Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

In this paper we propose a new paradigm for encoding the geometry of dense point cloud sequences, where a convolutional neural network (CNN), which estimates the encoding distributions, is optimized on several frames of the sequence to be compressed. We adopt lightweight CNN structures, we perform t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 10; s. 83678 - 83691
Hlavní autori: Kaya, Emre C., Tabus, Ioan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper we propose a new paradigm for encoding the geometry of dense point cloud sequences, where a convolutional neural network (CNN), which estimates the encoding distributions, is optimized on several frames of the sequence to be compressed. We adopt lightweight CNN structures, we perform training as part of the encoding process and the CNN parameters are transmitted as part of the bitstream. The newly proposed encoding scheme operates on the octree representation for each point cloud, consecutively encoding each octree resolution level. At every octree resolution level, the voxel grid is traversed section-by-section (each section being perpendicular to a selected coordinate axis), and in each section, the occupancies of groups of two-by-two voxels are encoded at once in a single arithmetic coding operation. A context for the conditional encoding distribution is defined for each two-by-two group of voxels based on the information available about the occupancy of the neighboring voxels in the current and lower resolution layers of the octree. The CNN estimates the probability mass functions of the occupancy patterns of all the voxel groups from one section in four phases. In each new phase, the contexts are updated with the occupancies encoded in the previous phase, and each phase estimates the probabilities in parallel, providing a reasonable trade-off between the parallelism of the processing and the informativeness of the contexts. The CNN training time is comparable to the time spent in the remaining encoding steps, leading to competitive overall encoding times. The bitrates and encoding-decoding times compare favorably with those of recently published compression schemes.
AbstractList In this paper we propose a new paradigm for encoding the geometry of dense point cloud sequences, where a convolutional neural network (CNN), which estimates the encoding distributions, is optimized on several frames of the sequence to be compressed. We adopt lightweight CNN structures, we perform training as part of the encoding process and the CNN parameters are transmitted as part of the bitstream. The newly proposed encoding scheme operates on the octree representation for each point cloud, consecutively encoding each octree resolution level. At every octree resolution level, the voxel grid is traversed section-by-section (each section being perpendicular to a selected coordinate axis), and in each section, the occupancies of groups of two-by-two voxels are encoded at once in a single arithmetic coding operation. A context for the conditional encoding distribution is defined for each two-by-two group of voxels based on the information available about the occupancy of the neighboring voxels in the current and lower resolution layers of the octree. The CNN estimates the probability mass functions of the occupancy patterns of all the voxel groups from one section in four phases. In each new phase, the contexts are updated with the occupancies encoded in the previous phase, and each phase estimates the probabilities in parallel, providing a reasonable trade-off between the parallelism of the processing and the informativeness of the contexts. The CNN training time is comparable to the time spent in the remaining encoding steps, leading to competitive overall encoding times. The bitrates and encoding-decoding times compare favorably with those of recently published compression schemes.
Author Kaya, Emre C.
Tabus, Ioan
Author_xml – sequence: 1
  givenname: Emre C.
  orcidid: 0000-0002-8255-1302
  surname: Kaya
  fullname: Kaya, Emre C.
  email: emre.kaya@tuni.fi
  organization: Computing Sciences Unit, Tampere University, Tampere, Finland
– sequence: 2
  givenname: Ioan
  orcidid: 0000-0003-3131-9551
  surname: Tabus
  fullname: Tabus, Ioan
  organization: Computing Sciences Unit, Tampere University, Tampere, Finland
BookMark eNp9UU1PGzEQtRBIUMov4GKJc9KxvY7XR7SiLVL4qAJny2vPIkebdbA3h_Lr63QBIQ7MZcZP857G730jh0MckJBzBnPGQP-4bJqr1WrOgfO5YFpxLQ_ICWcLPRNSLA4_zMfkLOc1lKoLJNUJ-bOMOfeYM23iZpvKEOJAY0fvYxhG2vRx5-kKn3c4OMz0MYfh6f1N77Zj2IQX9LS5vaU30WOfv5OjzvYZz177KXn8efXQ_J4t735dN5fLmaugHmeOtbXkyivhRSc4dMAloOfOtozrSnrurS8IYNUiKCG043VbuVZ63TmQ4pRcT7o-2rXZprCx6a-JNpj_QExPxqYxuB5NJVqGrXJCLVylZKU7EAvnNCoJDHhdtC4mrW2K5Wt5NOu4S0M533AFArQGvd_S05ZLxbSEnXFhtGMxbEw29IaB2QdipkDMPhDzGkjhik_ct4u_Zp1PrICI7wxdjOMcxD9_dZeb
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3469549
Cites_doi 10.1109/CVPR.2019.01088
10.1109/ICME46284.2020.9102866
10.1109/ICIP.2017.8296514
10.21437/Interspeech.2019-3174
10.1017/ATSIP.2020.12
10.1109/LSP.2018.2823701
10.1109/LSP.2020.2965322
10.1109/MMUL.2016.64
10.1109/ICIP.2017.8297036
10.1109/ICIP42928.2021.9506767
10.1109/ICIP40778.2020.9190648
10.1109/TIP.2020.3011811
10.1109/TCSVT.2021.3051377
10.1109/ICASSP.2019.8682413
10.1109/TIP.2019.2931466
10.1109/JSTSP.2020.3047520
10.1109/ICMEW53276.2021.9455990
10.3389/frsip.2022.846972
10.1109/ICRA.2012.6224647
10.1016/0146-664X(82)90104-6
10.1109/ICIP.2019.8803413
10.1109/ICCV.2015.123
10.1109/LSP.2021.3102525
10.1109/DCC50243.2021.00015
10.1109/TIP.2017.2707807
10.1109/TIP.2022.3185541
10.1109/ICIP.2018.8451802
10.1109/TCSVT.2021.3100279
10.1109/CVPR42600.2020.00139
10.1109/TCSVT.2016.2543039
10.1145/3343031.3351061
10.1109/ICASSP39728.2021.9414763
10.1109/ICASSP39728.2021.9413902
10.1109/MSP.2019.2900721
10.1109/DCC50243.2021.00014
10.1109/MMSP53017.2021.9733658
10.1109/ICIP42928.2021.9506429
10.1109/TBC.2019.2957652
10.1109/JETCAS.2018.2885981
10.1109/CVPR46437.2021.00598
10.1109/ICIP42928.2021.9506631
10.1109/JPROC.2021.3085957
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3197295
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 83691
ExternalDocumentID oai_doaj_org_article_43b1eb7c376c47549f036cc9e7501028
10_1109_ACCESS_2022_3197295
9852220
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-c1b8527d73d3f320f0250ed2cab12945d2dad50e0e4be07339c28b4cb5d9fc053
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000842538600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:08 EDT 2025
Mon Jun 30 03:44:04 EDT 2025
Tue Nov 18 21:48:02 EST 2025
Sat Nov 29 06:32:18 EST 2025
Wed Aug 27 02:22:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c1b8527d73d3f320f0250ed2cab12945d2dad50e0e4be07339c28b4cb5d9fc053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8255-1302
0000-0003-3131-9551
OpenAccessLink https://doaj.org/article/43b1eb7c376c47549f036cc9e7501028
PQID 2703099098
PQPubID 4845423
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_43b1eb7c376c47549f036cc9e7501028
proquest_journals_2703099098
crossref_citationtrail_10_1109_ACCESS_2022_3197295
crossref_primary_10_1109_ACCESS_2022_3197295
ieee_primary_9852220
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
Maas (ref29); 30
ref37
ref14
ref31
d’Eon (ref34) 2017
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Schwarz (ref36) 2018
(ref5) 2020
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
Loop (ref33) 2016
ref40
References_xml – ident: ref35
  doi: 10.1109/CVPR.2019.01088
– ident: ref22
  doi: 10.1109/ICME46284.2020.9102866
– ident: ref15
  doi: 10.1109/ICIP.2017.8296514
– ident: ref31
  doi: 10.21437/Interspeech.2019-3174
– ident: ref4
  doi: 10.1017/ATSIP.2020.12
– ident: ref19
  doi: 10.1109/LSP.2018.2823701
– ident: ref6
  doi: 10.1109/LSP.2020.2965322
– ident: ref2
  doi: 10.1109/MMUL.2016.64
– ident: ref41
  doi: 10.1109/ICIP.2017.8297036
– ident: ref13
  doi: 10.1109/ICIP42928.2021.9506767
– ident: ref7
  doi: 10.1109/ICIP40778.2020.9190648
– ident: ref10
  doi: 10.1109/TIP.2020.3011811
– ident: ref21
  doi: 10.1109/TCSVT.2021.3051377
– ident: ref47
  doi: 10.1109/ICASSP.2019.8682413
– ident: ref18
  doi: 10.1109/TIP.2019.2931466
– ident: ref27
  doi: 10.1109/JSTSP.2020.3047520
– ident: ref26
  doi: 10.1109/ICMEW53276.2021.9455990
– ident: ref25
  doi: 10.3389/frsip.2022.846972
– ident: ref42
  doi: 10.1109/ICRA.2012.6224647
– volume-title: TMC13
  year: 2020
  ident: ref5
– ident: ref28
  doi: 10.1016/0146-664X(82)90104-6
– ident: ref14
  doi: 10.1109/ICIP.2019.8803413
– ident: ref30
  doi: 10.1109/ICCV.2015.123
– ident: ref12
  doi: 10.1109/LSP.2021.3102525
– volume-title: Microsoft Voxelized Upper Bodies—A Voxelized Point Cloud Dataset
  year: 2016
  ident: ref33
– ident: ref8
  doi: 10.1109/DCC50243.2021.00015
– ident: ref39
  doi: 10.1109/TIP.2017.2707807
– ident: ref32
  doi: 10.1109/TIP.2022.3185541
– ident: ref40
  doi: 10.1109/ICIP.2018.8451802
– ident: ref24
  doi: 10.1109/TCSVT.2021.3100279
– ident: ref16
  doi: 10.1109/CVPR42600.2020.00139
– ident: ref37
  doi: 10.1109/TCSVT.2016.2543039
– volume-title: Common Test Conditions for Point Cloud Compression
  year: 2018
  ident: ref36
– ident: ref44
  doi: 10.1145/3343031.3351061
– ident: ref11
  doi: 10.1109/ICASSP39728.2021.9414763
– ident: ref46
  doi: 10.1109/ICASSP39728.2021.9413902
– ident: ref3
  doi: 10.1109/MSP.2019.2900721
– ident: ref23
  doi: 10.1109/DCC50243.2021.00014
– ident: ref17
  doi: 10.1109/MMSP53017.2021.9733658
– ident: ref43
  doi: 10.1109/ICIP42928.2021.9506429
– ident: ref9
  doi: 10.1109/TBC.2019.2957652
– volume: 30
  start-page: 3
  volume-title: Proc. ICML
  ident: ref29
  article-title: Rectifier nonlinearities improve neural network acoustic models
– ident: ref1
  doi: 10.1109/JETCAS.2018.2885981
– ident: ref20
  doi: 10.1109/CVPR46437.2021.00598
– ident: ref45
  doi: 10.1109/ICIP42928.2021.9506631
– volume-title: 8I Voxelized Full Bodies—A Voxelized Point Cloud Dataset
  year: 2017
  ident: ref34
– ident: ref38
  doi: 10.1109/JPROC.2021.3085957
SSID ssj0000816957
Score 2.2494311
Snippet In this paper we propose a new paradigm for encoding the geometry of dense point cloud sequences, where a convolutional neural network (CNN), which estimates...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 83678
SubjectTerms Arithmetic coding
Artificial neural networks
Context modeling
Convolutional neural networks
Decoding
Encoding
Encoding-Decoding
Estimates
lossless geometry compression
octree coding
Octrees
Point cloud compression
Process parameters
Training
Training data
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYo4tAeoEArFmjlQ48EYsdex0cagXpAW6oWxM2K7bG00jap2N0e-usZO96oqFWl3hLLjib5PM-MZwj5oHSQ3ntRtCBEISCURTvVvpDtlDFopbKpS8T9jZrN6ocHfbtFzsazMACQks_gPF6mf_m-d-sYKrvQNVoLHB30F0pNh7NaYzwlNpDQUuXCQqzUF5dNg--ALiDn6JlqtCLlM-WTavTnpip_SOKkXq73_o-w12Q3m5H0csB9n2xBd0Be_VZc8JB8uUESFijIaOT5Id21o32gt_28W9Fm0a89_brJpKYpd2C8p59RlHyf_wJPm9mMxo5pi-Ubcnd99a35VOQGCoUTZb0qHLNImPKq8lWoeBmiwQOeu9aimhfSc996HClBWIjdG7XjtRXOSq-DQ_Z8S7a7voMjQmuoAlPMSXTQhGRWW1v7tmKCCV9OQzkhfPNljcvVxWOTi4VJXkapzQCHiXCYDMeEnI2LfgzFNf49_WOEbJwaK2OnAcTCZEYzorIMrHIoOJ1Q6P0G1NHOaUDTKBpTE3IY8RsfkqGbkNPNBjCZi5eGR3GI6lrXx39fdUJeRgKHkMwp2V49ruEd2XE_V_Pl4_u0QZ8AywDiYw
  priority: 102
  providerName: IEEE
Title Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models
URI https://ieeexplore.ieee.org/document/9852220
https://www.proquest.com/docview/2703099098
https://doaj.org/article/43b1eb7c376c47549f036cc9e7501028
Volume 10
WOSCitedRecordID wos000842538600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYNHi0mabJqjFsWDrooPvIXmBQtrV3ZXDx787U7S7rIi6MVLoSFNk8nMN5ky_QahI6mCcM7xrPKcZ9wHklVd5TJRdSn1lZAmVYl4upK9XvH8rG7nSn3FnLCGHrgR3AnPDfVGWjAEyyVEMwEw11rlwdVF5xjRl0g1F0wlDC5oVwnZ0gxRok5OyxJWBAEhYxCnKjhTim-uKDH2tyVWfuBycjYXa2i1PSXi02Z262jB1xtoZY47cBPdXcGYA8ApHE26yWat8TDg22G_nuByMHxz-H6aKI1TasDsHt8AUrz0P7zDZa-HY0G0wXgLPV6cP5SXWVsfIbOcFJPMUlMIJp3MXR5yRkI8z3jHbGXAi3PhmKsctBDPjY_FGZVlheHWCKeCBevbRov1sPY7CBc-D1RSKyD-4oIaZUzhqpxyyh3pBtJBbCoqbVvy8FjDYqBTEEGUbuSro3x1K98OOp499NpwZ_ze_SzuwaxrJL5ODaAOulUH_Zc6dNBm3MHZIAokxBjMf3-6o7o10rFmEe3AG6ti9z9evYeW43Ka7zP7aHEyevMHaMm-T_rj0WHST7hef54fpr8MvwDoueaL
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQk48CoVCwV84NjQ2LHX8bFEVEUsoYiCerPil7TSkqDuLgd-PWPHG4FASNwSy46cfJ6XM54P4KVUQTjneNF5zgvuQ1l0c-UK0c0p9Z2QJrFEfFnItq2vrtTFHhxPZ2G89yn5zL-Kl-lfvhvsNm6VnagavQWGAfqNyJwlxtNa045KpJBQQubSQrRUJ6dNg2-BQSBjGJsq9CPFb-YnVenPtCp_6OJkYM7u_d_U7sPd7EiS0xH5B7Dn-4dw55fyggfwcYFTWKEqI1Hqx4TXngyBXAzLfkOa1bB15NMul5qk7IHpnnxAZfJ1-cM70rQtiZxpq_Uj-Hz25rI5LzKFQmF5WW8KSw1OTDpZuSpUrAzR5fGO2c6goefCMdc5bCk9Nz7yNyrLasOtEU4FiwJ6CPv90PvHQGpfBSqpFRiicUGNMqZ2XUU55a6ch3IGbPdltc31xSPNxUqnOKNUeoRDRzh0hmMGx9Ogb2N5jX93fx0hm7rG2tipAbHQWdQ0rwz1RlpUnZZLjH8DWmlrlUfnKLpTMziI-E0PydDN4Gi3AHSW47VmUSGiwVb1k7-PegG3zi_fL_TibfvuKdyOkx03aI5gf3O99c_gpv2-Wa6vn6fF-hPC4OWu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lossless+Compression+of+Point+Cloud+Sequences+Using+Sequence+Optimized+CNN+Models&rft.jtitle=IEEE+access&rft.au=Kaya%2C+Emre+C.&rft.au=Tabus%2C+Ioan&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=83678&rft.epage=83691&rft_id=info:doi/10.1109%2FACCESS.2022.3197295&rft.externalDocID=9852220
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon