Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models
In this paper we propose a new paradigm for encoding the geometry of dense point cloud sequences, where a convolutional neural network (CNN), which estimates the encoding distributions, is optimized on several frames of the sequence to be compressed. We adopt lightweight CNN structures, we perform t...
Uložené v:
| Vydané v: | IEEE access Ročník 10; s. 83678 - 83691 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper we propose a new paradigm for encoding the geometry of dense point cloud sequences, where a convolutional neural network (CNN), which estimates the encoding distributions, is optimized on several frames of the sequence to be compressed. We adopt lightweight CNN structures, we perform training as part of the encoding process and the CNN parameters are transmitted as part of the bitstream. The newly proposed encoding scheme operates on the octree representation for each point cloud, consecutively encoding each octree resolution level. At every octree resolution level, the voxel grid is traversed section-by-section (each section being perpendicular to a selected coordinate axis), and in each section, the occupancies of groups of two-by-two voxels are encoded at once in a single arithmetic coding operation. A context for the conditional encoding distribution is defined for each two-by-two group of voxels based on the information available about the occupancy of the neighboring voxels in the current and lower resolution layers of the octree. The CNN estimates the probability mass functions of the occupancy patterns of all the voxel groups from one section in four phases. In each new phase, the contexts are updated with the occupancies encoded in the previous phase, and each phase estimates the probabilities in parallel, providing a reasonable trade-off between the parallelism of the processing and the informativeness of the contexts. The CNN training time is comparable to the time spent in the remaining encoding steps, leading to competitive overall encoding times. The bitrates and encoding-decoding times compare favorably with those of recently published compression schemes. |
|---|---|
| AbstractList | In this paper we propose a new paradigm for encoding the geometry of dense point cloud sequences, where a convolutional neural network (CNN), which estimates the encoding distributions, is optimized on several frames of the sequence to be compressed. We adopt lightweight CNN structures, we perform training as part of the encoding process and the CNN parameters are transmitted as part of the bitstream. The newly proposed encoding scheme operates on the octree representation for each point cloud, consecutively encoding each octree resolution level. At every octree resolution level, the voxel grid is traversed section-by-section (each section being perpendicular to a selected coordinate axis), and in each section, the occupancies of groups of two-by-two voxels are encoded at once in a single arithmetic coding operation. A context for the conditional encoding distribution is defined for each two-by-two group of voxels based on the information available about the occupancy of the neighboring voxels in the current and lower resolution layers of the octree. The CNN estimates the probability mass functions of the occupancy patterns of all the voxel groups from one section in four phases. In each new phase, the contexts are updated with the occupancies encoded in the previous phase, and each phase estimates the probabilities in parallel, providing a reasonable trade-off between the parallelism of the processing and the informativeness of the contexts. The CNN training time is comparable to the time spent in the remaining encoding steps, leading to competitive overall encoding times. The bitrates and encoding-decoding times compare favorably with those of recently published compression schemes. |
| Author | Kaya, Emre C. Tabus, Ioan |
| Author_xml | – sequence: 1 givenname: Emre C. orcidid: 0000-0002-8255-1302 surname: Kaya fullname: Kaya, Emre C. email: emre.kaya@tuni.fi organization: Computing Sciences Unit, Tampere University, Tampere, Finland – sequence: 2 givenname: Ioan orcidid: 0000-0003-3131-9551 surname: Tabus fullname: Tabus, Ioan organization: Computing Sciences Unit, Tampere University, Tampere, Finland |
| BookMark | eNp9UU1PGzEQtRBIUMov4GKJc9KxvY7XR7SiLVL4qAJny2vPIkebdbA3h_Lr63QBIQ7MZcZP857G730jh0MckJBzBnPGQP-4bJqr1WrOgfO5YFpxLQ_ICWcLPRNSLA4_zMfkLOc1lKoLJNUJ-bOMOfeYM23iZpvKEOJAY0fvYxhG2vRx5-kKn3c4OMz0MYfh6f1N77Zj2IQX9LS5vaU30WOfv5OjzvYZz177KXn8efXQ_J4t735dN5fLmaugHmeOtbXkyivhRSc4dMAloOfOtozrSnrurS8IYNUiKCG043VbuVZ63TmQ4pRcT7o-2rXZprCx6a-JNpj_QExPxqYxuB5NJVqGrXJCLVylZKU7EAvnNCoJDHhdtC4mrW2K5Wt5NOu4S0M533AFArQGvd_S05ZLxbSEnXFhtGMxbEw29IaB2QdipkDMPhDzGkjhik_ct4u_Zp1PrICI7wxdjOMcxD9_dZeb |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3469549 |
| Cites_doi | 10.1109/CVPR.2019.01088 10.1109/ICME46284.2020.9102866 10.1109/ICIP.2017.8296514 10.21437/Interspeech.2019-3174 10.1017/ATSIP.2020.12 10.1109/LSP.2018.2823701 10.1109/LSP.2020.2965322 10.1109/MMUL.2016.64 10.1109/ICIP.2017.8297036 10.1109/ICIP42928.2021.9506767 10.1109/ICIP40778.2020.9190648 10.1109/TIP.2020.3011811 10.1109/TCSVT.2021.3051377 10.1109/ICASSP.2019.8682413 10.1109/TIP.2019.2931466 10.1109/JSTSP.2020.3047520 10.1109/ICMEW53276.2021.9455990 10.3389/frsip.2022.846972 10.1109/ICRA.2012.6224647 10.1016/0146-664X(82)90104-6 10.1109/ICIP.2019.8803413 10.1109/ICCV.2015.123 10.1109/LSP.2021.3102525 10.1109/DCC50243.2021.00015 10.1109/TIP.2017.2707807 10.1109/TIP.2022.3185541 10.1109/ICIP.2018.8451802 10.1109/TCSVT.2021.3100279 10.1109/CVPR42600.2020.00139 10.1109/TCSVT.2016.2543039 10.1145/3343031.3351061 10.1109/ICASSP39728.2021.9414763 10.1109/ICASSP39728.2021.9413902 10.1109/MSP.2019.2900721 10.1109/DCC50243.2021.00014 10.1109/MMSP53017.2021.9733658 10.1109/ICIP42928.2021.9506429 10.1109/TBC.2019.2957652 10.1109/JETCAS.2018.2885981 10.1109/CVPR46437.2021.00598 10.1109/ICIP42928.2021.9506631 10.1109/JPROC.2021.3085957 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2022.3197295 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 83691 |
| ExternalDocumentID | oai_doaj_org_article_43b1eb7c376c47549f036cc9e7501028 10_1109_ACCESS_2022_3197295 9852220 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-c1b8527d73d3f320f0250ed2cab12945d2dad50e0e4be07339c28b4cb5d9fc053 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000842538600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:08 EDT 2025 Mon Jun 30 03:44:04 EDT 2025 Tue Nov 18 21:48:02 EST 2025 Sat Nov 29 06:32:18 EST 2025 Wed Aug 27 02:22:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-c1b8527d73d3f320f0250ed2cab12945d2dad50e0e4be07339c28b4cb5d9fc053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8255-1302 0000-0003-3131-9551 |
| OpenAccessLink | https://doaj.org/article/43b1eb7c376c47549f036cc9e7501028 |
| PQID | 2703099098 |
| PQPubID | 4845423 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_43b1eb7c376c47549f036cc9e7501028 proquest_journals_2703099098 crossref_citationtrail_10_1109_ACCESS_2022_3197295 crossref_primary_10_1109_ACCESS_2022_3197295 ieee_primary_9852220 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 Maas (ref29); 30 ref37 ref14 ref31 d’Eon (ref34) 2017 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Schwarz (ref36) 2018 (ref5) 2020 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 Loop (ref33) 2016 ref40 |
| References_xml | – ident: ref35 doi: 10.1109/CVPR.2019.01088 – ident: ref22 doi: 10.1109/ICME46284.2020.9102866 – ident: ref15 doi: 10.1109/ICIP.2017.8296514 – ident: ref31 doi: 10.21437/Interspeech.2019-3174 – ident: ref4 doi: 10.1017/ATSIP.2020.12 – ident: ref19 doi: 10.1109/LSP.2018.2823701 – ident: ref6 doi: 10.1109/LSP.2020.2965322 – ident: ref2 doi: 10.1109/MMUL.2016.64 – ident: ref41 doi: 10.1109/ICIP.2017.8297036 – ident: ref13 doi: 10.1109/ICIP42928.2021.9506767 – ident: ref7 doi: 10.1109/ICIP40778.2020.9190648 – ident: ref10 doi: 10.1109/TIP.2020.3011811 – ident: ref21 doi: 10.1109/TCSVT.2021.3051377 – ident: ref47 doi: 10.1109/ICASSP.2019.8682413 – ident: ref18 doi: 10.1109/TIP.2019.2931466 – ident: ref27 doi: 10.1109/JSTSP.2020.3047520 – ident: ref26 doi: 10.1109/ICMEW53276.2021.9455990 – ident: ref25 doi: 10.3389/frsip.2022.846972 – ident: ref42 doi: 10.1109/ICRA.2012.6224647 – volume-title: TMC13 year: 2020 ident: ref5 – ident: ref28 doi: 10.1016/0146-664X(82)90104-6 – ident: ref14 doi: 10.1109/ICIP.2019.8803413 – ident: ref30 doi: 10.1109/ICCV.2015.123 – ident: ref12 doi: 10.1109/LSP.2021.3102525 – volume-title: Microsoft Voxelized Upper Bodies—A Voxelized Point Cloud Dataset year: 2016 ident: ref33 – ident: ref8 doi: 10.1109/DCC50243.2021.00015 – ident: ref39 doi: 10.1109/TIP.2017.2707807 – ident: ref32 doi: 10.1109/TIP.2022.3185541 – ident: ref40 doi: 10.1109/ICIP.2018.8451802 – ident: ref24 doi: 10.1109/TCSVT.2021.3100279 – ident: ref16 doi: 10.1109/CVPR42600.2020.00139 – ident: ref37 doi: 10.1109/TCSVT.2016.2543039 – volume-title: Common Test Conditions for Point Cloud Compression year: 2018 ident: ref36 – ident: ref44 doi: 10.1145/3343031.3351061 – ident: ref11 doi: 10.1109/ICASSP39728.2021.9414763 – ident: ref46 doi: 10.1109/ICASSP39728.2021.9413902 – ident: ref3 doi: 10.1109/MSP.2019.2900721 – ident: ref23 doi: 10.1109/DCC50243.2021.00014 – ident: ref17 doi: 10.1109/MMSP53017.2021.9733658 – ident: ref43 doi: 10.1109/ICIP42928.2021.9506429 – ident: ref9 doi: 10.1109/TBC.2019.2957652 – volume: 30 start-page: 3 volume-title: Proc. ICML ident: ref29 article-title: Rectifier nonlinearities improve neural network acoustic models – ident: ref1 doi: 10.1109/JETCAS.2018.2885981 – ident: ref20 doi: 10.1109/CVPR46437.2021.00598 – ident: ref45 doi: 10.1109/ICIP42928.2021.9506631 – volume-title: 8I Voxelized Full Bodies—A Voxelized Point Cloud Dataset year: 2017 ident: ref34 – ident: ref38 doi: 10.1109/JPROC.2021.3085957 |
| SSID | ssj0000816957 |
| Score | 2.2494311 |
| Snippet | In this paper we propose a new paradigm for encoding the geometry of dense point cloud sequences, where a convolutional neural network (CNN), which estimates... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 83678 |
| SubjectTerms | Arithmetic coding Artificial neural networks Context modeling Convolutional neural networks Decoding Encoding Encoding-Decoding Estimates lossless geometry compression octree coding Octrees Point cloud compression Process parameters Training Training data |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYo4tAeoEArFmjlQ48EYsdex0cagXpAW6oWxM2K7bG00jap2N0e-usZO96oqFWl3hLLjib5PM-MZwj5oHSQ3ntRtCBEISCURTvVvpDtlDFopbKpS8T9jZrN6ocHfbtFzsazMACQks_gPF6mf_m-d-sYKrvQNVoLHB30F0pNh7NaYzwlNpDQUuXCQqzUF5dNg--ALiDn6JlqtCLlM-WTavTnpip_SOKkXq73_o-w12Q3m5H0csB9n2xBd0Be_VZc8JB8uUESFijIaOT5Id21o32gt_28W9Fm0a89_brJpKYpd2C8p59RlHyf_wJPm9mMxo5pi-Ubcnd99a35VOQGCoUTZb0qHLNImPKq8lWoeBmiwQOeu9aimhfSc996HClBWIjdG7XjtRXOSq-DQ_Z8S7a7voMjQmuoAlPMSXTQhGRWW1v7tmKCCV9OQzkhfPNljcvVxWOTi4VJXkapzQCHiXCYDMeEnI2LfgzFNf49_WOEbJwaK2OnAcTCZEYzorIMrHIoOJ1Q6P0G1NHOaUDTKBpTE3IY8RsfkqGbkNPNBjCZi5eGR3GI6lrXx39fdUJeRgKHkMwp2V49ruEd2XE_V_Pl4_u0QZ8AywDiYw priority: 102 providerName: IEEE |
| Title | Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models |
| URI | https://ieeexplore.ieee.org/document/9852220 https://www.proquest.com/docview/2703099098 https://doaj.org/article/43b1eb7c376c47549f036cc9e7501028 |
| Volume | 10 |
| WOSCitedRecordID | wos000842538600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYNHi0mabJqjFsWDrooPvIXmBQtrV3ZXDx787U7S7rIi6MVLoSFNk8nMN5ky_QahI6mCcM7xrPKcZ9wHklVd5TJRdSn1lZAmVYl4upK9XvH8rG7nSn3FnLCGHrgR3AnPDfVGWjAEyyVEMwEw11rlwdVF5xjRl0g1F0wlDC5oVwnZ0gxRok5OyxJWBAEhYxCnKjhTim-uKDH2tyVWfuBycjYXa2i1PSXi02Z262jB1xtoZY47cBPdXcGYA8ApHE26yWat8TDg22G_nuByMHxz-H6aKI1TasDsHt8AUrz0P7zDZa-HY0G0wXgLPV6cP5SXWVsfIbOcFJPMUlMIJp3MXR5yRkI8z3jHbGXAi3PhmKsctBDPjY_FGZVlheHWCKeCBevbRov1sPY7CBc-D1RSKyD-4oIaZUzhqpxyyh3pBtJBbCoqbVvy8FjDYqBTEEGUbuSro3x1K98OOp499NpwZ_ze_SzuwaxrJL5ODaAOulUH_Zc6dNBm3MHZIAokxBjMf3-6o7o10rFmEe3AG6ti9z9evYeW43Ka7zP7aHEyevMHaMm-T_rj0WHST7hef54fpr8MvwDoueaL |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQk48CoVCwV84NjQ2LHX8bFEVEUsoYiCerPil7TSkqDuLgd-PWPHG4FASNwSy46cfJ6XM54P4KVUQTjneNF5zgvuQ1l0c-UK0c0p9Z2QJrFEfFnItq2vrtTFHhxPZ2G89yn5zL-Kl-lfvhvsNm6VnagavQWGAfqNyJwlxtNa045KpJBQQubSQrRUJ6dNg2-BQSBjGJsq9CPFb-YnVenPtCp_6OJkYM7u_d_U7sPd7EiS0xH5B7Dn-4dw55fyggfwcYFTWKEqI1Hqx4TXngyBXAzLfkOa1bB15NMul5qk7IHpnnxAZfJ1-cM70rQtiZxpq_Uj-Hz25rI5LzKFQmF5WW8KSw1OTDpZuSpUrAzR5fGO2c6goefCMdc5bCk9Nz7yNyrLasOtEU4FiwJ6CPv90PvHQGpfBSqpFRiicUGNMqZ2XUU55a6ch3IGbPdltc31xSPNxUqnOKNUeoRDRzh0hmMGx9Ogb2N5jX93fx0hm7rG2tipAbHQWdQ0rwz1RlpUnZZLjH8DWmlrlUfnKLpTMziI-E0PydDN4Gi3AHSW47VmUSGiwVb1k7-PegG3zi_fL_TibfvuKdyOkx03aI5gf3O99c_gpv2-Wa6vn6fF-hPC4OWu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lossless+Compression+of+Point+Cloud+Sequences+Using+Sequence+Optimized+CNN+Models&rft.jtitle=IEEE+access&rft.au=Kaya%2C+Emre+C.&rft.au=Tabus%2C+Ioan&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=83678&rft.epage=83691&rft_id=info:doi/10.1109%2FACCESS.2022.3197295&rft.externalDocID=9852220 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |