Learnable Markov Chain Monte Carlo Sampling Methods for Lattice Gaussian Distribution
As a key ingredient of machine learning and artificial intelligence, the sampling algorithms with respect to lattice Gaussian distribution has emerged as an important problem in coding and decoding of wireless communications. In this paper, based on the conventional Gibbs sampling, the learnable del...
Uložené v:
| Vydané v: | IEEE access Ročník 7; s. 87494 - 87503 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As a key ingredient of machine learning and artificial intelligence, the sampling algorithms with respect to lattice Gaussian distribution has emerged as an important problem in coding and decoding of wireless communications. In this paper, based on the conventional Gibbs sampling, the learnable delayed metropolis-within-Gibbs (LDMWG) sampling algorithm is proposed to improve the convergence performance, which fully takes the advantages of the acceptance mechanism from the metropolis-hastings (MH) algorithm in the Markov chain Monte Carlo (MCMC) methods. The rejected candidate by the acceptance mechanism is utilized as a learnable experience for the generation of a new candidate at the same Markov move. In this way, the overall probability of remaining the same state at the Markov chain is greatly reduced, which leads to an improved convergence performance in the sense of Peskun ordering. Moreover, in order to reduce the complexity cost during the Markov mixing, a symmetric sampling structure which greatly simplified the sampling operation is further introduced and the symmetric learnable delayed metropolis-within-Gibbs (SLDMWG) sampling algorithm is given. Finally, the simulation results based on multi-input multi-output (MIMO) detections are presented to confirm the convergence gain and the complexity reduction brought by the proposed sampling schemes. |
|---|---|
| AbstractList | As a key ingredient of machine learning and artificial intelligence, the sampling algorithms with respect to lattice Gaussian distribution has emerged as an important problem in coding and decoding of wireless communications. In this paper, based on the conventional Gibbs sampling, the learnable delayed metropolis-within-Gibbs (LDMWG) sampling algorithm is proposed to improve the convergence performance, which fully takes the advantages of the acceptance mechanism from the metropolis-hastings (MH) algorithm in the Markov chain Monte Carlo (MCMC) methods. The rejected candidate by the acceptance mechanism is utilized as a learnable experience for the generation of a new candidate at the same Markov move. In this way, the overall probability of remaining the same state at the Markov chain is greatly reduced, which leads to an improved convergence performance in the sense of Peskun ordering. Moreover, in order to reduce the complexity cost during the Markov mixing, a symmetric sampling structure which greatly simplified the sampling operation is further introduced and the symmetric learnable delayed metropolis-within-Gibbs (SLDMWG) sampling algorithm is given. Finally, the simulation results based on multi-input multi-output (MIMO) detections are presented to confirm the convergence gain and the complexity reduction brought by the proposed sampling schemes. |
| Author | Lyu, Shanxiang Wang, Zheng Liu, Ling |
| Author_xml | – sequence: 1 givenname: Zheng orcidid: 0000-0003-3528-558X surname: Wang fullname: Wang, Zheng email: z.wang@ieee.org organization: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China – sequence: 2 givenname: Shanxiang surname: Lyu fullname: Lyu, Shanxiang organization: College of Information Science and Technology/College of Cyber Security, Jinan University, Guangzhou, China – sequence: 3 givenname: Ling surname: Liu fullname: Liu, Ling organization: Department of CT Lab, Huawei Technologies, Shenzhen, China |
| BookMark | eNqFUU1vFDEMjVCRKKW_oJdInHfJx2QyOVZDKZV2xWHpOXIynjbLdLIkWaT-e7JMVSEu-GLL9nu23ntPzuY4IyFXnK05Z-bTdd_f7HZrwbhZCyOUkuwNORe8NSupZHv2V_2OXOa8ZzW62lL6nNxvENIMbkK6hfQj_qL9I4SZbuNckPaQpkh38HSYwvxAt1ge45DpGBPdQCnBI72FY84BZvo55JKCO5YQ5w_k7QhTxsuXfEHuv9x877-uNt9u7_rrzco3rCsrj95759Bx1yjHRDdw0AzdyNG50QnNtakzL4F5odEhV-ig7ZpWqrEBLy_I3cI7RNjbQwpPkJ5thGD_NGJ6sJDqmxPalmkNSijZcdV4HIxXTg5iGPXouypN5fq4cB1S_HnEXOw-Hqs0U7aiUarlujOibslly6eYc8Lx9Spn9mSHXeywJzvsix0VZf5B-VDgpFRJEKb_YK8WbEDE12udbnRjOvkbR-KbNg |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1049_gtd2_12648 crossref_primary_10_1109_ACCESS_2020_2972611 crossref_primary_10_1007_s00521_022_06888_0 crossref_primary_10_1016_j_epsr_2020_107001 |
| Cites_doi | 10.1109/TCOMM.2013.101813.130500 10.1109/TNNLS.2018.2829526 10.1109/FOCS.2015.41 10.1109/TIT.2014.2343226 10.1109/TVT.2018.2848294 10.1023/A:1020281327116 10.1109/TVT.2019.2900460 10.1109/TSP.2017.2726993 10.1214/ss/1015346319 10.1109/ITW.2017.8278001 10.1109/18.256499 10.1109/TVT.2018.2883669 10.1109/49.29616 10.1109/ISIT.2014.6875081 10.1109/JIOT.2018.2876152 10.1007/BF02579403 10.1109/TIT.2015.2412114 10.1109/TVT.2019.2893928 10.1109/ITW.2016.7606863 10.1109/JLT.2016.2594271 10.1093/biomet/88.4.1035 10.1109/TSP.2018.2860556 10.1039/b509983h 10.1090/mbk/058 10.1145/1374376.1374407 10.1017/CBO9780511626630 10.1109/TIT.2018.2794327 10.1109/TIT.2017.2742509 10.1109/TSP.2017.2773428 10.1109/TIT.2019.2901497 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2507::AID-SIM272>3.0.CO;2-J 10.1109/TSP.2018.2818068 10.1109/TIT.2011.2162180 10.1109/TCOMM.2016.2613109 10.1109/COMST.2015.2475242 10.1109/LPT.2015.2514078 10.1109/TIT.2014.2332343 10.1109/TPAMI.2018.2858783 10.1109/ITWF.2015.7360779 10.1109/TWC.2012.122212.111638 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2019.2925530 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 87503 |
| ExternalDocumentID | oai_doaj_org_article_6077a52538154ced9c5b3d2df7fc8536 10_1109_ACCESS_2019_2925530 8747498 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Southeast University grantid: 2019D04 funderid: 10.13039/501100008081 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20180420 funderid: 10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 61801216 funderid: 10.13039/501100001809 – fundername: open research fund of the Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, China grantid: KF20181913 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-cecccbbeb1b45b028d1a70ebf1ebbfb27179b1bc3a0c27ebe15eba684635f4ac3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000476811200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:45:32 EDT 2025 Sun Nov 30 04:20:32 EST 2025 Sat Nov 29 03:57:43 EST 2025 Tue Nov 18 21:40:53 EST 2025 Wed Aug 27 05:50:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-cecccbbeb1b45b028d1a70ebf1ebbfb27179b1bc3a0c27ebe15eba684635f4ac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3528-558X |
| OpenAccessLink | https://ieeexplore.ieee.org/document/8747498 |
| PQID | 2455617892 |
| PQPubID | 4845423 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_8747498 proquest_journals_2455617892 crossref_citationtrail_10_1109_ACCESS_2019_2925530 doaj_primary_oai_doaj_org_article_6077a52538154ced9c5b3d2df7fc8536 crossref_primary_10_1109_ACCESS_2019_2925530 |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 murray (ref24) 2012 ref9 ref4 aggarwal (ref11) 2015 ref3 ref6 ref5 ref40 bishop (ref30) 2006 ref35 ref34 ref37 ref36 ref31 wang (ref23) 2018 ref32 ref2 ref1 ref39 salakhutdinov (ref27) 2010 goodfellow (ref33) 2016 klein (ref38) 2000 ref26 ref25 ref20 ref22 ref21 ref28 qian (ref49) 2015 ref29 |
| References_xml | – year: 2006 ident: ref30 publication-title: Pattern Recognition and Machine Learning – ident: ref14 doi: 10.1109/TCOMM.2013.101813.130500 – ident: ref21 doi: 10.1109/TNNLS.2018.2829526 – ident: ref12 doi: 10.1109/FOCS.2015.41 – ident: ref6 doi: 10.1109/TIT.2014.2343226 – ident: ref35 doi: 10.1109/TVT.2018.2848294 – ident: ref22 doi: 10.1023/A:1020281327116 – start-page: 1 year: 2010 ident: ref27 article-title: Learning deep Boltzmann machines using adaptive MCMC publication-title: Proc 27th Int Conf Mach Learn – ident: ref31 doi: 10.1109/TVT.2019.2900460 – ident: ref17 doi: 10.1109/TSP.2017.2726993 – ident: ref41 doi: 10.1214/ss/1015346319 – year: 2015 ident: ref49 article-title: Counting the floating point operations (FLOPS) – ident: ref37 doi: 10.1109/ITW.2017.8278001 – ident: ref2 doi: 10.1109/18.256499 – ident: ref28 doi: 10.1109/TVT.2018.2883669 – ident: ref1 doi: 10.1109/49.29616 – ident: ref26 doi: 10.1109/ISIT.2014.6875081 – ident: ref29 doi: 10.1109/JIOT.2018.2876152 – ident: ref48 doi: 10.1007/BF02579403 – ident: ref8 doi: 10.1109/TIT.2015.2412114 – start-page: 937 year: 2000 ident: ref38 article-title: Finding the closest lattice vector when it's unusually close publication-title: Proc ACM-SIAM Symp Discrete Algorithms – ident: ref34 doi: 10.1109/TVT.2019.2893928 – ident: ref36 doi: 10.1109/ITW.2016.7606863 – ident: ref10 doi: 10.1109/JLT.2016.2594271 – ident: ref44 doi: 10.1093/biomet/88.4.1035 – ident: ref18 doi: 10.1109/TSP.2018.2860556 – year: 2016 ident: ref33 publication-title: Deep Learning – ident: ref46 doi: 10.1039/b509983h – ident: ref43 doi: 10.1090/mbk/058 – ident: ref39 doi: 10.1145/1374376.1374407 – ident: ref42 doi: 10.1017/CBO9780511626630 – ident: ref5 doi: 10.1109/TIT.2018.2794327 – ident: ref25 doi: 10.1109/TIT.2017.2742509 – ident: ref47 doi: 10.1109/TSP.2017.2773428 – ident: ref13 doi: 10.1109/TIT.2019.2901497 – ident: ref45 doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2507::AID-SIM272>3.0.CO;2-J – ident: ref20 doi: 10.1109/TSP.2018.2818068 – ident: ref15 doi: 10.1109/TIT.2011.2162180 – start-page: 1 year: 2018 ident: ref23 article-title: Meta-learning MCMC proposals publication-title: Proc 32nd Conf Neural Inf Process Syst (NIPS) – ident: ref3 doi: 10.1109/TCOMM.2016.2613109 – year: 2012 ident: ref24 publication-title: Introduction to MCMC for Deep Learning – ident: ref16 doi: 10.1109/COMST.2015.2475242 – ident: ref9 doi: 10.1109/LPT.2015.2514078 – ident: ref40 doi: 10.1109/ITW.2016.7606863 – ident: ref4 doi: 10.1109/TIT.2014.2332343 – ident: ref32 doi: 10.1109/TPAMI.2018.2858783 – ident: ref7 doi: 10.1109/ITWF.2015.7360779 – start-page: 733 year: 2015 ident: ref11 article-title: Solving the shortest vector problem in $2^{n}$ time using discrete Gaussian sampling: Extended abstract publication-title: Proc STOC – ident: ref19 doi: 10.1109/TWC.2012.122212.111638 |
| SSID | ssj0000816957 |
| Score | 2.1510587 |
| Snippet | As a key ingredient of machine learning and artificial intelligence, the sampling algorithms with respect to lattice Gaussian distribution has emerged as an... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 87494 |
| SubjectTerms | Algorithms Artificial intelligence Complexity Complexity theory Convergence Decoding Encoding Gaussian distribution Gibbs sampler decoding Lattice coding and decoding lattice Gaussian sampling Lattices Machine learning Markov analysis Markov chain Monte Carlo Markov chains Markov processes MIMO (control systems) Monte Carlo simulation Normal distribution Sampling methods Statistical analysis Wireless communications |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsQwDI0Q4gAHxCqGTTlwpNCmS5IjlO0ACIlF3KKsgIRm0MzA92OnYTQICS5c23SJ7cR2a79HyJ5rgtGl85mwDSQoofCZ4U5kQkN4HsDj-fhH9-GSX1-Lx0d5M0X1hTVhHTxwJ7jDJudc1wzWJTh76520tSkdc4EHC64mgm3nXE4lU3EPFkUja55ghopcHh61LcwIa7nkAZMM2XK-uaKI2J8oVn7sy9HZnC2RxRQl0qPu7ZbJjO-vkIUp7MBVch-RUbHxiWK_zeCDts-Q5dMrhJuirR6-Duitxnrx_hO9ijzRIwoRKr3UYyx4o-f6fYQdlPQEsXMT7dUauT87vWsvssSRkNkqF-PMggqsMbDjmqo2ECy4QvPcGxC6McEwyNYknLOlzi3joLGi9kY3EHWUdai0LdfJbH_Q9xuE-spZCJZ8E0SoHHJVWWdCAB9vdOEa1yPsS1zKJgBx5LF4VTGRyKXqZKxQxirJuEf2Jxe9dfgZvw8_Rj1MhiL4dTwAJqGSSai_TKJHVlGLk5sISJkqKXpk-0urKi3UkWIV8oNyIdnmfzx6i8zjdLpvNNtkdjx89ztkzn6MX0bD3WijnwEp6gk priority: 102 providerName: Directory of Open Access Journals |
| Title | Learnable Markov Chain Monte Carlo Sampling Methods for Lattice Gaussian Distribution |
| URI | https://ieeexplore.ieee.org/document/8747498 https://www.proquest.com/docview/2455617892 https://doaj.org/article/6077a52538154ced9c5b3d2df7fc8536 |
| Volume | 7 |
| WOSCitedRecordID | wos000476811200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtUwFL1qKxawYCqIV0rlBcumTZzB9rKEFhZ9FRIUdWd5hEpVHnpDl_127nXcCARCYhNFiRM5OR6Oh3sOwFvfRWtqHwrpOhygxCoUVnhZSIP0PGKPF9KK7tdzcXEhr67Upy04nGJhQghp81k4otO0lu8XbkNTZccSuW-j5DZsC9GNsVrTfAoZSKhWZGGhqlTHJ32P30C7t9QRV5z8cX7rfJJGfzZV-aMlTt3L2ZP_y9hTeJxpJDsZcX8GW2F4Do9-ERfchcsknUqRUYwCcha3rP9urgc2Jz0q1pvlzYJ9NrShfPjG5slIesWQwrJzs6YdceyD2awoxJK9J3Hd7Iv1Ai7PTr_0H4tsolC4ppTrwiFGzlpskm3TWmQTvjKiDBZRsTZajsM5hfdcbUrHBUJatcGaDmlJ3cbGuPol7AyLIbwCFhrvkE2FLsrYeDKzct7GiCTAmsp3fgb8_u9qlxXGyejiRqeRRqn0CIkmSHSGZAaH00M_RoGNfyd_R7BNSUkdO11APHSubLorhTAtx7YcCaILXrnW1p77KKJDetLNYJcwnF6S4ZvB_n0h0LkmrzRvyEBUSMX3_v7Ua3hIGRynZfZhZ73chDfwwN2ur1fLgzTGx-P87vQgFdifIXPpoA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwGP1UChL0wNYiBgr4wLFpE2ezjyWlFDEzQqJFvVleoVKVQbP09_f7PG5ERYXUW5TYkZPn5Xn53gP46JpgdOl8JmyDE5RQ-My0TmRCIz0POOL5uKP7c9xOp-L8XH7fgL0hFsZ7Hw-f-X26jHv5bmZXtFR2IJD7VlI8gIfknJWitYYVFbKQkHWbpIWKXB4cdh1-BZ3fkvtccnLIuTX8RJX-ZKvyT18cB5jjZ_cr2nN4mogkO1wj_wI2fP8Stv6SF9yGsyieSrFRjEJyZles-60vejYhRSrW6fnljP3QdKS8_8Um0Up6wZDEsrFe0pk49kWvFhRkyY5IXjc5Y-3A2fHn0-4kSzYKma1yscwsomSNwU7ZVLVBPuEK3ebeIC7GBMNxQifxmS11bnmLoBa1N7pBYlLWodK2fAWb_az3r4H5ylnkU74JIlSO7KysMyEgDTC6cI0bAb_5u8omjXGyurhUca6RS7WGRBEkKkEygr0h05-1xMb_k38i2IakpI8dbyAeKjU31eRtq2uOvTlSROudtLUpHXehDRYJSjOCbcJweEmCbwS7N5VApba8ULwiC9FWSP7m7lwf4PHJ6WSsxl-n397CEyrsepFmFzaX85V_B4_s1fJiMX8fK-w1bDHqww |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learnable+Markov+Chain+Monte+Carlo+Sampling+Methods+for+Lattice+Gaussian+Distribution&rft.jtitle=IEEE+access&rft.au=Wang%2C+Zheng&rft.au=Lyu%2C+Shanxiang&rft.au=Liu%2C+Ling&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=87494&rft.epage=87503&rft_id=info:doi/10.1109%2FACCESS.2019.2925530&rft.externalDocID=8747498 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |