MOPGO: A New Physics-Based Multi-Objective Plasma Generation Optimizer for Solving Structural Optimization Problems
This paper proposes a new Multi-Objective Plasma Generation Optimization (MOPGO) algorithm, and its non-dominated sorting mechanism is investigated for numerous challenging real-world structural optimization design problems. The Plasma Generation Optimization (PGO) algorithm is a recently reported p...
Saved in:
| Published in: | IEEE access Vol. 9; pp. 84982 - 85016 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a new Multi-Objective Plasma Generation Optimization (MOPGO) algorithm, and its non-dominated sorting mechanism is investigated for numerous challenging real-world structural optimization design problems. The Plasma Generation Optimization (PGO) algorithm is a recently reported physics-based algorithm inspired by the generation process of plasma in which electron movement and its energy level are based on excitation modes, de-excitation, and ionization processes. As the search progresses, a better balance between exploration and exploitation has a more significant impact on the results; thus, the crowding distance feature is incorporated in the proposed MOPGO algorithm. Also, the proposed posteriori method exercises a non-dominated sorting strategy to preserve population diversity, which is a crucial problem in multi-objective meta-heuristic algorithms. In truss design problems, minimization of the truss's mass and maximization of nodal displacement are considered objective functions. In contrast, elemental stress and discrete cross-sectional areas are assumed to be behavior and side constraints, respectively. The usefulness of MOPGO to solve complex problems is validated by eight truss-bar design problems. The efficacy of MOPGO is evaluated based on ten performance metrics. The results demonstrate that the proposed MOPGO algorithm achieves the optimal solution with less computational complexity and has a better convergence, coverage, diversity, and spread. The Pareto fronts of MOPGO are compared and contrasted with multi-objective passing vehicle search algorithm, multi-objective slime mould algorithm, multi-objective symbiotic organisms search algorithm, and multi-objective ant lion optimization algorithm. This study will be further supported with external guidance at https://premkumarmanoharan.wixsite.com/mysite . |
|---|---|
| AbstractList | This paper proposes a new Multi-Objective Plasma Generation Optimization (MOPGO) algorithm, and its non-dominated sorting mechanism is investigated for numerous challenging real-world structural optimization design problems. The Plasma Generation Optimization (PGO) algorithm is a recently reported physics-based algorithm inspired by the generation process of plasma in which electron movement and its energy level are based on excitation modes, de-excitation, and ionization processes. As the search progresses, a better balance between exploration and exploitation has a more significant impact on the results; thus, the crowding distance feature is incorporated in the proposed MOPGO algorithm. Also, the proposed posteriori method exercises a non-dominated sorting strategy to preserve population diversity, which is a crucial problem in multi-objective meta-heuristic algorithms. In truss design problems, minimization of the truss’s mass and maximization of nodal displacement are considered objective functions. In contrast, elemental stress and discrete cross-sectional areas are assumed to be behavior and side constraints, respectively. The usefulness of MOPGO to solve complex problems is validated by eight truss-bar design problems. The efficacy of MOPGO is evaluated based on ten performance metrics. The results demonstrate that the proposed MOPGO algorithm achieves the optimal solution with less computational complexity and has a better convergence, coverage, diversity, and spread. The Pareto fronts of MOPGO are compared and contrasted with multi-objective passing vehicle search algorithm, multi-objective slime mould algorithm, multi-objective symbiotic organisms search algorithm, and multi-objective ant lion optimization algorithm. This study will be further supported with external guidance at https://premkumarmanoharan.wixsite.com/mysite . |
| Author | Jangir, Pradeep Tejani, Ghanshyam G. Premkumar, Manoharan Alhelou, Hassan Haes Kumar, Sumit |
| Author_xml | – sequence: 1 givenname: Sumit orcidid: 0000-0003-3042-3779 surname: Kumar fullname: Kumar, Sumit organization: Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston, TAS, Australia – sequence: 2 givenname: Pradeep orcidid: 0000-0001-6944-4775 surname: Jangir fullname: Jangir, Pradeep organization: Rajasthan Rajya Vidyut Prasaran Nigam, Sikar, India – sequence: 3 givenname: Ghanshyam G. orcidid: 0000-0001-9106-0313 surname: Tejani fullname: Tejani, Ghanshyam G. organization: Department of Mechanical Engineering, School of Technology, GSFC University, Vadodara, India – sequence: 4 givenname: Manoharan orcidid: 0000-0003-1032-4634 surname: Premkumar fullname: Premkumar, Manoharan email: mprem.me@gmail.com organization: Department of Electrical and Electronics Engineering, Dayananda Sagar College of Engineering, Bengaluru, India – sequence: 5 givenname: Hassan Haes orcidid: 0000-0002-7427-2848 surname: Alhelou fullname: Alhelou, Hassan Haes email: alhelou@ieee.org organization: Faculty of Mechanical and Electrical Engineering, Tishreen University, Lattakia, Syria |
| BookMark | eNqFkUFP3DAQhSNEpVLgF3Cx1HO2dhzHdm_bFWyRoFlp27NlO2PwKhtvbYeK_voGQlHVC76MNXrfm9G8D8XxEAYoiguCF4Rg-Wm5Wl1ut4sKV2RBseCcyqPipCKNLCmjzfE___fFeUo7PD0xtRg_KdJtu1m3n9ESfYNfaHP_mLxN5RedoEO3Y5992Zod2OwfAG16nfYarWGAqLMPA2oP2e_9b4jIhYi2oX_wwx3a5jjaPEbd_xXM6k0Mpod9OiveOd0nOH-pp8WPq8vvq6_lTbu-Xi1vSltjkUvLOAEjuLTcVdwSzYl0hIAwFqTD1DneGWMNcbwh4DQzzjSdZEzzCcKCnhbXs28X9E4dot_r-KiC9uq5EeKd0jF724MyUBkmqTCg61p00nDNmeEd1Bw64-rJ6-PsdYjh5wgpq10Y4zCtrypWVwwTSatJRWeVjSGlCO51KsHqKSw1h6WewlIvYU2U_I-yPj-fLEft-zfYi5n1APA6Tda1FKyhfwBhWaZK |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3409689 crossref_primary_10_1109_ACCESS_2024_3444607 crossref_primary_10_1109_ACCESS_2022_3158357 crossref_primary_10_1080_23080477_2025_2501323 crossref_primary_10_1109_ACCESS_2024_3386560 crossref_primary_10_1371_journal_pone_0308474 crossref_primary_10_1080_15397734_2024_2389109 crossref_primary_10_1016_j_matcom_2025_07_024 crossref_primary_10_1016_j_asej_2025_103590 crossref_primary_10_1038_s41598_024_82918_2 crossref_primary_10_1016_j_apenergy_2024_122707 crossref_primary_10_1093_jcde_qwab065 crossref_primary_10_1109_ACCESS_2024_3431540 crossref_primary_10_1109_ACCESS_2022_3186696 crossref_primary_10_32604_cmc_2023_030379 crossref_primary_10_1016_j_swevo_2022_101196 crossref_primary_10_1016_j_aej_2025_09_015 crossref_primary_10_1016_j_compstruc_2023_107230 crossref_primary_10_1109_ACCESS_2023_3316619 crossref_primary_10_1016_j_engappai_2024_108216 crossref_primary_10_1016_j_engstruct_2025_121261 crossref_primary_10_1016_j_engappai_2021_104479 crossref_primary_10_1515_mt_2022_0183 crossref_primary_10_1109_TMECH_2024_3399056 crossref_primary_10_1007_s00521_023_08587_w crossref_primary_10_1016_j_heliyon_2024_e26369 crossref_primary_10_1080_00051144_2021_2014035 crossref_primary_10_1109_ACCESS_2022_3183902 crossref_primary_10_3390_a17100433 crossref_primary_10_1016_j_asoc_2023_110525 crossref_primary_10_1016_j_eswa_2023_122732 crossref_primary_10_1016_j_heliyon_2024_e39308 crossref_primary_10_32604_cmc_2022_020847 crossref_primary_10_1007_s00158_023_03639_0 crossref_primary_10_3390_electronics11223825 crossref_primary_10_1515_mt_2022_0308 crossref_primary_10_1007_s12065_021_00649_z crossref_primary_10_1080_23307706_2022_2105267 crossref_primary_10_1109_ACCESS_2022_3202019 crossref_primary_10_1038_s41598_024_52083_7 crossref_primary_10_1007_s42235_022_00307_9 crossref_primary_10_1007_s00500_022_06930_2 crossref_primary_10_1016_j_egyr_2025_05_056 crossref_primary_10_1109_ACCESS_2023_3280057 crossref_primary_10_1109_ACCESS_2023_3311271 crossref_primary_10_1016_j_engappai_2025_111412 crossref_primary_10_1002_jnm_3163 crossref_primary_10_1093_jcde_qwad108 crossref_primary_10_1016_j_knosys_2022_110242 crossref_primary_10_1007_s00158_022_03414_7 crossref_primary_10_1016_j_eswa_2025_128127 crossref_primary_10_1515_mt_2024_0188 crossref_primary_10_1016_j_jclepro_2023_140277 crossref_primary_10_1109_TNSM_2022_3160376 crossref_primary_10_1080_08839514_2021_1975392 crossref_primary_10_1016_j_knosys_2025_113978 crossref_primary_10_1007_s12008_025_02280_z crossref_primary_10_1016_j_heliyon_2024_e26665 crossref_primary_10_1111_exsy_12992 crossref_primary_10_1016_j_energy_2025_136826 crossref_primary_10_3390_math11081898 crossref_primary_10_1016_j_asoc_2024_112466 crossref_primary_10_3390_buildings14010191 crossref_primary_10_1016_j_knosys_2022_109591 crossref_primary_10_1007_s10115_022_01825_y crossref_primary_10_1080_23080477_2021_1975074 crossref_primary_10_1016_j_eswa_2023_123044 |
| Cites_doi | 10.1109/4235.585893 10.1016/j.knosys.2015.12.022 10.1016/j.knosys.2018.08.005 10.1109/CEC.1999.781913 10.1016/j.apm.2013.07.027 10.1016/j.future.2019.02.028 10.1016/j.engappai.2018.04.018 10.1007/s00366-018-0662-y 10.1016/j.knosys.2018.03.011 10.1016/j.eswa.2020.114511 10.1016/j.knosys.2021.106856 10.1109/ACCESS.2020.3047936 10.1007/s42107-020-00271-x 10.1016/j.future.2020.03.055 10.1016/j.knosys.2015.07.006 10.1016/S0168-874X(00)00057-3 10.1109/ACCESS.2021.3073821 10.1007/s10489-016-0825-8 10.1016/j.knosys.2021.106811 10.1016/j.knosys.2017.07.018 10.1023/A:1008202821328 10.1109/TEVC.2007.892759 10.1108/EC-05-2020-0235 10.1016/j.jestch.2016.10.007 10.1016/j.knosys.2020.105781 10.1109/ICNN.1995.488968 10.1007/3-540-44719-9_5 10.1109/CEC.2002.1004388 10.1016/j.eswa.2020.113377 10.1109/4235.996017 10.1016/j.knosys.2015.07.040 10.1109/CEC.1999.782657 10.1007/s00366-019-00846-6 10.1109/ICEC.1995.489161 10.1016/j.advengsoft.2015.01.010 10.1016/j.knosys.2020.106556 10.1016/j.advengsoft.2013.12.007 10.1109/4235.797969 10.1109/ACCESS.2021.3085529 10.1007/s00366-020-01010-1 10.32604/cmc.2021.015565 10.1016/j.cor.2011.09.026 10.1109/CEC.2001.934295 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3087739 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 85016 |
| ExternalDocumentID | oai_doaj_org_article_be2b5938bea448d9b7a75b7de47edbf4 10_1109_ACCESS_2021_3087739 9449856 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-c571eb879c7f27c1a719f11e8bce9f03ff7dbbcb1f761efa5bfb6d955a7879083 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 79 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673207700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:26 EDT 2025 Sun Nov 30 03:59:01 EST 2025 Sat Nov 29 06:12:21 EST 2025 Tue Nov 18 21:17:28 EST 2025 Wed Aug 27 02:50:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-c571eb879c7f27c1a719f11e8bce9f03ff7dbbcb1f761efa5bfb6d955a7879083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6944-4775 0000-0002-7427-2848 0000-0001-9106-0313 0000-0003-1032-4634 0000-0003-3042-3779 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9449856 |
| PQID | 2542501932 |
| PQPubID | 4845423 |
| PageCount | 35 |
| ParticipantIDs | proquest_journals_2542501932 ieee_primary_9449856 doaj_primary_oai_doaj_org_article_be2b5938bea448d9b7a75b7de47edbf4 crossref_citationtrail_10_1109_ACCESS_2021_3087739 crossref_primary_10_1109_ACCESS_2021_3087739 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref37 ref15 li (ref42) 2003 ref36 ref14 ref31 ref30 ref33 ref11 ref10 premkumar (ref27) 2021 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref46 ref24 ref45 ref23 ref48 ref26 ref47 ref25 ref20 ref22 ref44 ref21 ref43 corne (ref13) 2001 ref28 ref29 rao (ref32) 2016; 7 ref8 ref7 ref9 ref4 ref3 kumar (ref5) 2021; 37 ref6 deb (ref41) 2001 ref40 zitzler (ref12) 0; 103 |
| References_xml | – ident: ref39 doi: 10.1109/4235.585893 – ident: ref35 doi: 10.1016/j.knosys.2015.12.022 – ident: ref25 doi: 10.1016/j.knosys.2018.08.005 – ident: ref14 doi: 10.1109/CEC.1999.781913 – ident: ref44 doi: 10.1016/j.apm.2013.07.027 – ident: ref33 doi: 10.1016/j.future.2019.02.028 – ident: ref26 doi: 10.1016/j.engappai.2018.04.018 – ident: ref20 doi: 10.1007/s00366-018-0662-y – ident: ref3 doi: 10.1016/j.knosys.2018.03.011 – volume: 103 year: 0 ident: ref12 publication-title: SPEA2 Improving the strength Pareto evolutionary algorithm – ident: ref4 doi: 10.1016/j.eswa.2020.114511 – ident: ref46 doi: 10.1016/j.knosys.2021.106856 – ident: ref45 doi: 10.1109/ACCESS.2020.3047936 – ident: ref22 doi: 10.1007/s42107-020-00271-x – ident: ref30 doi: 10.1016/j.future.2020.03.055 – ident: ref37 doi: 10.1016/j.knosys.2015.07.006 – ident: ref7 doi: 10.1016/S0168-874X(00)00057-3 – ident: ref38 doi: 10.1109/ACCESS.2021.3073821 – ident: ref23 doi: 10.1007/s10489-016-0825-8 – ident: ref24 doi: 10.1016/j.knosys.2021.106811 – ident: ref21 doi: 10.1016/j.knosys.2017.07.018 – ident: ref8 doi: 10.1023/A:1008202821328 – ident: ref18 doi: 10.1109/TEVC.2007.892759 – ident: ref40 doi: 10.1108/EC-05-2020-0235 – ident: ref28 doi: 10.1016/j.jestch.2016.10.007 – ident: ref2 doi: 10.1016/j.knosys.2020.105781 – ident: ref9 doi: 10.1109/ICNN.1995.488968 – start-page: 67 year: 2001 ident: ref41 article-title: Controlled elitist non-dominated sorting genetic algorithms for better convergence publication-title: Proc Int Conf Evol Multi-Criterion Optim doi: 10.1007/3-540-44719-9_5 – ident: ref17 doi: 10.1109/CEC.2002.1004388 – ident: ref31 doi: 10.1016/j.eswa.2020.113377 – ident: ref11 doi: 10.1109/4235.996017 – ident: ref6 doi: 10.1016/j.knosys.2015.07.040 – ident: ref10 doi: 10.1109/CEC.1999.782657 – ident: ref15 doi: 10.1007/s00366-019-00846-6 – ident: ref19 doi: 10.1109/ICEC.1995.489161 – volume: 7 start-page: 19 year: 2016 ident: ref32 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: Int J Ind Eng Comput – ident: ref36 doi: 10.1016/j.advengsoft.2015.01.010 – ident: ref1 doi: 10.1016/j.knosys.2020.106556 – ident: ref29 doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref48 doi: 10.1109/4235.797969 – ident: ref47 doi: 10.1109/ACCESS.2021.3085529 – volume: 37 start-page: 641 year: 2021 ident: ref5 article-title: Multi-objective modified heat transfer search for truss optimization publication-title: Eng Comput doi: 10.1007/s00366-020-01010-1 – start-page: 1 year: 2021 ident: ref27 article-title: Enhanced chaotic JAYA algorithm for parameter estimation of photovoltaic cell/modules publication-title: ISA Trans – ident: ref34 doi: 10.32604/cmc.2021.015565 – start-page: 283 year: 2001 ident: ref13 article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization publication-title: Proc 3rd Annu Conf Genet Evol Comput – ident: ref16 doi: 10.1016/j.cor.2011.09.026 – ident: ref43 doi: 10.1109/CEC.2001.934295 – start-page: 37 year: 2003 ident: ref42 article-title: A non-dominated sorting particle swarm optimizer for multiobjective optimization publication-title: Proc Genet Evol Comput Conf |
| SSID | ssj0000816957 |
| Score | 2.495673 |
| Snippet | This paper proposes a new Multi-Objective Plasma Generation Optimization (MOPGO) algorithm, and its non-dominated sorting mechanism is investigated for... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 84982 |
| SubjectTerms | Algorithms Complexity Constraints optimization problems crowding distance Design optimization Energy levels Energy states Excitation Heuristic methods Ionization meta-heuristics Multiple objective analysis non-dominated sorting numerical optimization Optimization Pareto front Performance measurement Plasma Plasma (physics) Plasmas Search algorithms Search problems Slime Sorting Sorting algorithms structure optimization Symbiosis Trusses |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ6oEeEI-ibnnIB464xIkT273trgocgF2JtuJmeRxbAi1LRRAHfn3Hdna1UiW4cI0mTuJvPA_L-T5CjltMW5FVnWnhBROiVUwp4ZhXtrJaSF8l_ZQ_l_L6Wt3e6umK1Fc8E5bpgfPEnYIvodaVAm-xk2g1SCtrkK3HcVoIiQm0kHqlmUoxWPFG17KnGeKFPh2Ox_hF2BCW_HtiwYvy4CupKDH29xIr_8XllGzOtshmXyXSYX67bbLm5zvk8wp34C7pribT88kPOqQYp2g6yOk6NsKk1NL0Vy2bwH2OZnSKJfKDpZliOiJBJxgpHu5e_RPFopXePM7ivgK9SWSykYhjYZCtp1l1pvtCfp_9_DW-YL2CAnOiUM_M1ZJ7UFI7GUrpuJVcB869Aud1KKoQZAvggAfZcB9sDQGaVte1xXWssTrbI-vzx7n_SijIAnsfF6WuImlgCVUDlQvcSW45qGJAysVkGtfTi0eVi5lJbUahTUbARARMj8CAnCxv-pvZNd42H0WUlqaRGjtdQIcxvcOY9xxmQHYjxstBtBBa1c2AHCwwN_0y7gx2z1gixhr320c8ep9sxM_JOzgHZB1B9Yfkk3t5vuuejpIH_wMeMvR4 priority: 102 providerName: Directory of Open Access Journals |
| Title | MOPGO: A New Physics-Based Multi-Objective Plasma Generation Optimizer for Solving Structural Optimization Problems |
| URI | https://ieeexplore.ieee.org/document/9449856 https://www.proquest.com/docview/2542501932 https://doaj.org/article/be2b5938bea448d9b7a75b7de47edbf4 |
| Volume | 9 |
| WOSCitedRecordID | wos000673207700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc48CqILaXygWPTxokT29y2qxYOtLtSAfVm-Sm1andRU3rgwG9n_NioEgiJSxRF4yjJZ49nJvb3Abx3OG1FVvVKMs8qxpyohGC28kK3WjLu26Sf8u0zPzsTFxdysQH7414Y731afOYP4mn6l-9W9kcslR1KxqTo-k3Y5LzPe7XGekoUkJAdL8RCtJaH09kM3wFTwIYeJN67KAj-YPJJHP1FVOUPT5yml5Nn__dgz-FpCSPJNOP-Ajb88iU8eUAuuA3D6Xzxcf6BTAk6MpJWetqhOsJZy5G07baam6vs7sgCY-gbTTIHdYSKzNGV3Fz-9LcEo1pyvrqOhQdynthmI1PH2iBbL7IszfAKvp4cf5l9qorEQmVZLe4q23HqjeDS8tBwSzWnMlDqhbFehroNgTtjrKGB99QH3Zlgeie7TuNAlxi-vYat5Wrp3wAxvMbkyEYtrMgq2Ji2N60N1HKqqRH1BJr1t1e28I9HGYxrlfKQWqoMmIqAqQLYBPbHRt8z_ca_zY8iqKNp5M5OFxAtVYaiMr4xnWyF8RpzUycN17wz3Hnsmc4ENoHtiPB4kwLuBHbXXUSVcT4oTK8xhoxB8M7fW72Fx_EBc9FmF7YQJv8OHtn7u8vhdi9VAPB4-ut4L3Xn34bp8iM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTxQxHP4F0UQ44AOMK6g9eKQwnWm3rbdlI2JcdjcBDbdm-kowsEsY5OBfb187IdGYeJtM2klnvvb3mvb7AD7Y4LYiqzqW1FFMqRVYCGqwE23TSspdk_RTvk_4dCouLuR8Dfb7szDOubT5zB3Ey_Qv3y7Nz1gqO5SUSsGGj-Axo7Su8mmtvqISJSQk44VaiFTycDQeh7cISWBNDhLzXZQEf-B-Ekt_kVX5wxYnB3P87P-G9hy2SiCJRhn5F7DmFi9h8wG94DZ0p7P559lHNELBlKG019N0-Cj4LYvSwVs80z-ywUPzEEVftyizUEew0CwYk-vLX-4WhbgWnS2vYukBnSW-2cjVsWqQW8-zME23A9-OP52PT3ARWcCGVuIOG8aJ04JLw33NDWk5kZ4QJ7Rx0leN99xqbTTxfEicb5n2emglY21Y6jIEcK9gfbFcuNeANK9CemSiGlbkFax1M9SN8cRw0hItqgHUq2-vTGEgj0IYVyplIpVUGTAVAVMFsAHs951uMgHHv5sfRVD7ppE9O90IaKmyGJV2tWayEdq1ITu1UvOWM82tC3PTak8HsB0R7h9SwB3A3mqKqLLSOxUS7BBFxjD4zd97vYenJ-enEzX5Mv26CxtxsLmEswfrATL3Fp6Y-7vL7vZdms6_AdVA80Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOPGO%3A+A+New+Physics-Based+Multi-Objective+Plasma+Generation+Optimizer+for+Solving+Structural+Optimization+Problems&rft.jtitle=IEEE+access&rft.au=Kumar%2C+Sumit&rft.au=Jangir%2C+Pradeep&rft.au=Tejani%2C+Ghanshyam+G.&rft.au=Premkumar%2C+Manoharan&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=84982&rft.epage=85016&rft_id=info:doi/10.1109%2FACCESS.2021.3087739&rft.externalDocID=9449856 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |