Hybrid Optimization Enabled Robust CNN-LSTM Technique for Network Intrusion Detection

Nowadays, computer networks and the Internet are unprotected from many security threats. Introducing adaptive and flexible security-related techniques is challenging because of the new types of frequently occurring attacks. An intrusion detection system (IDS) is a security device similar to other me...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 10; pp. 65611 - 65622
Main Authors: Deore, Bhushan, Bhosale, Surendra
Format: Journal Article
Language:English
Published: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nowadays, computer networks and the Internet are unprotected from many security threats. Introducing adaptive and flexible security-related techniques is challenging because of the new types of frequently occurring attacks. An intrusion detection system (IDS) is a security device similar to other measures, including firewalls, antivirus software, and access control models devised to strengthen communication and information security. Network intrusion detection system (NIDS) plays a vital function in defending computer networks and systems. However, several issues concerning the sustainability and feasibility of existing techniques are faced with recent networks. These concerns are directly related to the rising levels of necessary human interactions and reducing the level of detection accuracy. Several approaches are designed to detect and manage various security threats in a network. This study uses Chimp Chicken Swarm Optimization-based Deep Long Short-Term Memory (ChCSO-driven Deep LSTM) for the intrusion detection process. A CNN feature extraction process is necessary for effective intrusion detection. Here, the Deep LSTM is applied for detecting network intrusion, and the Deep LSTM is trained using a designed optimization technique to enhance the detection performance.
AbstractList Nowadays, computer networks and the Internet are unprotected from many security threats. Introducing adaptive and flexible security-related techniques is challenging because of the new types of frequently occurring attacks. An intrusion detection system (IDS) is a security device similar to other measures, including firewalls, antivirus software, and access control models devised to strengthen communication and information security. Network intrusion detection system (NIDS) plays a vital function in defending computer networks and systems. However, several issues concerning the sustainability and feasibility of existing techniques are faced with recent networks. These concerns are directly related to the rising levels of necessary human interactions and reducing the level of detection accuracy. Several approaches are designed to detect and manage various security threats in a network. This study uses Chimp Chicken Swarm Optimization-based Deep Long Short-Term Memory (ChCSO-driven Deep LSTM) for the intrusion detection process. A CNN feature extraction process is necessary for effective intrusion detection. Here, the Deep LSTM is applied for detecting network intrusion, and the Deep LSTM is trained using a designed optimization technique to enhance the detection performance.
Author Bhosale, Surendra
Deore, Bhushan
Author_xml – sequence: 1
  givenname: Bhushan
  orcidid: 0000-0003-3602-711X
  surname: Deore
  fullname: Deore, Bhushan
  email: bsdeore_p18@ee.vjti.ac.in
  organization: Department of Electrical Engineering, Veermata Jijabai Technological Institute, Mumbai, India
– sequence: 2
  givenname: Surendra
  surname: Bhosale
  fullname: Bhosale, Surendra
  organization: Department of Electrical Engineering, Veermata Jijabai Technological Institute, Mumbai, India
BookMark eNqFkcFuGyEQhlGUSk3TPEEuK_W8DjC7wB6jrdtYch2pds4I2NkU11lcFqtKnr44G0VRL-EyMMz3D8P_iZwOYUBCLhmdMUabq-u2na_XM045nwFTwBmckDPORFNCDeL0zf4juRjHLc1L5VQtz8jdzaONvitu98k_-CeTfBiK-WDsDrviZ7CHMRXtalUu15sfxQbdr8H_OWDRh1isMP0N8XexGFI8jEfuKyZ0R4XP5ENvdiNevMRzcvdtvmlvyuXt90V7vSxdRVUqHVispHA10F5YxQ2VtFbQMyYBKtu5hkE-Cqw7isJYVyHr-6ZT0ElQhsE5WUy6XTBbvY_-wcRHHYzXz4kQ77WJybsdakWdlD1kssLK1swid5Q7jqBEXymXtb5MWvsY8ohj0ttwiEN-vuZCUWgkBchVMFW5GMYxYv_alVF9tENPduijHfrFjkw1_1HOp-e_TtH43Tvs5cR6RHzt1shG1Pn6H9VhmSA
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11042_024_20194_y
crossref_primary_10_1038_s41598_024_56698_8
crossref_primary_10_1109_ACCESS_2023_3271408
crossref_primary_10_1007_s10586_025_05326_9
crossref_primary_10_1109_ACCESS_2024_3365495
crossref_primary_10_3390_electronics12020293
crossref_primary_10_1186_s13638_023_02279_8
crossref_primary_10_1007_s10586_024_04388_5
crossref_primary_10_1016_j_asoc_2025_113378
crossref_primary_10_1007_s11227_025_07802_w
crossref_primary_10_1007_s42107_024_01073_1
crossref_primary_10_1007_s44196_025_00767_x
crossref_primary_10_1007_s12652_023_04571_3
crossref_primary_10_1109_ACCESS_2024_3405628
crossref_primary_10_1002_dac_70178
crossref_primary_10_1007_s11227_024_06322_3
crossref_primary_10_1016_j_comnet_2023_109982
crossref_primary_10_3390_biomimetics8040355
crossref_primary_10_54392_irjmt25411
crossref_primary_10_1016_j_eswa_2023_123014
crossref_primary_10_1016_j_icte_2025_01_005
crossref_primary_10_1016_j_swevo_2025_101984
crossref_primary_10_1002_cpe_7806
Cites_doi 10.1016/j.eswa.2009.05.029
10.1109/ACCESS.2020.3001350
10.1109/ACCESS.2018.2868993
10.1109/ACCESS.2019.2899721
10.1007/978-3-319-11857-4_10
10.1109/ICOEI48184.2020.9142954
10.1609/aaai.v30i1.10451
10.1109/TETCI.2017.2772792
10.1016/j.future.2019.05.041
10.1016/j.cose.2018.11.005
10.1016/j.eswa.2020.113338
10.46253/j.mr.v2i1.a2
10.1109/ACCESS.2019.2923814
10.2298/csis130415035a
10.1017/cbo9780511606267.006
10.1109/ACCESS.2021.3051074
10.1109/TDSC.2017.2725953
10.1016/j.ins.2021.05.016
10.1109/ACCESS.2021.3101188
10.3390/electronics10151854
10.46253/j.mr.v4i2.a2
10.1109/IMWS-5G.2018.8484603
10.1109/TVLSI.2017.2688340
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3183213
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 65622
ExternalDocumentID oai_doaj_org_article_80c77f33d74e4b51be2c02c2e386f48c
10_1109_ACCESS_2022_3183213
9796521
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-c3be476c530f6b82a070583f117334bdc91383f6e5d0e6abc4e1ff9d83d738a13
IEDL.DBID DOA
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000815509900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:41:28 EDT 2025
Mon Jun 30 17:34:39 EDT 2025
Sat Nov 29 06:32:11 EST 2025
Tue Nov 18 22:35:07 EST 2025
Wed Aug 27 02:23:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c3be476c530f6b82a070583f117334bdc91383f6e5d0e6abc4e1ff9d83d738a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3602-711X
OpenAccessLink https://doaj.org/article/80c77f33d74e4b51be2c02c2e386f48c
PQID 2680397033
PQPubID 4845423
PageCount 12
ParticipantIDs proquest_journals_2680397033
ieee_primary_9796521
crossref_primary_10_1109_ACCESS_2022_3183213
doaj_primary_oai_doaj_org_article_80c77f33d74e4b51be2c02c2e386f48c
crossref_citationtrail_10_1109_ACCESS_2022_3183213
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
Selvakumar (ref14) 2019; 81
ref2
ref1
ref17
ref16
ref19
ref18
(ref25) 2021
ref23
ref20
ref22
(ref24) 2021
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref12
  doi: 10.1016/j.eswa.2009.05.029
– ident: ref7
  doi: 10.1109/ACCESS.2020.3001350
– ident: ref6
  doi: 10.1109/ACCESS.2018.2868993
– ident: ref4
  doi: 10.1109/ACCESS.2019.2899721
– ident: ref18
  doi: 10.1007/978-3-319-11857-4_10
– ident: ref8
  doi: 10.1109/ICOEI48184.2020.9142954
– ident: ref17
  doi: 10.1609/aaai.v30i1.10451
– ident: ref20
  doi: 10.1109/TETCI.2017.2772792
– ident: ref3
  doi: 10.1016/j.future.2019.05.041
– volume-title: BoT-IoT Dataset Taken
  year: 2021
  ident: ref25
– volume: 81
  start-page: 148
  year: 2019
  ident: ref14
  article-title: Firefly algorithm based feature selection for network intrusion detection
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2018.11.005
– volume-title: NSL-KDD Dataset Taken
  year: 2021
  ident: ref24
– ident: ref19
  doi: 10.1016/j.eswa.2020.113338
– ident: ref11
  doi: 10.46253/j.mr.v2i1.a2
– ident: ref5
  doi: 10.1109/ACCESS.2019.2923814
– ident: ref10
  doi: 10.2298/csis130415035a
– ident: ref15
  doi: 10.1017/cbo9780511606267.006
– ident: ref9
  doi: 10.1109/ACCESS.2021.3051074
– ident: ref1
  doi: 10.1109/TDSC.2017.2725953
– ident: ref23
  doi: 10.1016/j.ins.2021.05.016
– ident: ref22
  doi: 10.1109/ACCESS.2021.3101188
– ident: ref21
  doi: 10.3390/electronics10151854
– ident: ref13
  doi: 10.46253/j.mr.v4i2.a2
– ident: ref2
  doi: 10.1109/IMWS-5G.2018.8484603
– ident: ref16
  doi: 10.1109/TVLSI.2017.2688340
SSID ssj0000816957
Score 2.4574594
Snippet Nowadays, computer networks and the Internet are unprotected from many security threats. Introducing adaptive and flexible security-related techniques is...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65611
SubjectTerms Access control
Anti-virus software
chicken swarm optimization algorithm
chimp optimization algorithm
Computational modeling
Computer networks
convolutional neural network features
Cybersecurity
Deep learning
deep long short-term memory
Feature extraction
Intrusion detection
Intrusion detection systems
Network intrusion detection
Optimization
Optimization techniques
Security
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PaxQxFA619KAHta3iapUceuy0-Z3Msa4tFewodQu9hUnyAoLOirsV_O9NMtmhRRG8DUPekMyXvLz8-L6H0KF3NHl9GpoYOGtEoK5xjsgGepHmj6Cd9KIkm9BdZ25u2k9b6GjiwgBAuXwGx_mxnOWHpb_NW2UnrW6VzKzxB1qrkas17afkBBKt1FVYiJL25HQ-T21IS0DGjkvPpfze5FM0-mtSlT88cZlezp_8X8Weosc1jMSnI-67aAuGPfTojrjgPrq--JXZWPhjcgrfKtsSnxWqVMBXS3e7WuN51zUfPi8u8WIj5YpTEIu78W44fj9kSka2ewfrcmdreIauz88W84umJlFovCBm3XjuQGjlJSdROcP6NMal4ZFSzblwwbc0LVKjAhkIqN55ATTGNhgeNDc95c_R9rAc4AXCyW-KFM0o0EIJ4nRPKUjXq8CCiylsnCG2-bvWV4XxnOjiqy0rDdLaERKbIbEVkhk6moy-jwIb_y7-NsM2Fc3q2OVFwsPWwWYN8VpHnlogQDhJHTBPmGfAjYrC-BnazxhOH6nwzdDBphPYOpJXlilDUsxGOH_5d6tX6GGu4Lgtc4C2EzDwGu34n-svqx9vSif9DQfc4-0
  priority: 102
  providerName: IEEE
Title Hybrid Optimization Enabled Robust CNN-LSTM Technique for Network Intrusion Detection
URI https://ieeexplore.ieee.org/document/9796521
https://www.proquest.com/docview/2680397033
https://doaj.org/article/80c77f33d74e4b51be2c02c2e386f48c
Volume 10
WOSCitedRecordID wos000815509900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG5CyCEexJgEV5PQB4-O6df045hsNkQwo-gGcmumXyDoRNxVyCW_PdU9vcuKoBcvcxi6Z6brXUPVVwi99o6C1aehSYGzRgTqGudI28RegP8IyrVelGETquv07a35uDHqK9eEjfDAI-FONfFKJc6DElG4lrrIPGGeRa5lEtpn60uU2Uimig3WVJpWVZghSszp2XQKJ4KEkLG3RY4p_80VFcT-OmLlD7tcnM3lM_S0Ron4bPy6PbQVh-foyQZ24D66ubrPzVb4A-j8t9pMiWelEyrgT3fu52KJp13XvP88v8bzFVIrhhgVd2PpN3435I6LvO8iLktJ1nCAbi5n8-lVU2ckNF4QvWw8d1Eo6VtOknSa9aDCreaJUsW5cMEbCjlokrENJMreeRFpSiZoICjXPeWHaHu4G-ILhMEsCghWZFRCCuJUT2lsXS8DCy5BVDhBbEUu6yuAeJ5j8dWWRIIYO9LYZhrbSuMJerPe9H3Ez_j78vPMh_XSDH5dboBI2CoS9l8iMUH7mYvrhxhlJEQpE3S04qqtirqwTGoCIRnh_OX_ePUrtJuPM_6jOULbwMZ4jHb8r-WXxY-TIqNwvX6YnZROw0e1nukQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD6UKmgfvFXp2qp58LHT5p7MY7u2bHE7im6hb2FyGRDaWXG3gv_eJJMdFEXwbRhyhmS-5OTk8n0H4K2zJHp94qvOM1pxT2xlLRZVaHmcP7yywvGcbEI1jb6-rj9uweHIhQkh5Mtn4Sg95rN8v3R3aavsuFa1FIk1fk9wTvHA1hp3VFIKiVqoIi1EcH18Mp3GVsRFIKVHue8S9tv0k1X6S1qVP3xxnmDOH_9f1Z7AoxJIopMB-aewFfpnsPOLvOAuXM1-JD4W-hDdwm3hW6KzTJby6NPS3q3WaNo01fzz4hItNmKuKIaxqBluh6OLPpEykt27sM63tvrncHV-tpjOqpJGoXIc63XlmA1cSScY7qTVtI2jXGjWEaIY49a7msRlaieD8DjI1joeSNfVXjOvmG4JewHb_bIPe4Ci5-QxnpFBccmxVS0hQdhWeuptFwPHCdDN3zWuaIynVBc3Jq81cG0GSEyCxBRIJnA4Gn0dJDb-Xfw0wTYWTfrY-UXEw5ThZjR2SnUstoAHbgWxgTpMHQ1My45rN4HdhOH4kQLfBA42ncCUsbwyVGocozbM2Mu_W72BB7PF5dzML5r3-_AwVXbYpDmA7QhSeAX33ff1l9W317nD_gQIrec0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Optimization+Enabled+Robust+CNN-LSTM+Technique+for+Network+Intrusion+Detection&rft.jtitle=IEEE+access&rft.au=Deore%2C+Bhushan&rft.au=Bhosale%2C+Surendra&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=65611&rft.epage=65622&rft_id=info:doi/10.1109%2FACCESS.2022.3183213&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3183213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon