CGSANet: A Contour-Guided and Local Structure-Aware Encoder-Decoder Network for Accurate Building Extraction From Very High-Resolution Remote Sensing Imagery

Extracting buildings accurately from very high-resolution (VHR) remote sensing imagery is challenging due to diverse building appearances, spectral variability, and complex background in VHR remote sensing images. Recent studies mainly adopt a variant of the fully convolutional network (FCN) with an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 15; S. 1526 - 1542
Hauptverfasser: Chen, Shanxiong, Shi, Wenzhong, Zhou, Mingting, Zhang, Min, Xuan, Zhaoxin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Extracting buildings accurately from very high-resolution (VHR) remote sensing imagery is challenging due to diverse building appearances, spectral variability, and complex background in VHR remote sensing images. Recent studies mainly adopt a variant of the fully convolutional network (FCN) with an encoder-decoder architecture to extract buildings, which has shown promising improvement over conventional methods. However, FCN-based encoder-decoder models still fail to fully utilize the implicit characteristics of building shapes. This adversely affects the accurate localization of building boundaries, which is particularly relevant in building mapping. A contour-guided and local structure-aware encoder-decoder network (CGSANet) is proposed to extract buildings with more accurate boundaries. CGSANet is a multitask network composed of a contour-guided (CG) and a multiregion-guided (MRG) module. The CG module is supervised by a building contour that effectively learns building contour-related spatial features to retain the shape pattern of buildings. The MRG module is deeply supervised by four building regions that further capture multiscale and contextual features of buildings. In addition, a hybrid loss function was designed to improve the structure learning ability of CGSANet. These three improvements benefit each other synergistically to produce high-quality building extraction results. Experimental results on the WHU and NZ32km2 building datasets demonstrate that compared with the tested algorithms, CGSANet can produce more accurate building extraction results and achieve the best intersection over union value 91.55% and 90.02%, respectively. Experiments on the INRIA building dataset further demonstrate the ability for generalization of the proposed framework, indicating great practical potential.
AbstractList Extracting buildings accurately from very high-resolution (VHR) remote sensing imagery is challenging due to diverse building appearances, spectral variability, and complex background in VHR remote sensing images. Recent studies mainly adopt a variant of the fully convolutional network (FCN) with an encoder-decoder architecture to extract buildings, which has shown promising improvement over conventional methods. However, FCN-based encoder-decoder models still fail to fully utilize the implicit characteristics of building shapes. This adversely affects the accurate localization of building boundaries, which is particularly relevant in building mapping. A contour-guided and local structure-aware encoder-decoder network (CGSANet) is proposed to extract buildings with more accurate boundaries. CGSANet is a multitask network composed of a contour-guided (CG) and a multiregion-guided (MRG) module. The CG module is supervised by a building contour that effectively learns building contour-related spatial features to retain the shape pattern of buildings. The MRG module is deeply supervised by four building regions that further capture multiscale and contextual features of buildings. In addition, a hybrid loss function was designed to improve the structure learning ability of CGSANet. These three improvements benefit each other synergistically to produce high-quality building extraction results. Experimental results on the WHU and NZ32km2 building datasets demonstrate that compared with the tested algorithms, CGSANet can produce more accurate building extraction results and achieve the best intersection over union value 91.55% and 90.02%, respectively. Experiments on the INRIA building dataset further demonstrate the ability for generalization of the proposed framework, indicating great practical potential.
Author Chen, Shanxiong
Shi, Wenzhong
Xuan, Zhaoxin
Zhou, Mingting
Zhang, Min
Author_xml – sequence: 1
  givenname: Shanxiong
  orcidid: 0000-0002-9235-6340
  surname: Chen
  fullname: Chen, Shanxiong
  email: shanxiongchen@whu.edu.cn
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Wenzhong
  orcidid: 0000-0002-3886-7027
  surname: Shi
  fullname: Shi, Wenzhong
  email: john.wz.shi@polyu.edu.hk
  organization: Smart Cities Research Institute and Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong Kong
– sequence: 3
  givenname: Mingting
  orcidid: 0000-0002-5150-4511
  surname: Zhou
  fullname: Zhou, Mingting
  email: mintyzhou@whu.edu.cn
  organization: Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Min
  orcidid: 0000-0003-1643-5271
  surname: Zhang
  fullname: Zhang, Min
  email: 007zhangmin@whu.edu.cn
  organization: Smart Cities Research Institute and Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong Kong
– sequence: 5
  givenname: Zhaoxin
  surname: Xuan
  fullname: Xuan, Zhaoxin
  email: 54786060@qq.com
  organization: Beijing Institute of Surveying and Mapping, Beijing, China
BookMark eNqFkVFv0zAUhSM0JLrBL9iLJZ7T2bGTxryF0nVFFUjN4NW6tW-KSxoPx9HYj-G_4jTTHnjh6Ur2-c69Oucyuehch0lyzeicMSpvPtf31a6eZzRjc864pGzxKpllLGcpy3l-kcyY5DJlgoo3yWXfHyktsoXks-TPcl1XXzB8IBVZui64wafrwRo0BDpDtk5DS-rgBx0Gj2n1CB7JqtPOoE8_4XmSyD86_5M0zpNK68FDQPJxsK2x3YGsfgcPOljXkVvvTuQ7-idyZw8_0h32rh3OPzs8uQjV2PUjsznBIcreJq8baHt89zyvkm-3q_vlXbr9ut4sq22qBS1DqpuGgWYZNqbIqJBsL3XOOC8LkHuBQhZ5pvfaFFCUCLkGaaTJeGRFjlRTfpVsJl_j4KgevD2Bf1IOrDo_OH9Q4IPVLSqGTMAiKw0TTBR5CaDp3nAGFDTEc6LX-8nrwbtfA_ZBHWOoXTxfZTH0kpeiHFV8Umnv-t5j87KVUTV2qqZO1dipeu40UvIfStsAY4AxYtv-h72eWIuIL9tkUQhelPwvI-SzKQ
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1016_j_jag_2023_103522
crossref_primary_10_3390_rs15153766
crossref_primary_10_1109_JSTARS_2024_3387969
crossref_primary_10_1109_LGRS_2024_3432794
crossref_primary_10_1109_TGRS_2024_3459011
crossref_primary_10_3390_electronics13234610
crossref_primary_10_1109_JSTARS_2023_3331444
crossref_primary_10_1007_s41064_025_00352_z
crossref_primary_10_1109_TGRS_2025_3540848
crossref_primary_10_3390_rs14081912
crossref_primary_10_1109_LGRS_2025_3562892
crossref_primary_10_1109_JSTARS_2023_3338454
crossref_primary_10_1016_j_asr_2025_08_043
crossref_primary_10_1109_LGRS_2023_3243609
crossref_primary_10_1109_TGRS_2024_3355274
crossref_primary_10_1016_j_jag_2024_104096
crossref_primary_10_1016_j_jag_2022_102824
crossref_primary_10_1109_JSTARS_2024_3454110
crossref_primary_10_1109_TGRS_2024_3383432
crossref_primary_10_3390_electronics12224592
crossref_primary_10_1007_s40747_025_01998_3
crossref_primary_10_3390_buildings14113353
crossref_primary_10_1109_JSTARS_2024_3418387
crossref_primary_10_1016_j_isprsjprs_2024_01_022
crossref_primary_10_1016_j_isprsjprs_2024_02_001
crossref_primary_10_1016_j_apenergy_2024_124172
crossref_primary_10_1016_j_cviu_2024_104253
crossref_primary_10_1109_TGRS_2024_3477290
crossref_primary_10_1016_j_isprsjprs_2023_01_015
crossref_primary_10_3390_en18010119
crossref_primary_10_3389_feart_2023_1268628
Cites_doi 10.3390/rs12091400
10.1016/j.isprsjprs.2013.09.004
10.3390/rs11242970
10.1109/ICIP.2019.8803050
10.1016/j.neucom.2019.11.118
10.3390/rs11070830
10.1109/IGARSS.2019.8900475
10.1609/aaai.v34i07.6916
10.1109/CVPR.2016.90
10.1016/j.isprsjprs.2019.02.019
10.1109/34.922708
10.3390/rs11040403
10.48550/arXiv.1802.02611
10.1109/JSTARS.2018.2865187
10.1109/TGRS.2008.2002027
10.1109/IGARSS.2017.8127684
10.1016/j.isprsjprs.2019.11.023
10.3390/rs10111768
10.5244/C.27.32
10.1016/j.isprsjprs.2020.08.019
10.1007/978-3-030-58520-4_26
10.3390/rs11080917
10.1117/12.2538019
10.1109/TGRS.2020.3006872
10.3390/rs13061049
10.3390/rs10030407
10.14358/pers.77.7.721
10.1109/ICCV.2017.74
10.1109/TGRS.2018.2858817
10.1109/JSTARS.2020.2992298
10.1109/IGARSS.2016.7729471
10.1109/CVPR.2015.7298965
10.1016/j.jag.2013.03.003
10.1109/CVPR.2019.00766
10.1109/IGARSS.2015.7326158
10.1109/TPAMI.2017.2750680
10.1016/j.isprsjprs.2020.01.013
10.1007/978-3-319-24574-4_28
10.1109/JSTARS.2018.2849363
10.1016/j.isprsjprs.2020.09.019
10.3390/rs10071135
10.1109/TGRS.2008.2008440
10.1109/TKDE.2021.3070203
10.5194/isprsarchives-XXXIX-B3-309-2012
10.1109/CVPRW.2018.00045
10.1117/12.2083273
10.1109/TGRS.2020.3026051
10.1109/TGRS.2017.2783902
10.1080/01431161.2018.1528024
10.1007/978-3-319-50835-1_22
10.1109/TGRS.2019.2954461
10.1016/j.isprsjprs.2017.11.009
10.3390/rs10081195
10.1080/01431161.2020.1775322
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2021.3139017
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 1542
ExternalDocumentID oai_doaj_org_article_1e14a728d1414658aac0bd31a0acac40
10_1109_JSTARS_2021_3139017
9664368
Genre orig-research
GrantInformation_xml – fundername: Hong Kong Polytechnic University
  grantid: 1-ZVN6; ZVU1; 4-BCF7
  funderid: 10.13039/501100004377
– fundername: Hong Kong Innovation, and Technology Commission
  grantid: SST/051/20GP
– fundername: Beijing Key Laboratory of Urban Spatial Information Engineering
  grantid: 2020101
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-cff1ac12efd620491b9c513386a9b4e49652cbcd6a68ea5ca9d9d2340845e0c03
IEDL.DBID RIE
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000754245300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:53:02 EDT 2025
Mon Jul 28 15:40:37 EDT 2025
Sat Nov 29 04:51:11 EST 2025
Tue Nov 18 22:14:45 EST 2025
Wed Aug 27 02:49:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-cff1ac12efd620491b9c513386a9b4e49652cbcd6a68ea5ca9d9d2340845e0c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3886-7027
0000-0002-5150-4511
0000-0003-1643-5271
0000-0002-9235-6340
OpenAccessLink https://ieeexplore.ieee.org/document/9664368
PQID 2627838480
PQPubID 75722
PageCount 17
ParticipantIDs ieee_primary_9664368
crossref_citationtrail_10_1109_JSTARS_2021_3139017
proquest_journals_2627838480
doaj_primary_oai_doaj_org_article_1e14a728d1414658aac0bd31a0acac40
crossref_primary_10_1109_JSTARS_2021_3139017
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
Mnih (ref31) 2013
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
Paszke (ref51) 2019; 32
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
Kingma (ref55) 2015
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref54
  doi: 10.3390/rs12091400
– ident: ref7
  doi: 10.1016/j.isprsjprs.2013.09.004
– ident: ref40
  doi: 10.3390/rs11242970
– ident: ref42
  doi: 10.1109/ICIP.2019.8803050
– ident: ref30
  doi: 10.1016/j.neucom.2019.11.118
– ident: ref37
  doi: 10.3390/rs11070830
– ident: ref52
  doi: 10.1109/IGARSS.2019.8900475
– ident: ref45
  doi: 10.1609/aaai.v34i07.6916
– ident: ref26
  doi: 10.1109/CVPR.2016.90
– ident: ref3
  doi: 10.1016/j.isprsjprs.2019.02.019
– ident: ref1
  doi: 10.1109/34.922708
– ident: ref36
  doi: 10.3390/rs11040403
– ident: ref18
  doi: 10.48550/arXiv.1802.02611
– ident: ref50
  doi: 10.1109/JSTARS.2018.2865187
– ident: ref9
  doi: 10.1109/TGRS.2008.2002027
– ident: ref12
  doi: 10.1109/IGARSS.2017.8127684
– ident: ref28
  doi: 10.1016/j.isprsjprs.2019.11.023
– ident: ref39
  doi: 10.3390/rs10111768
– ident: ref56
  doi: 10.5244/C.27.32
– ident: ref47
  doi: 10.1016/j.isprsjprs.2020.08.019
– ident: ref16
  doi: 10.1007/978-3-030-58520-4_26
– ident: ref49
  doi: 10.3390/rs11080917
– ident: ref43
  doi: 10.1117/12.2538019
– ident: ref29
  doi: 10.1109/TGRS.2020.3006872
– ident: ref41
  doi: 10.3390/rs13061049
– ident: ref33
  doi: 10.3390/rs10030407
– ident: ref6
  doi: 10.14358/pers.77.7.721
– volume: 32
  start-page: 8026
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2019
  ident: ref51
  article-title: PyTorch: An imperative style, high-performance deep learning library
– ident: ref57
  doi: 10.1109/ICCV.2017.74
– ident: ref13
  doi: 10.1109/TGRS.2018.2858817
– ident: ref5
  doi: 10.1109/JSTARS.2020.2992298
– year: 2013
  ident: ref31
  article-title: Machine learning for aerial image labeling
– ident: ref35
  doi: 10.1109/IGARSS.2016.7729471
– ident: ref14
  doi: 10.1109/CVPR.2015.7298965
– ident: ref8
  doi: 10.1016/j.jag.2013.03.003
– ident: ref46
  doi: 10.1109/CVPR.2019.00766
– ident: ref19
  doi: 10.1109/IGARSS.2015.7326158
– ident: ref2
  doi: 10.1109/TPAMI.2017.2750680
– ident: ref25
  doi: 10.1016/j.isprsjprs.2020.01.013
– ident: ref17
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref34
  doi: 10.1109/JSTARS.2018.2849363
– ident: ref15
  doi: 10.1016/j.isprsjprs.2020.09.019
– ident: ref20
  doi: 10.3390/rs10071135
– ident: ref4
  doi: 10.1109/TGRS.2008.2008440
– ident: ref44
  doi: 10.1109/TKDE.2021.3070203
– ident: ref10
  doi: 10.5194/isprsarchives-XXXIX-B3-309-2012
– ident: ref21
  doi: 10.1109/CVPRW.2018.00045
– ident: ref32
  doi: 10.1117/12.2083273
– ident: ref53
  doi: 10.1109/TGRS.2020.3026051
– ident: ref27
  doi: 10.1109/TGRS.2017.2783902
– ident: ref38
  doi: 10.1080/01431161.2018.1528024
– ident: ref48
  doi: 10.1007/978-3-319-50835-1_22
– volume-title: Proc. 3rd Int. Conf. Learn. Representations
  year: 2015
  ident: ref55
  article-title: Adam: A method for stochastic optimization
– ident: ref11
  doi: 10.1109/TGRS.2019.2954461
– ident: ref22
  doi: 10.1016/j.isprsjprs.2017.11.009
– ident: ref24
  doi: 10.3390/rs10081195
– ident: ref23
  doi: 10.1080/01431161.2020.1775322
SSID ssj0062793
Score 2.4362466
Snippet Extracting buildings accurately from very high-resolution (VHR) remote sensing imagery is challenging due to diverse building appearances, spectral...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1526
SubjectTerms Algorithms
Boundaries
Building extraction
Buildings
Coders
Contours
Convolutional neural networks
Data mining
Datasets
Feature extraction
fully convolutional network (FCN)
High resolution
hybrid loss function
Image resolution
Imagery
Localization
Modules
multitask learning
Remote sensing
Resolution
Semantics
Shape
very high resolution (VHR) remote sensing imagery
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bi9QwFA6yKHgRdRVHV8nBo2GbNG2TvXXXmVFYBtnRZW8hTV5hwe0u3RnX-TH-V99LO4Mi6MVToSRpyfvS5Etfvo-xt7nONVTWCGRXQeimiMI0xooiNqVSsm2y9Pf8_LRaLMzFhf30i9UX5YQN8sBDxx1KkNpXykSpcVAXxvuQNTGXPvPBB53YOq56tmRq-AaXCmE3agzJzB4iyOuzJbJBJZGkEs2vfpuHklz_6K_yx0c5zTSzx-zRuETk9fBqT9g96J6yB_NkwbvZZz9O5st6AasjXnPSlsLiYr6-jBC57yI_pcmJL5Ms7LoHUd_5Hvi0o7PrvXgP6coXQ_Y3xyUrr0NYk2AEPx4tsvn0-6ofDjzwWX99xc-h33DKCBG02z9glZ8BRhn4kjLgsc7HK1LD2DxjX2bTzycfxGiyILDzzEqEtpU-SAVtJGl6KxsbyPPFlN42GkhOXoUmxNKXBnwRvI02qhzr6gKykOXP2V533cELxtvKqgzAGIy_zkttwcgWG_V5wIVhKCdMbbvchVGBnIwwvrrERDLrhjg5ipMb4zRh73aVbgYBjr8XP6ZY7oqSena6gZhyI6bcvzA1YfuEhF0jSAlJqH_CDrbIcONIv3WqJK8So0328n88-hV7qOiARdrkOWB7iBZ4ze6Hb6vL2_5NAvlP7Fr-WQ
  priority: 102
  providerName: Directory of Open Access Journals
Title CGSANet: A Contour-Guided and Local Structure-Aware Encoder-Decoder Network for Accurate Building Extraction From Very High-Resolution Remote Sensing Imagery
URI https://ieeexplore.ieee.org/document/9664368
https://www.proquest.com/docview/2627838480
https://doaj.org/article/1e14a728d1414658aac0bd31a0acac40
Volume 15
WOSCitedRecordID wos000754245300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELa2CSRexo-BKIzJDzzOzHacxOYtG21Bmiq0wrS3yLEv0qQtRVk76B_D_4rPcSshEBJPiSJfFPm--O7su-8IeZupTEFpNAvRlWOqyT3TjTYs900hpWgbHk_PL8_L2UxfXZnPO-R4WwsDADH5DN7hbTzL9wu3wq2yk-CaI2H6Ltkty3Ko1dqsuoUsI8Fu8EcMQ8qYxDAkuDkJEK8u5iEWlCKEqBjkl79ZoUjWn7qr_LEkRzszefx_X_iE7Cd_klYDAJ6SHeiekYfT2K93fUB-nk3n1QyW72lFkYgqDGfT1bUHT23n6TlaMjqPHLKrHlj13fZAxx0WuvfsA8QrnQ2p4jT4t7RyboXsEvQ09dOm4x_LfqiOoJN-cUsvoV9TTB9heDQwAJteQIAE0DmmyweZT7dInbF-Tr5Oxl_OPrLUkYE5xfWSubYV1gkJrUceeyMa47BBjC6saRQg97x0jfOFLTTY3FnjjZdZkFU5cMezF2SvW3TwktC2NJIDaB3AEqZMGdCiDS-1mQtepCtGRG40VLtEV45dM27qGLZwUw9qrVGtdVLriBxvhb4NbB3_Hn6Kqt8ORart-CDotE5_bi1AKFtK7YUKViXX1jre-ExYbp0N0zIiB4iD7UsSBEbkcAOkOi0Ld7UssLGJVpq_-rvUa_JIYn1F3OM5JHtB__CGPHD3y-u7_ihuGBxF3P8CGWz-PA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbGALEXfm1ohQF-4HFmtuMkNm_ZaLuJUqF1THuLHPsiTWIpylqgfwz_Kz4nrYRASDwlinxR5Pviu7PvviPkTaISBbnRLERXjqkq9UxX2rDUV5mUoq54PD2_nOTTqb66Mp-2yOGmFgYAYvIZvMXbeJbv526JW2VHwTVHwvQ75G6qlBRdtdZ63c1kHil2g0diGJLG9BxDgpujAPLifBaiQSlCkIphfv6bHYp0_X1_lT8W5WhpRo_-7xsfk4e9R0mLDgJPyBY0T8n9cezYu9olP0_Gs2IKi3e0oEhFFYaz8fLag6e28XSCtozOIovssgVWfLct0GGDpe4tew_xSqddsjgNHi4tnFsivwQ97jtq0-GPRdvVR9BRO7-hl9CuKCaQMDwc6KBNzyGAAugME-aDzNkNkmes9sjn0fDi5JT1PRmYU1wvmKtrYZ2QUHtksjeiMg5bxOjMmkoBss9LVzmf2UyDTZ013niZBFmVAnc8eUa2m3kD-4TWuZEcQOsAlzBlyoAWdXipTVzwI102IHKtodL1hOXYN-NLGQMXbspOrSWqtezVOiCHG6GvHV_Hv4cfo-o3Q5FsOz4IOi37f7cUIJTNpfZCBbuSamsdr3wiLLfOhmkZkF3EweYlPQQG5GANpLJfGG5LmWFrE600f_53qdfkwenFx0k5OZt-eEF2JFZbxB2fA7IdsAAvyT33bXF9276K6P8FcvIAnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CGSANet%3A+A+Contour-Guided+and+Local+Structure-Aware+Encoder-Decoder+Network+for+Accurate+Building+Extraction+From+Very+High-Resolution+Remote+Sensing+Imagery&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Chen%2C+Shanxiong&rft.au=Shi%2C+Wenzhong&rft.au=Zhou%2C+Mingting&rft.au=Zhang%2C+Min&rft.date=2022&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=15&rft.spage=1526&rft.epage=1542&rft_id=info:doi/10.1109%2FJSTARS.2021.3139017&rft.externalDocID=9664368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon