A Study on Position Control of a Continuum Arm Using MAML (Model-Agnostic Meta-Learning) for Adapting Different Loading Conditions
Predicting tip positions of a spring based continuum manipulator is highly challenging due to its nonlinear deformations. External loading on the tip further deteriorates the accuracy. Model-less control strategies have shown great success in the tip positioning. However, they require a large amount...
Uloženo v:
| Vydáno v: | IEEE access Ročník 10; s. 14980 - 14992 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Predicting tip positions of a spring based continuum manipulator is highly challenging due to its nonlinear deformations. External loading on the tip further deteriorates the accuracy. Model-less control strategies have shown great success in the tip positioning. However, they require a large amount of data and time for the training. Performances of these controllers also deteriorate with external loads. To address these problems, this paper presents a MAML(Model-Agnostic Meta-Learning) based closed loop controller for the continuum manipulators. This controller requires a relatively small amount of data to achieve the state-of-art positioning accuracy. It can also adapt to changes due to the external loads with less than 2.5 percent of the original data. Two algorithms for the offline adaptation of the known and unknown external loading are proposed here. These techniques are also helpful for automatic stiffness tuning of the spring based continuum manipulators. The experimental validations have been done both in the simulation environment and on the real prototype. The continuum arm used for the experimentation is a tendon based non constant curvature spring-based manipulator. The average relative positioning error for the zero loading case was found to be 3.83% on the spring based prototype. The controller was successful in bringing down the relative tip positioning error of the manipulator from 5.42% to 2.7% in the simulation environment. It also showed success in bringing down the relative tip positioning error from 7.8% to 3.96% on the real prototype. Average relative tip positioning errors below 4.27% and 4.89% have been achieved in the trajectory following tasks for the known and unknown external loading cases respectively. |
|---|---|
| AbstractList | Predicting tip positions of a spring based continuum manipulator is highly challenging due to its nonlinear deformations. External loading on the tip further deteriorates the accuracy. Model-less control strategies have shown great success in the tip positioning. However, they require a large amount of data and time for the training. Performances of these controllers also deteriorate with external loads. To address these problems, this paper presents a MAML(Model-Agnostic Meta-Learning) based closed loop controller for the continuum manipulators. This controller requires a relatively small amount of data to achieve the state-of-art positioning accuracy. It can also adapt to changes due to the external loads with less than 2.5 percent of the original data. Two algorithms for the offline adaptation of the known and unknown external loading are proposed here. These techniques are also helpful for automatic stiffness tuning of the spring based continuum manipulators. The experimental validations have been done both in the simulation environment and on the real prototype. The continuum arm used for the experimentation is a tendon based non constant curvature spring-based manipulator. The average relative positioning error for the zero loading case was found to be 3.83% on the spring based prototype. The controller was successful in bringing down the relative tip positioning error of the manipulator from 5.42% to 2.7% in the simulation environment. It also showed success in bringing down the relative tip positioning error from 7.8% to 3.96% on the real prototype. Average relative tip positioning errors below 4.27% and 4.89% have been achieved in the trajectory following tasks for the known and unknown external loading cases respectively. |
| Author | Chakraborty, Pavan Sahoo, Alok Ranjan |
| Author_xml | – sequence: 1 givenname: Alok Ranjan orcidid: 0000-0002-3952-3701 surname: Sahoo fullname: Sahoo, Alok Ranjan email: rsi2017503@iiita.ac.in organization: Robotics and Machine Intelligence Laboratory, Department of Information Technology, IIIT Allahabad, Allahabad, India – sequence: 2 givenname: Pavan surname: Chakraborty fullname: Chakraborty, Pavan organization: Robotics and Machine Intelligence Laboratory, Department of Information Technology, IIIT Allahabad, Allahabad, India |
| BookMark | eNp9UcFu3CAUtKJUaprmC3JByqU9eIuNMfhouWkbyatU2uaMsHmsWHlhC_iQa7-8eJ1WVQ9BQjweM8M8zbvs0joLWXZb4E1R4OZT23X3u92mxGW5IUXFWMMusquyqJucUFJf_lO_zW5COOC0eGpRdpX9atEuzuoZOYu-u2CiSUXnbPRuQk4jeb4YO89H1PojegrG7tG23fbow9YpmPJ2b12IZkRbiDLvQXqbIB-Rdh61Sp7iQvhstAYPNqLeSbV0kqw6_xbeZ2-0nALcvJzX2dOX-x_dt7x__PrQtX0-VpjHfGQKM8xxlawPJaGYlBoTQkANFFR60BXnUpKiphgIg3FQZGSMDgQDr_RIrrOHVVc5eRAnb47SPwsnjTg3nN8L6dMgEwgm64FpCpIAVGxoZEkxayQemS4qTlnSulu1Tt79nCFEcXCzt8m-KOuS8YqmnVDNihq9C8GDFqOJchk6emkmUWCxJCjWBMWSoHhJMHHJf9w_jl9n3a4sAwB_GU3dcMxq8htTU6gk |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_TRO_2023_3275375 crossref_primary_10_3390_mi15030313 crossref_primary_10_1016_j_energy_2024_131649 crossref_primary_10_1145_3659943 |
| Cites_doi | 10.1109/LRA.2018.2797241 10.1016/j.mechmachtheory.2020.104062 10.1089/soro.2015.0006 10.1109/LRA.2021.3061311 10.1080/01691864.2018.1554507 10.1089/soro.2017.0079 10.1109/ICRA.2019.8793653 10.1109/ROBOSOFT.2018.8404928 10.3390/app10228031 10.1109/TPAMI.2021.3079209 10.1002/adma.201203002 10.1109/TRO.2009.2022426 10.1109/ROBOSOFT.2019.8722721 10.1080/01691864.2015.1036772 10.1109/IROS.2018.8594451 10.1016/j.mechmachtheory.2021.104429 10.1109/DEVLRN.2011.6037368 10.1007/978-3-319-33714-2_6 10.1088/1748-3190/aa839f 10.1109/IROS.2017.8206123 10.1038/nature14543 10.1109/TRO.2018.2878318 10.1109/ICRA.2019.8794238 10.1016/j.sna.2011.03.008 10.1109/TRO.2014.2314777 10.1089/soro.2017.0111 10.1016/j.mechmachtheory.2016.06.010 10.1109/TMECH.2016.2613410 10.1109/TRO.2008.2002311 10.1109/ICRA.2015.7139904 10.1108/ir-04-2021-0070 10.1109/TMECH.2021.3055339 10.15607/RSS.2019.XV.076 10.1109/TRO.2015.2428511 10.1109/LRA.2021.3061379 10.1016/j.rcim.2016.09.004 10.1109/TRO.2018.2868815 10.1088/1748-3190/10/3/035002 10.1002/rob.10070 10.1016/j.mechmachtheory.2020.104221 10.1109/LRA.2021.3086413 10.3390/app9061142 10.1109/IROS.2011.6094477 10.1007/s12369-021-00761-1 10.1089/soro.2016.0051 10.1177/0278364910368147 10.1016/j.arcontrol.2017.09.006 10.1177/0278364919842269 10.1163/156855306777361631 10.1109/RoboSoft48309.2020.9116003 10.1109/IROS.2012.6385596 10.1089/soro.2018.0047 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2022.3147797 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 14992 |
| ExternalDocumentID | oai_doaj_org_article_7a6b7f5ea3ee47b9a25079a0c7f14857 10_1109_ACCESS_2022_3147797 9698076 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-c7d070804816b235032f0333edb5ed080f488aa31650e37ecbd3c775b30e84fc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000754230500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:04 EDT 2025 Mon Jun 30 05:13:59 EDT 2025 Sat Nov 29 06:31:53 EST 2025 Tue Nov 18 22:32:58 EST 2025 Wed Aug 27 02:49:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-c7d070804816b235032f0333edb5ed080f488aa31650e37ecbd3c775b30e84fc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3952-3701 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9698076 |
| PQID | 2627845784 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2627845784 crossref_primary_10_1109_ACCESS_2022_3147797 ieee_primary_9698076 doaj_primary_oai_doaj_org_article_7a6b7f5ea3ee47b9a25079a0c7f14857 crossref_citationtrail_10_1109_ACCESS_2022_3147797 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 Fallah (ref48) ref14 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 Finn (ref47); 70 ref18 ref51 ref50 ref46 ref45 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref42 doi: 10.1109/LRA.2018.2797241 – ident: ref12 doi: 10.1016/j.mechmachtheory.2020.104062 – ident: ref31 doi: 10.1089/soro.2015.0006 – ident: ref9 doi: 10.1109/LRA.2021.3061311 – ident: ref13 doi: 10.1080/01691864.2018.1554507 – ident: ref26 doi: 10.1089/soro.2017.0079 – ident: ref45 doi: 10.1109/ICRA.2019.8793653 – ident: ref6 doi: 10.1109/ROBOSOFT.2018.8404928 – ident: ref39 doi: 10.3390/app10228031 – volume: 70 start-page: 1126 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref47 article-title: Model-agnostic meta-learning for fast adaptation of deep networks – ident: ref46 doi: 10.1109/TPAMI.2021.3079209 – ident: ref7 doi: 10.1002/adma.201203002 – ident: ref25 doi: 10.1109/TRO.2009.2022426 – ident: ref29 doi: 10.1109/ROBOSOFT.2019.8722721 – ident: ref14 doi: 10.1080/01691864.2015.1036772 – ident: ref53 doi: 10.1109/IROS.2018.8594451 – ident: ref36 doi: 10.1016/j.mechmachtheory.2021.104429 – ident: ref41 doi: 10.1109/DEVLRN.2011.6037368 – ident: ref54 doi: 10.1007/978-3-319-33714-2_6 – ident: ref43 doi: 10.1088/1748-3190/aa839f – ident: ref44 doi: 10.1109/IROS.2017.8206123 – ident: ref1 doi: 10.1038/nature14543 – ident: ref51 doi: 10.1109/TRO.2018.2878318 – ident: ref22 doi: 10.1109/ICRA.2019.8794238 – ident: ref18 doi: 10.1016/j.sna.2011.03.008 – ident: ref10 doi: 10.1109/TRO.2014.2314777 – ident: ref23 doi: 10.1089/soro.2017.0111 – ident: ref30 doi: 10.1016/j.mechmachtheory.2016.06.010 – ident: ref19 doi: 10.1109/TMECH.2016.2613410 – ident: ref24 doi: 10.1109/TRO.2008.2002311 – ident: ref28 doi: 10.1109/ICRA.2015.7139904 – ident: ref50 doi: 10.1108/ir-04-2021-0070 – ident: ref33 doi: 10.1109/TMECH.2021.3055339 – ident: ref32 doi: 10.15607/RSS.2019.XV.076 – ident: ref40 doi: 10.1109/TRO.2015.2428511 – ident: ref2 doi: 10.1109/LRA.2021.3061379 – ident: ref15 doi: 10.1016/j.rcim.2016.09.004 – ident: ref35 doi: 10.1109/TRO.2018.2868815 – ident: ref21 doi: 10.1088/1748-3190/10/3/035002 – ident: ref8 doi: 10.1002/rob.10070 – ident: ref3 doi: 10.1016/j.mechmachtheory.2020.104221 – ident: ref37 doi: 10.1109/LRA.2021.3086413 – ident: ref38 doi: 10.3390/app9061142 – ident: ref20 doi: 10.1109/IROS.2011.6094477 – ident: ref5 doi: 10.1007/s12369-021-00761-1 – ident: ref49 doi: 10.1089/soro.2016.0051 – ident: ref16 doi: 10.1177/0278364910368147 – ident: ref4 doi: 10.1016/j.arcontrol.2017.09.006 – ident: ref34 doi: 10.1177/0278364919842269 – ident: ref11 doi: 10.1163/156855306777361631 – ident: ref52 doi: 10.1109/RoboSoft48309.2020.9116003 – ident: ref17 doi: 10.1109/IROS.2012.6385596 – start-page: 1082 volume-title: Proc. Int. Conf. Artif. Intell. Statist. ident: ref48 article-title: On the convergence theory of gradient-based model-agnostic meta-learning algorithms – ident: ref27 doi: 10.1089/soro.2018.0047 |
| SSID | ssj0000816957 |
| Score | 2.2816217 |
| Snippet | Predicting tip positions of a spring based continuum manipulator is highly challenging due to its nonlinear deformations. External loading on the tip further... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 14980 |
| SubjectTerms | Actuators Adaptation models Algorithms Closed loops Continuum robot Controllers Errors Experimentation Kinematics Learning Loading Manipulators meta learning Model accuracy model-less control Prototypes Robot arms Robots Stiffness Task analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2_T9wwFLYQ6kCHCriiXvkhDwxUqoUTJ7E9plcQw93pBiqxWf5ZIUEOQa4SK395nx1zOgmpXRjjOHbs79l-jr98D6HTeA7YCFcQI2xDKkMDESHUxJpQOsOolcKkYBN8Phc3N3KxEeorcsIGeeCh4865bgwPtdfM-4obqWHN5lJTywN48nX6jxwSNjZTaQ4WRSNrnmWGCirP28kEWgQbwrKEfWrFeZR52liKkmJ_DrHyZl5Oi83lLvqUvUTcDm-3h7Z8t48-bmgHjtBLiyMH8BkvO7zIzCs8GYjneBmwThe33Wp1D-Xc48QNwLN2NsVnMQDaHWkjxw4qwDPfa5KFVn9_w-DG4tbph0iIxj9zAJUeT5eJbh-LdQPP6zP6dXlxPbkiOaACsRUVPbHcwQgXUSKmMSWrKSsDZYx5Z2rv4EaA4aw1K8Bt84x7axyznNeAmRdVsOwAbXfLzn9BWJiiMAaQLIStuPQAaQjaefCmwKPSYozK175VNquNx6AXdyrtOqhUAyAqAqIyIGP0ff3QwyC28e_sPyJo66xRKTslgP2obD_qf_YzRqMI-boQ2UhBeTNGR68moPKoflJlE49pYY6rvr5H1YdoJzZn-KBzhLb7x5U_Rh_sn_726fEkGfRf9yv2ug priority: 102 providerName: Directory of Open Access Journals |
| Title | A Study on Position Control of a Continuum Arm Using MAML (Model-Agnostic Meta-Learning) for Adapting Different Loading Conditions |
| URI | https://ieeexplore.ieee.org/document/9698076 https://www.proquest.com/docview/2627845784 https://doaj.org/article/7a6b7f5ea3ee47b9a25079a0c7f14857 |
| Volume | 10 |
| WOSCitedRecordID | wos000754230500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9UwFLbaigEGXgX10lJ5YACppkmcxPYYLq0YeqsOIHWz_ESV2qRqc5FYGPjlPcdxo0ogJJYoD7-iL7bPsb98h5B3uA_YSl8yK13LaltEJmNsmLOx8pYXTkmbgk2I01N5fq7ONsjB_C9MCCGRz8JHPE17-X5wa1wqO1StkuB3b5JNqGD6V2teT8EAEqoRWVioLNRht1zCO4ALWFXgmdZCoLDTg8knafTnoCp_jMRpejl-9n8Ne06eZjOSdhPuL8hG6F-SJw_EBbfJ744iSfAnHXp6lqlZdDkx0-kQqUkXF_16fQXlXNFEHqCrbnVC32OEtEvWIQkPKqCrMBqWlVi_f6Bg59LOm2tkTNPPOcLKSE-GxMfHYv1EBHtFvh0ffV1-YTniAnN1IUfmhIchQKKGTGsr3hS8igXnPHjbBA8PIvR3Y3gJdl3gIjjruROiAVCDrKPjr8lWP_Rhh1Bpy9JagLqUrhYqAOYxGh_A3AKTy8gFqe6h0C7LkWNUjEud3JJC6Qk_jfjpjN-CHMyZric1jn8n_4QYz0lRSjvdAPB07plamNaK2ATDQ6iFVQaMQqFM4UQEV7GBQrYR8LmQjPWC7N1_MTp3-1tdtbiPC4Ng_ebvuXbJY2zgtIazR7bGm3V4Sx65H-PF7c1-WhCA4-rX0X76uu8ADEn17Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxUxFA61CtqFryperZqFC4WOzUwyk2Q5vVoq3nvpokJ3IU8ptDOlnSu47S_3JJMOBYvgbh5JJsOXxznJl-8g9CHuAzbClYURtimYIaEQIdSFNaFyhhIrhUnBJvhqJU5O5NEG2p3OwnjvE_nMf46XaS_f9XYdl8r2ZCMF-N330P2asYqMp7WmFZUYQkLWPEsLlUTutfM5_AU4gVUFvinjPEo73Zp-kkp_Dqvy11icJpiDJ_9XtafocTYkcTsi_wxt-O452rolL7iNrlscaYK_cd_ho0zOwvORm477gHW6Oe3W63Mo5xwn-gBetssF_hhjpJ0VbaThwQfw0g-6yFqsPz9hsHRx6_RF5EzjLznGyoAXfWLkx2LdSAV7gX4cfD2eHxY55kJhGRFDYbmDQUBEFZnGVLQmtAqEUuqdqb2DFwF6vNa0BMvOU-6tcdRyXgOsXrBg6Uu02fWdf4WwMGVpDIBdCsu49IB6CNp5MLjA6NJihqobKJTNguQxLsaZSo4JkWrET0X8VMZvhnanTBejHse_k-9HjKekUUw7PQDwVO6biuvG8FB7Tb1n3EgNZiGXmlgewFmsoZDtCPhUSMZ6hnZuWozKHf9KVU3cyYVhkL2-O9d79PDweLlQi2-r72_Qo1jZcUVnB20Ol2v_Fj2wv4bTq8t3qXX_AWIb9w4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+on+Position+Control+of+a+Continuum+Arm+Using+MAML+%28Model-Agnostic+Meta-Learning%29+for+Adapting+Different+Loading+Conditions&rft.jtitle=IEEE+access&rft.au=Sahoo%2C+Alok+Ranjan&rft.au=Chakraborty%2C+Pavan&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=14980&rft.epage=14992&rft_id=info:doi/10.1109%2FACCESS.2022.3147797&rft.externalDocID=9698076 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |