MOPGO: A New Physics-Based Multi-Objective Plasma Generation Optimizer for Solving Structural Optimization Problems

This paper proposes a new Multi-Objective Plasma Generation Optimization (MOPGO) algorithm, and its non-dominated sorting mechanism is investigated for numerous challenging real-world structural optimization design problems. The Plasma Generation Optimization (PGO) algorithm is a recently reported p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 9; pp. 84982 - 85016
Main Authors: Kumar, Sumit, Jangir, Pradeep, Tejani, Ghanshyam G., Premkumar, Manoharan, Alhelou, Hassan Haes
Format: Journal Article
Language:English
Published: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a new Multi-Objective Plasma Generation Optimization (MOPGO) algorithm, and its non-dominated sorting mechanism is investigated for numerous challenging real-world structural optimization design problems. The Plasma Generation Optimization (PGO) algorithm is a recently reported physics-based algorithm inspired by the generation process of plasma in which electron movement and its energy level are based on excitation modes, de-excitation, and ionization processes. As the search progresses, a better balance between exploration and exploitation has a more significant impact on the results; thus, the crowding distance feature is incorporated in the proposed MOPGO algorithm. Also, the proposed posteriori method exercises a non-dominated sorting strategy to preserve population diversity, which is a crucial problem in multi-objective meta-heuristic algorithms. In truss design problems, minimization of the truss's mass and maximization of nodal displacement are considered objective functions. In contrast, elemental stress and discrete cross-sectional areas are assumed to be behavior and side constraints, respectively. The usefulness of MOPGO to solve complex problems is validated by eight truss-bar design problems. The efficacy of MOPGO is evaluated based on ten performance metrics. The results demonstrate that the proposed MOPGO algorithm achieves the optimal solution with less computational complexity and has a better convergence, coverage, diversity, and spread. The Pareto fronts of MOPGO are compared and contrasted with multi-objective passing vehicle search algorithm, multi-objective slime mould algorithm, multi-objective symbiotic organisms search algorithm, and multi-objective ant lion optimization algorithm. This study will be further supported with external guidance at https://premkumarmanoharan.wixsite.com/mysite .
AbstractList This paper proposes a new Multi-Objective Plasma Generation Optimization (MOPGO) algorithm, and its non-dominated sorting mechanism is investigated for numerous challenging real-world structural optimization design problems. The Plasma Generation Optimization (PGO) algorithm is a recently reported physics-based algorithm inspired by the generation process of plasma in which electron movement and its energy level are based on excitation modes, de-excitation, and ionization processes. As the search progresses, a better balance between exploration and exploitation has a more significant impact on the results; thus, the crowding distance feature is incorporated in the proposed MOPGO algorithm. Also, the proposed posteriori method exercises a non-dominated sorting strategy to preserve population diversity, which is a crucial problem in multi-objective meta-heuristic algorithms. In truss design problems, minimization of the truss’s mass and maximization of nodal displacement are considered objective functions. In contrast, elemental stress and discrete cross-sectional areas are assumed to be behavior and side constraints, respectively. The usefulness of MOPGO to solve complex problems is validated by eight truss-bar design problems. The efficacy of MOPGO is evaluated based on ten performance metrics. The results demonstrate that the proposed MOPGO algorithm achieves the optimal solution with less computational complexity and has a better convergence, coverage, diversity, and spread. The Pareto fronts of MOPGO are compared and contrasted with multi-objective passing vehicle search algorithm, multi-objective slime mould algorithm, multi-objective symbiotic organisms search algorithm, and multi-objective ant lion optimization algorithm. This study will be further supported with external guidance at https://premkumarmanoharan.wixsite.com/mysite .
Author Jangir, Pradeep
Tejani, Ghanshyam G.
Premkumar, Manoharan
Alhelou, Hassan Haes
Kumar, Sumit
Author_xml – sequence: 1
  givenname: Sumit
  orcidid: 0000-0003-3042-3779
  surname: Kumar
  fullname: Kumar, Sumit
  organization: Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston, TAS, Australia
– sequence: 2
  givenname: Pradeep
  orcidid: 0000-0001-6944-4775
  surname: Jangir
  fullname: Jangir, Pradeep
  organization: Rajasthan Rajya Vidyut Prasaran Nigam, Sikar, India
– sequence: 3
  givenname: Ghanshyam G.
  orcidid: 0000-0001-9106-0313
  surname: Tejani
  fullname: Tejani, Ghanshyam G.
  organization: Department of Mechanical Engineering, School of Technology, GSFC University, Vadodara, India
– sequence: 4
  givenname: Manoharan
  orcidid: 0000-0003-1032-4634
  surname: Premkumar
  fullname: Premkumar, Manoharan
  email: mprem.me@gmail.com
  organization: Department of Electrical and Electronics Engineering, Dayananda Sagar College of Engineering, Bengaluru, India
– sequence: 5
  givenname: Hassan Haes
  orcidid: 0000-0002-7427-2848
  surname: Alhelou
  fullname: Alhelou, Hassan Haes
  email: alhelou@ieee.org
  organization: Faculty of Mechanical and Electrical Engineering, Tishreen University, Lattakia, Syria
BookMark eNqFkUFP3DAQhSNEpVLgF3Cx1HO2dhzHdm_bFWyRoFlp27NlO2PwKhtvbYeK_voGQlHVC76MNXrfm9G8D8XxEAYoiguCF4Rg-Wm5Wl1ut4sKV2RBseCcyqPipCKNLCmjzfE___fFeUo7PD0xtRg_KdJtu1m3n9ESfYNfaHP_mLxN5RedoEO3Y5992Zod2OwfAG16nfYarWGAqLMPA2oP2e_9b4jIhYi2oX_wwx3a5jjaPEbd_xXM6k0Mpod9OiveOd0nOH-pp8WPq8vvq6_lTbu-Xi1vSltjkUvLOAEjuLTcVdwSzYl0hIAwFqTD1DneGWMNcbwh4DQzzjSdZEzzCcKCnhbXs28X9E4dot_r-KiC9uq5EeKd0jF724MyUBkmqTCg61p00nDNmeEd1Bw64-rJ6-PsdYjh5wgpq10Y4zCtrypWVwwTSatJRWeVjSGlCO51KsHqKSw1h6WewlIvYU2U_I-yPj-fLEft-zfYi5n1APA6Tda1FKyhfwBhWaZK
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3409689
crossref_primary_10_1109_ACCESS_2024_3444607
crossref_primary_10_1109_ACCESS_2022_3158357
crossref_primary_10_1080_23080477_2025_2501323
crossref_primary_10_1109_ACCESS_2024_3386560
crossref_primary_10_1371_journal_pone_0308474
crossref_primary_10_1080_15397734_2024_2389109
crossref_primary_10_1016_j_matcom_2025_07_024
crossref_primary_10_1016_j_asej_2025_103590
crossref_primary_10_1038_s41598_024_82918_2
crossref_primary_10_1016_j_apenergy_2024_122707
crossref_primary_10_1093_jcde_qwab065
crossref_primary_10_1109_ACCESS_2024_3431540
crossref_primary_10_1109_ACCESS_2022_3186696
crossref_primary_10_32604_cmc_2023_030379
crossref_primary_10_1016_j_swevo_2022_101196
crossref_primary_10_1016_j_aej_2025_09_015
crossref_primary_10_1016_j_compstruc_2023_107230
crossref_primary_10_1109_ACCESS_2023_3316619
crossref_primary_10_1016_j_engappai_2024_108216
crossref_primary_10_1016_j_engstruct_2025_121261
crossref_primary_10_1016_j_engappai_2021_104479
crossref_primary_10_1515_mt_2022_0183
crossref_primary_10_1109_TMECH_2024_3399056
crossref_primary_10_1007_s00521_023_08587_w
crossref_primary_10_1016_j_heliyon_2024_e26369
crossref_primary_10_1080_00051144_2021_2014035
crossref_primary_10_1109_ACCESS_2022_3183902
crossref_primary_10_3390_a17100433
crossref_primary_10_1016_j_asoc_2023_110525
crossref_primary_10_1016_j_eswa_2023_122732
crossref_primary_10_1016_j_heliyon_2024_e39308
crossref_primary_10_32604_cmc_2022_020847
crossref_primary_10_1007_s00158_023_03639_0
crossref_primary_10_3390_electronics11223825
crossref_primary_10_1515_mt_2022_0308
crossref_primary_10_1007_s12065_021_00649_z
crossref_primary_10_1080_23307706_2022_2105267
crossref_primary_10_1109_ACCESS_2022_3202019
crossref_primary_10_1038_s41598_024_52083_7
crossref_primary_10_1007_s42235_022_00307_9
crossref_primary_10_1007_s00500_022_06930_2
crossref_primary_10_1016_j_egyr_2025_05_056
crossref_primary_10_1109_ACCESS_2023_3280057
crossref_primary_10_1109_ACCESS_2023_3311271
crossref_primary_10_1016_j_engappai_2025_111412
crossref_primary_10_1002_jnm_3163
crossref_primary_10_1093_jcde_qwad108
crossref_primary_10_1016_j_knosys_2022_110242
crossref_primary_10_1007_s00158_022_03414_7
crossref_primary_10_1016_j_eswa_2025_128127
crossref_primary_10_1515_mt_2024_0188
crossref_primary_10_1016_j_jclepro_2023_140277
crossref_primary_10_1109_TNSM_2022_3160376
crossref_primary_10_1080_08839514_2021_1975392
crossref_primary_10_1016_j_knosys_2025_113978
crossref_primary_10_1007_s12008_025_02280_z
crossref_primary_10_1016_j_heliyon_2024_e26665
crossref_primary_10_1111_exsy_12992
crossref_primary_10_1016_j_energy_2025_136826
crossref_primary_10_3390_math11081898
crossref_primary_10_1016_j_asoc_2024_112466
crossref_primary_10_3390_buildings14010191
crossref_primary_10_1016_j_knosys_2022_109591
crossref_primary_10_1007_s10115_022_01825_y
crossref_primary_10_1080_23080477_2021_1975074
crossref_primary_10_1016_j_eswa_2023_123044
Cites_doi 10.1109/4235.585893
10.1016/j.knosys.2015.12.022
10.1016/j.knosys.2018.08.005
10.1109/CEC.1999.781913
10.1016/j.apm.2013.07.027
10.1016/j.future.2019.02.028
10.1016/j.engappai.2018.04.018
10.1007/s00366-018-0662-y
10.1016/j.knosys.2018.03.011
10.1016/j.eswa.2020.114511
10.1016/j.knosys.2021.106856
10.1109/ACCESS.2020.3047936
10.1007/s42107-020-00271-x
10.1016/j.future.2020.03.055
10.1016/j.knosys.2015.07.006
10.1016/S0168-874X(00)00057-3
10.1109/ACCESS.2021.3073821
10.1007/s10489-016-0825-8
10.1016/j.knosys.2021.106811
10.1016/j.knosys.2017.07.018
10.1023/A:1008202821328
10.1109/TEVC.2007.892759
10.1108/EC-05-2020-0235
10.1016/j.jestch.2016.10.007
10.1016/j.knosys.2020.105781
10.1109/ICNN.1995.488968
10.1007/3-540-44719-9_5
10.1109/CEC.2002.1004388
10.1016/j.eswa.2020.113377
10.1109/4235.996017
10.1016/j.knosys.2015.07.040
10.1109/CEC.1999.782657
10.1007/s00366-019-00846-6
10.1109/ICEC.1995.489161
10.1016/j.advengsoft.2015.01.010
10.1016/j.knosys.2020.106556
10.1016/j.advengsoft.2013.12.007
10.1109/4235.797969
10.1109/ACCESS.2021.3085529
10.1007/s00366-020-01010-1
10.32604/cmc.2021.015565
10.1016/j.cor.2011.09.026
10.1109/CEC.2001.934295
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3087739
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 85016
ExternalDocumentID oai_doaj_org_article_be2b5938bea448d9b7a75b7de47edbf4
10_1109_ACCESS_2021_3087739
9449856
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-c571eb879c7f27c1a719f11e8bce9f03ff7dbbcb1f761efa5bfb6d955a7879083
IEDL.DBID RIE
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673207700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:26 EDT 2025
Sun Nov 30 03:59:01 EST 2025
Sat Nov 29 06:12:21 EST 2025
Tue Nov 18 21:17:28 EST 2025
Wed Aug 27 02:50:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c571eb879c7f27c1a719f11e8bce9f03ff7dbbcb1f761efa5bfb6d955a7879083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6944-4775
0000-0002-7427-2848
0000-0001-9106-0313
0000-0003-1032-4634
0000-0003-3042-3779
OpenAccessLink https://ieeexplore.ieee.org/document/9449856
PQID 2542501932
PQPubID 4845423
PageCount 35
ParticipantIDs proquest_journals_2542501932
ieee_primary_9449856
doaj_primary_oai_doaj_org_article_be2b5938bea448d9b7a75b7de47edbf4
crossref_citationtrail_10_1109_ACCESS_2021_3087739
crossref_primary_10_1109_ACCESS_2021_3087739
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref37
ref15
li (ref42) 2003
ref36
ref14
ref31
ref30
ref33
ref11
ref10
premkumar (ref27) 2021
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref46
ref24
ref45
ref23
ref48
ref26
ref47
ref25
ref20
ref22
ref44
ref21
ref43
corne (ref13) 2001
ref28
ref29
rao (ref32) 2016; 7
ref8
ref7
ref9
ref4
ref3
kumar (ref5) 2021; 37
ref6
deb (ref41) 2001
ref40
zitzler (ref12) 0; 103
References_xml – ident: ref39
  doi: 10.1109/4235.585893
– ident: ref35
  doi: 10.1016/j.knosys.2015.12.022
– ident: ref25
  doi: 10.1016/j.knosys.2018.08.005
– ident: ref14
  doi: 10.1109/CEC.1999.781913
– ident: ref44
  doi: 10.1016/j.apm.2013.07.027
– ident: ref33
  doi: 10.1016/j.future.2019.02.028
– ident: ref26
  doi: 10.1016/j.engappai.2018.04.018
– ident: ref20
  doi: 10.1007/s00366-018-0662-y
– ident: ref3
  doi: 10.1016/j.knosys.2018.03.011
– volume: 103
  year: 0
  ident: ref12
  publication-title: SPEA2 Improving the strength Pareto evolutionary algorithm
– ident: ref4
  doi: 10.1016/j.eswa.2020.114511
– ident: ref46
  doi: 10.1016/j.knosys.2021.106856
– ident: ref45
  doi: 10.1109/ACCESS.2020.3047936
– ident: ref22
  doi: 10.1007/s42107-020-00271-x
– ident: ref30
  doi: 10.1016/j.future.2020.03.055
– ident: ref37
  doi: 10.1016/j.knosys.2015.07.006
– ident: ref7
  doi: 10.1016/S0168-874X(00)00057-3
– ident: ref38
  doi: 10.1109/ACCESS.2021.3073821
– ident: ref23
  doi: 10.1007/s10489-016-0825-8
– ident: ref24
  doi: 10.1016/j.knosys.2021.106811
– ident: ref21
  doi: 10.1016/j.knosys.2017.07.018
– ident: ref8
  doi: 10.1023/A:1008202821328
– ident: ref18
  doi: 10.1109/TEVC.2007.892759
– ident: ref40
  doi: 10.1108/EC-05-2020-0235
– ident: ref28
  doi: 10.1016/j.jestch.2016.10.007
– ident: ref2
  doi: 10.1016/j.knosys.2020.105781
– ident: ref9
  doi: 10.1109/ICNN.1995.488968
– start-page: 67
  year: 2001
  ident: ref41
  article-title: Controlled elitist non-dominated sorting genetic algorithms for better convergence
  publication-title: Proc Int Conf Evol Multi-Criterion Optim
  doi: 10.1007/3-540-44719-9_5
– ident: ref17
  doi: 10.1109/CEC.2002.1004388
– ident: ref31
  doi: 10.1016/j.eswa.2020.113377
– ident: ref11
  doi: 10.1109/4235.996017
– ident: ref6
  doi: 10.1016/j.knosys.2015.07.040
– ident: ref10
  doi: 10.1109/CEC.1999.782657
– ident: ref15
  doi: 10.1007/s00366-019-00846-6
– ident: ref19
  doi: 10.1109/ICEC.1995.489161
– volume: 7
  start-page: 19
  year: 2016
  ident: ref32
  article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: Int J Ind Eng Comput
– ident: ref36
  doi: 10.1016/j.advengsoft.2015.01.010
– ident: ref1
  doi: 10.1016/j.knosys.2020.106556
– ident: ref29
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref48
  doi: 10.1109/4235.797969
– ident: ref47
  doi: 10.1109/ACCESS.2021.3085529
– volume: 37
  start-page: 641
  year: 2021
  ident: ref5
  article-title: Multi-objective modified heat transfer search for truss optimization
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01010-1
– start-page: 1
  year: 2021
  ident: ref27
  article-title: Enhanced chaotic JAYA algorithm for parameter estimation of photovoltaic cell/modules
  publication-title: ISA Trans
– ident: ref34
  doi: 10.32604/cmc.2021.015565
– start-page: 283
  year: 2001
  ident: ref13
  article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization
  publication-title: Proc 3rd Annu Conf Genet Evol Comput
– ident: ref16
  doi: 10.1016/j.cor.2011.09.026
– ident: ref43
  doi: 10.1109/CEC.2001.934295
– start-page: 37
  year: 2003
  ident: ref42
  article-title: A non-dominated sorting particle swarm optimizer for multiobjective optimization
  publication-title: Proc Genet Evol Comput Conf
SSID ssj0000816957
Score 2.495673
Snippet This paper proposes a new Multi-Objective Plasma Generation Optimization (MOPGO) algorithm, and its non-dominated sorting mechanism is investigated for...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 84982
SubjectTerms Algorithms
Complexity
Constraints optimization problems
crowding distance
Design optimization
Energy levels
Energy states
Excitation
Heuristic methods
Ionization
meta-heuristics
Multiple objective analysis
non-dominated sorting
numerical optimization
Optimization
Pareto front
Performance measurement
Plasma
Plasma (physics)
Plasmas
Search algorithms
Search problems
Slime
Sorting
Sorting algorithms
structure optimization
Symbiosis
Trusses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ6oEeEI-ibnnIB464xIkT273trgocgF2JtuJmeRxbAi1LRRAHfn3Hdna1UiW4cI0mTuJvPA_L-T5CjltMW5FVnWnhBROiVUwp4ZhXtrJaSF8l_ZQ_l_L6Wt3e6umK1Fc8E5bpgfPEnYIvodaVAm-xk2g1SCtrkK3HcVoIiQm0kHqlmUoxWPFG17KnGeKFPh2Ox_hF2BCW_HtiwYvy4CupKDH29xIr_8XllGzOtshmXyXSYX67bbLm5zvk8wp34C7pribT88kPOqQYp2g6yOk6NsKk1NL0Vy2bwH2OZnSKJfKDpZliOiJBJxgpHu5e_RPFopXePM7ivgK9SWSykYhjYZCtp1l1pvtCfp_9_DW-YL2CAnOiUM_M1ZJ7UFI7GUrpuJVcB869Aud1KKoQZAvggAfZcB9sDQGaVte1xXWssTrbI-vzx7n_SijIAnsfF6WuImlgCVUDlQvcSW45qGJAysVkGtfTi0eVi5lJbUahTUbARARMj8CAnCxv-pvZNd42H0WUlqaRGjtdQIcxvcOY9xxmQHYjxstBtBBa1c2AHCwwN_0y7gx2z1gixhr320c8ep9sxM_JOzgHZB1B9Yfkk3t5vuuejpIH_wMeMvR4
  priority: 102
  providerName: Directory of Open Access Journals
Title MOPGO: A New Physics-Based Multi-Objective Plasma Generation Optimizer for Solving Structural Optimization Problems
URI https://ieeexplore.ieee.org/document/9449856
https://www.proquest.com/docview/2542501932
https://doaj.org/article/be2b5938bea448d9b7a75b7de47edbf4
Volume 9
WOSCitedRecordID wos000673207700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc48CqILaXygWPTxokT29y2qxYOtLtSAfVm-Sm1andRU3rgwG9n_NioEgiJSxRF4yjJZ49nJvb3Abx3OG1FVvVKMs8qxpyohGC28kK3WjLu26Sf8u0zPzsTFxdysQH7414Y731afOYP4mn6l-9W9kcslR1KxqTo-k3Y5LzPe7XGekoUkJAdL8RCtJaH09kM3wFTwIYeJN67KAj-YPJJHP1FVOUPT5yml5Nn__dgz-FpCSPJNOP-Ajb88iU8eUAuuA3D6Xzxcf6BTAk6MpJWetqhOsJZy5G07baam6vs7sgCY-gbTTIHdYSKzNGV3Fz-9LcEo1pyvrqOhQdynthmI1PH2iBbL7IszfAKvp4cf5l9qorEQmVZLe4q23HqjeDS8tBwSzWnMlDqhbFehroNgTtjrKGB99QH3Zlgeie7TuNAlxi-vYat5Wrp3wAxvMbkyEYtrMgq2Ji2N60N1HKqqRH1BJr1t1e28I9HGYxrlfKQWqoMmIqAqQLYBPbHRt8z_ca_zY8iqKNp5M5OFxAtVYaiMr4xnWyF8RpzUycN17wz3Hnsmc4ENoHtiPB4kwLuBHbXXUSVcT4oTK8xhoxB8M7fW72Fx_EBc9FmF7YQJv8OHtn7u8vhdi9VAPB4-ut4L3Xn34bp8iM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTxQxHP4F0UQ44AOMK6g9eKQwnWm3rbdlI2JcdjcBDbdm-kowsEsY5OBfb187IdGYeJtM2klnvvb3mvb7AD7Y4LYiqzqW1FFMqRVYCGqwE23TSspdk_RTvk_4dCouLuR8Dfb7szDOubT5zB3Ey_Qv3y7Nz1gqO5SUSsGGj-Axo7Su8mmtvqISJSQk44VaiFTycDQeh7cISWBNDhLzXZQEf-B-Ekt_kVX5wxYnB3P87P-G9hy2SiCJRhn5F7DmFi9h8wG94DZ0p7P559lHNELBlKG019N0-Cj4LYvSwVs80z-ywUPzEEVftyizUEew0CwYk-vLX-4WhbgWnS2vYukBnSW-2cjVsWqQW8-zME23A9-OP52PT3ARWcCGVuIOG8aJ04JLw33NDWk5kZ4QJ7Rx0leN99xqbTTxfEicb5n2emglY21Y6jIEcK9gfbFcuNeANK9CemSiGlbkFax1M9SN8cRw0hItqgHUq2-vTGEgj0IYVyplIpVUGTAVAVMFsAHs951uMgHHv5sfRVD7ppE9O90IaKmyGJV2tWayEdq1ITu1UvOWM82tC3PTak8HsB0R7h9SwB3A3mqKqLLSOxUS7BBFxjD4zd97vYenJ-enEzX5Mv26CxtxsLmEswfrATL3Fp6Y-7vL7vZdms6_AdVA80Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOPGO%3A+A+New+Physics-Based+Multi-Objective+Plasma+Generation+Optimizer+for+Solving+Structural+Optimization+Problems&rft.jtitle=IEEE+access&rft.au=Kumar%2C+Sumit&rft.au=Jangir%2C+Pradeep&rft.au=Tejani%2C+Ghanshyam+G.&rft.au=Premkumar%2C+Manoharan&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=84982&rft.epage=85016&rft_id=info:doi/10.1109%2FACCESS.2021.3087739&rft.externalDocID=9449856
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon