A Pansharpening Based on the Non-Subsampled Contourlet Transform and Convolutional Autoencoder: Application to QuickBird Imagery

This paper presents a pansharpening technique based on the non-subsampled contourlet transform (NSCT) and convolutional autoencoder (CAE). NSCT is exceptionally proficient at presenting orientation information and capturing the internal geometry of objects. First, it's used to decompose the mul...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 10; s. 44778 - 44788
Hlavní autori: Smadi, Ahmad Al, Yang, Shuyuan, Abugabah, Ahed, Alzubi, Ahmad Ali, Sanzogni, Louis
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents a pansharpening technique based on the non-subsampled contourlet transform (NSCT) and convolutional autoencoder (CAE). NSCT is exceptionally proficient at presenting orientation information and capturing the internal geometry of objects. First, it's used to decompose the multispectral (MS) and panchromatic (PAN) images into high-frequency and low-frequency components using the same number of decomposition levels. Second, a CAE network is trained to generate original low-frequency PAN images from their spatially degraded versions. Low-resolution multispectral images are then fed into the trained convolutional autoencoder network to generate estimated high-resolution multispectral images. Third, another CAE network is trained to generate original high-frequency PAN images from their spatially degraded versions. The result of low-pass CAE is fed to the trained high-pass CAE to generate estimated high-resolution multispectral images. The final pan-sharpened image is accomplished by injecting the detailed map of the spectral bands into the corresponding estimated high-resolution multispectral bands. The proposed method is tested on QuickBird datasets and compared with some existing pan-sharpening techniques. Objective and subjective results demonstrate the efficiency of the proposed method.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3169698