Multi-Modal Sentiment Classification With Independent and Interactive Knowledge via Semi-Supervised Learning
Multi-modal sentiment analysis extends conventional text-based definition of sentiment analysis to a multi-modal setup where multiple relevant modalities are leveraged to perform sentiment analysis. In real applications, however, acquiring annotated multi-modal data is normally labor expensive and t...
Uloženo v:
| Vydáno v: | IEEE access Ročník 8; s. 22945 - 22954 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Multi-modal sentiment analysis extends conventional text-based definition of sentiment analysis to a multi-modal setup where multiple relevant modalities are leveraged to perform sentiment analysis. In real applications, however, acquiring annotated multi-modal data is normally labor expensive and time-consuming. In this paper, we aim to reduce the annotation effort for multi-modal sentiment classification via semi-supervised learning. The key idea is to leverage the semi-supervised variational autoencoders to mine more information from unlabeled data for multi-modal sentiment analysis. Specifically, the mined information includes both the independent knowledge within single modality and the interactive knowledge among different modalities. Empirical evaluation demonstrates the great effectiveness of the proposed semi-supervised approach to multi-modal sentiment classification. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2020.2969205 |