Learnable Markov Chain Monte Carlo Sampling Methods for Lattice Gaussian Distribution

As a key ingredient of machine learning and artificial intelligence, the sampling algorithms with respect to lattice Gaussian distribution has emerged as an important problem in coding and decoding of wireless communications. In this paper, based on the conventional Gibbs sampling, the learnable del...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 7; s. 87494 - 87503
Hlavní autori: Wang, Zheng, Lyu, Shanxiang, Liu, Ling
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As a key ingredient of machine learning and artificial intelligence, the sampling algorithms with respect to lattice Gaussian distribution has emerged as an important problem in coding and decoding of wireless communications. In this paper, based on the conventional Gibbs sampling, the learnable delayed metropolis-within-Gibbs (LDMWG) sampling algorithm is proposed to improve the convergence performance, which fully takes the advantages of the acceptance mechanism from the metropolis-hastings (MH) algorithm in the Markov chain Monte Carlo (MCMC) methods. The rejected candidate by the acceptance mechanism is utilized as a learnable experience for the generation of a new candidate at the same Markov move. In this way, the overall probability of remaining the same state at the Markov chain is greatly reduced, which leads to an improved convergence performance in the sense of Peskun ordering. Moreover, in order to reduce the complexity cost during the Markov mixing, a symmetric sampling structure which greatly simplified the sampling operation is further introduced and the symmetric learnable delayed metropolis-within-Gibbs (SLDMWG) sampling algorithm is given. Finally, the simulation results based on multi-input multi-output (MIMO) detections are presented to confirm the convergence gain and the complexity reduction brought by the proposed sampling schemes.
AbstractList As a key ingredient of machine learning and artificial intelligence, the sampling algorithms with respect to lattice Gaussian distribution has emerged as an important problem in coding and decoding of wireless communications. In this paper, based on the conventional Gibbs sampling, the learnable delayed metropolis-within-Gibbs (LDMWG) sampling algorithm is proposed to improve the convergence performance, which fully takes the advantages of the acceptance mechanism from the metropolis-hastings (MH) algorithm in the Markov chain Monte Carlo (MCMC) methods. The rejected candidate by the acceptance mechanism is utilized as a learnable experience for the generation of a new candidate at the same Markov move. In this way, the overall probability of remaining the same state at the Markov chain is greatly reduced, which leads to an improved convergence performance in the sense of Peskun ordering. Moreover, in order to reduce the complexity cost during the Markov mixing, a symmetric sampling structure which greatly simplified the sampling operation is further introduced and the symmetric learnable delayed metropolis-within-Gibbs (SLDMWG) sampling algorithm is given. Finally, the simulation results based on multi-input multi-output (MIMO) detections are presented to confirm the convergence gain and the complexity reduction brought by the proposed sampling schemes.
Author Lyu, Shanxiang
Wang, Zheng
Liu, Ling
Author_xml – sequence: 1
  givenname: Zheng
  orcidid: 0000-0003-3528-558X
  surname: Wang
  fullname: Wang, Zheng
  email: z.wang@ieee.org
  organization: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China
– sequence: 2
  givenname: Shanxiang
  surname: Lyu
  fullname: Lyu, Shanxiang
  organization: College of Information Science and Technology/College of Cyber Security, Jinan University, Guangzhou, China
– sequence: 3
  givenname: Ling
  surname: Liu
  fullname: Liu, Ling
  organization: Department of CT Lab, Huawei Technologies, Shenzhen, China
BookMark eNqFUU1vFDEMjVCRKKW_oJdInHfJx2QyOVZDKZV2xWHpOXIynjbLdLIkWaT-e7JMVSEu-GLL9nu23ntPzuY4IyFXnK05Z-bTdd_f7HZrwbhZCyOUkuwNORe8NSupZHv2V_2OXOa8ZzW62lL6nNxvENIMbkK6hfQj_qL9I4SZbuNckPaQpkh38HSYwvxAt1ge45DpGBPdQCnBI72FY84BZvo55JKCO5YQ5w_k7QhTxsuXfEHuv9x877-uNt9u7_rrzco3rCsrj95759Bx1yjHRDdw0AzdyNG50QnNtakzL4F5odEhV-ig7ZpWqrEBLy_I3cI7RNjbQwpPkJ5thGD_NGJ6sJDqmxPalmkNSijZcdV4HIxXTg5iGPXouypN5fq4cB1S_HnEXOw-Hqs0U7aiUarlujOibslly6eYc8Lx9Spn9mSHXeywJzvsix0VZf5B-VDgpFRJEKb_YK8WbEDE12udbnRjOvkbR-KbNg
CODEN IAECCG
CitedBy_id crossref_primary_10_1049_gtd2_12648
crossref_primary_10_1109_ACCESS_2020_2972611
crossref_primary_10_1007_s00521_022_06888_0
crossref_primary_10_1016_j_epsr_2020_107001
Cites_doi 10.1109/TCOMM.2013.101813.130500
10.1109/TNNLS.2018.2829526
10.1109/FOCS.2015.41
10.1109/TIT.2014.2343226
10.1109/TVT.2018.2848294
10.1023/A:1020281327116
10.1109/TVT.2019.2900460
10.1109/TSP.2017.2726993
10.1214/ss/1015346319
10.1109/ITW.2017.8278001
10.1109/18.256499
10.1109/TVT.2018.2883669
10.1109/49.29616
10.1109/ISIT.2014.6875081
10.1109/JIOT.2018.2876152
10.1007/BF02579403
10.1109/TIT.2015.2412114
10.1109/TVT.2019.2893928
10.1109/ITW.2016.7606863
10.1109/JLT.2016.2594271
10.1093/biomet/88.4.1035
10.1109/TSP.2018.2860556
10.1039/b509983h
10.1090/mbk/058
10.1145/1374376.1374407
10.1017/CBO9780511626630
10.1109/TIT.2018.2794327
10.1109/TIT.2017.2742509
10.1109/TSP.2017.2773428
10.1109/TIT.2019.2901497
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2507::AID-SIM272>3.0.CO;2-J
10.1109/TSP.2018.2818068
10.1109/TIT.2011.2162180
10.1109/TCOMM.2016.2613109
10.1109/COMST.2015.2475242
10.1109/LPT.2015.2514078
10.1109/TIT.2014.2332343
10.1109/TPAMI.2018.2858783
10.1109/ITWF.2015.7360779
10.1109/TWC.2012.122212.111638
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2925530
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 87503
ExternalDocumentID oai_doaj_org_article_6077a52538154ced9c5b3d2df7fc8536
10_1109_ACCESS_2019_2925530
8747498
Genre orig-research
GrantInformation_xml – fundername: Southeast University
  grantid: 2019D04
  funderid: 10.13039/501100008081
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20180420
  funderid: 10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 61801216
  funderid: 10.13039/501100001809
– fundername: open research fund of the Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, China
  grantid: KF20181913
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-cecccbbeb1b45b028d1a70ebf1ebbfb27179b1bc3a0c27ebe15eba684635f4ac3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000476811200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:45:32 EDT 2025
Sun Nov 30 04:20:32 EST 2025
Sat Nov 29 03:57:43 EST 2025
Tue Nov 18 21:40:53 EST 2025
Wed Aug 27 05:50:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-cecccbbeb1b45b028d1a70ebf1ebbfb27179b1bc3a0c27ebe15eba684635f4ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3528-558X
OpenAccessLink https://ieeexplore.ieee.org/document/8747498
PQID 2455617892
PQPubID 4845423
PageCount 10
ParticipantIDs ieee_primary_8747498
proquest_journals_2455617892
crossref_citationtrail_10_1109_ACCESS_2019_2925530
doaj_primary_oai_doaj_org_article_6077a52538154ced9c5b3d2df7fc8536
crossref_primary_10_1109_ACCESS_2019_2925530
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
murray (ref24) 2012
ref9
ref4
aggarwal (ref11) 2015
ref3
ref6
ref5
ref40
bishop (ref30) 2006
ref35
ref34
ref37
ref36
ref31
wang (ref23) 2018
ref32
ref2
ref1
ref39
salakhutdinov (ref27) 2010
goodfellow (ref33) 2016
klein (ref38) 2000
ref26
ref25
ref20
ref22
ref21
ref28
qian (ref49) 2015
ref29
References_xml – year: 2006
  ident: ref30
  publication-title: Pattern Recognition and Machine Learning
– ident: ref14
  doi: 10.1109/TCOMM.2013.101813.130500
– ident: ref21
  doi: 10.1109/TNNLS.2018.2829526
– ident: ref12
  doi: 10.1109/FOCS.2015.41
– ident: ref6
  doi: 10.1109/TIT.2014.2343226
– ident: ref35
  doi: 10.1109/TVT.2018.2848294
– ident: ref22
  doi: 10.1023/A:1020281327116
– start-page: 1
  year: 2010
  ident: ref27
  article-title: Learning deep Boltzmann machines using adaptive MCMC
  publication-title: Proc 27th Int Conf Mach Learn
– ident: ref31
  doi: 10.1109/TVT.2019.2900460
– ident: ref17
  doi: 10.1109/TSP.2017.2726993
– ident: ref41
  doi: 10.1214/ss/1015346319
– year: 2015
  ident: ref49
  article-title: Counting the floating point operations (FLOPS)
– ident: ref37
  doi: 10.1109/ITW.2017.8278001
– ident: ref2
  doi: 10.1109/18.256499
– ident: ref28
  doi: 10.1109/TVT.2018.2883669
– ident: ref1
  doi: 10.1109/49.29616
– ident: ref26
  doi: 10.1109/ISIT.2014.6875081
– ident: ref29
  doi: 10.1109/JIOT.2018.2876152
– ident: ref48
  doi: 10.1007/BF02579403
– ident: ref8
  doi: 10.1109/TIT.2015.2412114
– start-page: 937
  year: 2000
  ident: ref38
  article-title: Finding the closest lattice vector when it's unusually close
  publication-title: Proc ACM-SIAM Symp Discrete Algorithms
– ident: ref34
  doi: 10.1109/TVT.2019.2893928
– ident: ref36
  doi: 10.1109/ITW.2016.7606863
– ident: ref10
  doi: 10.1109/JLT.2016.2594271
– ident: ref44
  doi: 10.1093/biomet/88.4.1035
– ident: ref18
  doi: 10.1109/TSP.2018.2860556
– year: 2016
  ident: ref33
  publication-title: Deep Learning
– ident: ref46
  doi: 10.1039/b509983h
– ident: ref43
  doi: 10.1090/mbk/058
– ident: ref39
  doi: 10.1145/1374376.1374407
– ident: ref42
  doi: 10.1017/CBO9780511626630
– ident: ref5
  doi: 10.1109/TIT.2018.2794327
– ident: ref25
  doi: 10.1109/TIT.2017.2742509
– ident: ref47
  doi: 10.1109/TSP.2017.2773428
– ident: ref13
  doi: 10.1109/TIT.2019.2901497
– ident: ref45
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2507::AID-SIM272>3.0.CO;2-J
– ident: ref20
  doi: 10.1109/TSP.2018.2818068
– ident: ref15
  doi: 10.1109/TIT.2011.2162180
– start-page: 1
  year: 2018
  ident: ref23
  article-title: Meta-learning MCMC proposals
  publication-title: Proc 32nd Conf Neural Inf Process Syst (NIPS)
– ident: ref3
  doi: 10.1109/TCOMM.2016.2613109
– year: 2012
  ident: ref24
  publication-title: Introduction to MCMC for Deep Learning
– ident: ref16
  doi: 10.1109/COMST.2015.2475242
– ident: ref9
  doi: 10.1109/LPT.2015.2514078
– ident: ref40
  doi: 10.1109/ITW.2016.7606863
– ident: ref4
  doi: 10.1109/TIT.2014.2332343
– ident: ref32
  doi: 10.1109/TPAMI.2018.2858783
– ident: ref7
  doi: 10.1109/ITWF.2015.7360779
– start-page: 733
  year: 2015
  ident: ref11
  article-title: Solving the shortest vector problem in $2^{n}$ time using discrete Gaussian sampling: Extended abstract
  publication-title: Proc STOC
– ident: ref19
  doi: 10.1109/TWC.2012.122212.111638
SSID ssj0000816957
Score 2.1510587
Snippet As a key ingredient of machine learning and artificial intelligence, the sampling algorithms with respect to lattice Gaussian distribution has emerged as an...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 87494
SubjectTerms Algorithms
Artificial intelligence
Complexity
Complexity theory
Convergence
Decoding
Encoding
Gaussian distribution
Gibbs sampler decoding
Lattice coding and decoding
lattice Gaussian sampling
Lattices
Machine learning
Markov analysis
Markov chain Monte Carlo
Markov chains
Markov processes
MIMO (control systems)
Monte Carlo simulation
Normal distribution
Sampling methods
Statistical analysis
Wireless communications
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsQwDI0Q4gAHxCqGTTlwpNCmS5IjlO0ACIlF3KKsgIRm0MzA92OnYTQICS5c23SJ7cR2a79HyJ5rgtGl85mwDSQoofCZ4U5kQkN4HsDj-fhH9-GSX1-Lx0d5M0X1hTVhHTxwJ7jDJudc1wzWJTh76520tSkdc4EHC64mgm3nXE4lU3EPFkUja55ghopcHh61LcwIa7nkAZMM2XK-uaKI2J8oVn7sy9HZnC2RxRQl0qPu7ZbJjO-vkIUp7MBVch-RUbHxiWK_zeCDts-Q5dMrhJuirR6-Duitxnrx_hO9ijzRIwoRKr3UYyx4o-f6fYQdlPQEsXMT7dUauT87vWsvssSRkNkqF-PMggqsMbDjmqo2ECy4QvPcGxC6McEwyNYknLOlzi3joLGi9kY3EHWUdai0LdfJbH_Q9xuE-spZCJZ8E0SoHHJVWWdCAB9vdOEa1yPsS1zKJgBx5LF4VTGRyKXqZKxQxirJuEf2Jxe9dfgZvw8_Rj1MhiL4dTwAJqGSSai_TKJHVlGLk5sISJkqKXpk-0urKi3UkWIV8oNyIdnmfzx6i8zjdLpvNNtkdjx89ztkzn6MX0bD3WijnwEp6gk
  priority: 102
  providerName: Directory of Open Access Journals
Title Learnable Markov Chain Monte Carlo Sampling Methods for Lattice Gaussian Distribution
URI https://ieeexplore.ieee.org/document/8747498
https://www.proquest.com/docview/2455617892
https://doaj.org/article/6077a52538154ced9c5b3d2df7fc8536
Volume 7
WOSCitedRecordID wos000476811200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtUwFL1qKxawYCqIV0rlBcumTZzB9rKEFhZ9FRIUdWd5hEpVHnpDl_127nXcCARCYhNFiRM5OR6Oh3sOwFvfRWtqHwrpOhygxCoUVnhZSIP0PGKPF9KK7tdzcXEhr67Upy04nGJhQghp81k4otO0lu8XbkNTZccSuW-j5DZsC9GNsVrTfAoZSKhWZGGhqlTHJ32P30C7t9QRV5z8cX7rfJJGfzZV-aMlTt3L2ZP_y9hTeJxpJDsZcX8GW2F4Do9-ERfchcsknUqRUYwCcha3rP9urgc2Jz0q1pvlzYJ9NrShfPjG5slIesWQwrJzs6YdceyD2awoxJK9J3Hd7Iv1Ai7PTr_0H4tsolC4ppTrwiFGzlpskm3TWmQTvjKiDBZRsTZajsM5hfdcbUrHBUJatcGaDmlJ3cbGuPol7AyLIbwCFhrvkE2FLsrYeDKzct7GiCTAmsp3fgb8_u9qlxXGyejiRqeRRqn0CIkmSHSGZAaH00M_RoGNfyd_R7BNSUkdO11APHSubLorhTAtx7YcCaILXrnW1p77KKJDetLNYJcwnF6S4ZvB_n0h0LkmrzRvyEBUSMX3_v7Ua3hIGRynZfZhZ73chDfwwN2ur1fLgzTGx-P87vQgFdifIXPpoA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwGP1UChL0wNYiBgr4wLFpE2ezjyWlFDEzQqJFvVleoVKVQbP09_f7PG5ERYXUW5TYkZPn5Xn53gP46JpgdOl8JmyDE5RQ-My0TmRCIz0POOL5uKP7c9xOp-L8XH7fgL0hFsZ7Hw-f-X26jHv5bmZXtFR2IJD7VlI8gIfknJWitYYVFbKQkHWbpIWKXB4cdh1-BZ3fkvtccnLIuTX8RJX-ZKvyT18cB5jjZ_cr2nN4mogkO1wj_wI2fP8Stv6SF9yGsyieSrFRjEJyZles-60vejYhRSrW6fnljP3QdKS8_8Um0Up6wZDEsrFe0pk49kWvFhRkyY5IXjc5Y-3A2fHn0-4kSzYKma1yscwsomSNwU7ZVLVBPuEK3ebeIC7GBMNxQifxmS11bnmLoBa1N7pBYlLWodK2fAWb_az3r4H5ylnkU74JIlSO7KysMyEgDTC6cI0bAb_5u8omjXGyurhUca6RS7WGRBEkKkEygr0h05-1xMb_k38i2IakpI8dbyAeKjU31eRtq2uOvTlSROudtLUpHXehDRYJSjOCbcJweEmCbwS7N5VApba8ULwiC9FWSP7m7lwf4PHJ6WSsxl-n397CEyrsepFmFzaX85V_B4_s1fJiMX8fK-w1bDHqww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learnable+Markov+Chain+Monte+Carlo+Sampling+Methods+for+Lattice+Gaussian+Distribution&rft.jtitle=IEEE+access&rft.au=Wang%2C+Zheng&rft.au=Lyu%2C+Shanxiang&rft.au=Liu%2C+Ling&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=87494&rft.epage=87503&rft_id=info:doi/10.1109%2FACCESS.2019.2925530&rft.externalDocID=8747498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon