Zheng%2C+Xingming&rft.date=2021-01-01&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=14&rft.spage=5123&rft.epage=5136&rft_id=info:doi/10.1109%2FJSTARS.2021.3079703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2021_3079703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon