A Novel Deep Learning Scheme for Motor Imagery EEG Decoding Based on Spatial Representation Fusion

Motor imagery electroencephalography (MI-EEG), which is an important subfield of active brain-computer interface (BCI) systems, can be applied to help disabled people to consciously and directly control prosthesis or external devices, aiding them in certain daily activities. However, the low signal-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 8; pp. 202100 - 202110
Main Authors: Yang, Jun, Ma, Zhengmin, Wang, Jin, Fu, Yunfa
Format: Journal Article
Language:English
Published: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Motor imagery electroencephalography (MI-EEG), which is an important subfield of active brain-computer interface (BCI) systems, can be applied to help disabled people to consciously and directly control prosthesis or external devices, aiding them in certain daily activities. However, the low signal-to-noise ratio and spatial resolution make MI-EEG decoding a challenging task. Recently, some deep neural approaches have shown good improvements over state-of-the-art BCI methods. In this study, an end-to-end scheme that includes a multi-layer convolution neural network is constructed for an accurate spatial representation of multi-channel grouped MI-EEG signals, which is employed to extract the useful information present in a multi-channel MI signal. Then the invariant spatial representations are captured from across-subjects training for enhancing the generalization capability through a stacked sparse autoencoder framework, which is inspired by representative deep learning models. Furthermore, a quantitative experimental analysis is conducted on our private dataset and on a public BCI competition dataset. The results show the effectiveness and significance of the proposed methodology.
AbstractList Motor imagery electroencephalography (MI-EEG), which is an important subfield of active brain-computer interface (BCI) systems, can be applied to help disabled people to consciously and directly control prosthesis or external devices, aiding them in certain daily activities. However, the low signal-to-noise ratio and spatial resolution make MI-EEG decoding a challenging task. Recently, some deep neural approaches have shown good improvements over state-of-the-art BCI methods. In this study, an end-to-end scheme that includes a multi-layer convolution neural network is constructed for an accurate spatial representation of multi-channel grouped MI-EEG signals, which is employed to extract the useful information present in a multi-channel MI signal. Then the invariant spatial representations are captured from across-subjects training for enhancing the generalization capability through a stacked sparse autoencoder framework, which is inspired by representative deep learning models. Furthermore, a quantitative experimental analysis is conducted on our private dataset and on a public BCI competition dataset. The results show the effectiveness and significance of the proposed methodology.
Author Fu, Yunfa
Wang, Jin
Yang, Jun
Ma, Zhengmin
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-4230-8340
  surname: Yang
  fullname: Yang, Jun
  email: yang-jun@kust.edu.cn
  organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
– sequence: 2
  givenname: Zhengmin
  orcidid: 0000-0001-9560-4218
  surname: Ma
  fullname: Ma, Zhengmin
  organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
– sequence: 3
  givenname: Jin
  surname: Wang
  fullname: Wang, Jin
  organization: Faculty of Information, Yunnan University, Kunming, China
– sequence: 4
  givenname: Yunfa
  surname: Fu
  fullname: Fu, Yunfa
  organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
BookMark eNp9UV1rGzEQFCWFpm5-QV4Efbajr9OdHl3XSQxuAnH6LPZ0K_fM-XSVzoX8-8q9tJQ-VAjt7jAzrJj35KIPPRJyzdmCc2ZulqvVerdbCCbYQjJZSFW-IZeCazPPg774q39HrlI6sHyqDBXlJamX9CH8wI5-RhzoFiH2bb-nO_cNj0h9iPRLGPO7OcIe4wtdr-8y1YXmzPoECRsaerobYGyho084REzYj3nM8O0p5fKBvPXQJbx6rTPy9Xb9vLqfbx_vNqvldu4Uq8a544Ij4yWCEKUxnGHVgK-0UDV6JqUTXqIwvAYssKwq4IiqcA0A6tJ4J2dkM_k2AQ52iO0R4osN0NpfQIh7C3FsXYdWyVp53TivS1BG1RVoxp1zQvtCVMxnr4-T1xDD9xOm0R7CKfZ5fSuUZlVhZL4zYiaWiyGliN66dvr6GKHtLGf2nJCdErLnhOxrQlkr_9H-3vj_qutJ1SLiH4URquRayJ9khJ3P
CODEN IAECCG
CitedBy_id crossref_primary_10_1049_2024_5596468
crossref_primary_10_1109_TNSRE_2024_3420960
crossref_primary_10_3389_fncom_2022_1006763
crossref_primary_10_1016_j_engappai_2023_106863
crossref_primary_10_3390_brainsci13020268
crossref_primary_10_1080_10255842_2024_2356633
crossref_primary_10_3390_app15084217
crossref_primary_10_3390_app14146347
crossref_primary_10_1016_j_compbiomed_2024_109534
crossref_primary_10_1088_1741_2552_ad8962
crossref_primary_10_1155_2022_3859155
crossref_primary_10_3389_fnhum_2023_1292428
crossref_primary_10_1007_s00521_021_06352_5
crossref_primary_10_1002_ima_22913
crossref_primary_10_1016_j_cogr_2021_02_001
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_1080_15368378_2024_2415089
crossref_primary_10_3390_s21144646
crossref_primary_10_3390_s24134167
Cites_doi 10.1109/ACCESS.2019.2895688
10.1109/IWW-BCI.2018.8311535
10.1109/ICSAI.2018.8599372
10.1016/j.jnca.2018.04.015
10.1088/1741-2552/ab405f
10.1016/j.eswa.2018.08.031
10.1088/1741-2552/aaf3f6
10.1109/EMBC.2018.8512590
10.1109/ROBIO.2018.8665089
10.1109/NORSIG.2006.275210
10.3389/fnins.2012.00039
10.1038/nature14539
10.1109/IWW-BCI.2019.8737263
10.1109/EMBC.2019.8857672
10.1093/bib/bbw068
10.1088/1742-6596/1176/3/032046
10.1016/j.neunet.2014.09.003
10.1007/s11517-018-1917-x
10.1109/ICMCCE.2017.49
10.1111/mice.12367
10.1109/ACCESS.2018.2877452
10.1109/ACCESS.2019.2944067
10.1109/ICRAECC43874.2019.8995021
10.1109/CIS.2019.00025
10.1109/ECACE.2019.8679203
10.1016/S1388-2457(02)00057-3
10.1109/TNSRE.2016.2601240
10.1088/1741-2552/ab260c
10.1111/exsy.12494
10.1109/IMBIOC.2019.8777843
10.1142/S0129065717500332
10.1109/ISSPIT.2018.8642627
10.1109/JTEHM.2019.2926257
10.1109/RTEICT.2017.8256551
10.1109/TCBB.2020.3006699
10.3389/fncom.2019.00087
10.1049/htl.2016.0073
10.1109/ACCESS.2019.2892492
10.1109/TNSRE.2019.2953121
10.1016/j.jneumeth.2003.10.009
10.1109/ACCESS.2019.2962740
10.1016/j.patrec.2014.01.008
10.1088/1741-2560/4/2/R01
10.1146/annurev-statistics-010814-020120
10.1109/ICIEV.2014.6850812
10.1109/ACCESS.2019.2940034
10.1109/ACCESS.2019.2930958
10.1016/j.ijleo.2016.10.117
10.1109/SIU.2018.8404157
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3035347
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 202110
ExternalDocumentID oai_doaj_org_article_43b4f6dcf67a494b8a601ccc26f5280f
10_1109_ACCESS_2020_3035347
9247162
Genre orig-research
GrantInformation_xml – fundername: Introduction of Talent Research Start-Up Fund Project of Kunming University of Science and Technology
  grantid: KKSY201903028
  funderid: 10.13039/501100007301
– fundername: Postdoctoral Research Foundation of Yunnan Province 2020
– fundername: National Natural Science Foundation of China
  grantid: 31760281
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-c121e017ea2279910e8daf8624bef033c2f3e291bae5e788a1ee45cdaae679fc3
IEDL.DBID DOA
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589731200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:17 EDT 2025
Mon Jun 30 06:11:53 EDT 2025
Sat Nov 29 04:14:23 EST 2025
Tue Nov 18 20:49:28 EST 2025
Wed Aug 27 02:33:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-c121e017ea2279910e8daf8624bef033c2f3e291bae5e788a1ee45cdaae679fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9560-4218
0000-0002-4230-8340
OpenAccessLink https://doaj.org/article/43b4f6dcf67a494b8a601ccc26f5280f
PQID 2460859359
PQPubID 4845423
PageCount 11
ParticipantIDs ieee_primary_9247162
doaj_primary_oai_doaj_org_article_43b4f6dcf67a494b8a601ccc26f5280f
proquest_journals_2460859359
crossref_citationtrail_10_1109_ACCESS_2020_3035347
crossref_primary_10_1109_ACCESS_2020_3035347
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
zhang (ref16) 2020; 1
ref54
ref10
ref17
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
vincent (ref43) 2010; 11
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
xu (ref22) 2018
ref24
ref23
lecun (ref37) 2015; 521
ref26
ref25
ref20
ref21
ref28
ref27
ref29
References_xml – ident: ref27
  doi: 10.1109/ACCESS.2019.2895688
– ident: ref18
  doi: 10.1109/IWW-BCI.2018.8311535
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref43
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref42
  doi: 10.1109/ICSAI.2018.8599372
– ident: ref12
  doi: 10.1016/j.jnca.2018.04.015
– ident: ref21
  doi: 10.1088/1741-2552/ab405f
– ident: ref53
  doi: 10.1016/j.eswa.2018.08.031
– ident: ref40
  doi: 10.1088/1741-2552/aaf3f6
– ident: ref52
  doi: 10.1109/EMBC.2018.8512590
– volume: 1
  start-page: 1291
  year: 2020
  ident: ref16
  article-title: A survey on deep learning based brain computer interface: Recent advances and new frontiers
  publication-title: Proc Annu Conf Innov Technol Comput Sci Educ (ITiCSE)
– ident: ref6
  doi: 10.1109/ROBIO.2018.8665089
– ident: ref33
  doi: 10.1109/NORSIG.2006.275210
– ident: ref13
  doi: 10.3389/fnins.2012.00039
– volume: 521
  start-page: 436
  year: 2015
  ident: ref37
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref50
  doi: 10.1109/IWW-BCI.2019.8737263
– ident: ref54
  doi: 10.1109/IWW-BCI.2019.8737263
– ident: ref31
  doi: 10.1109/EMBC.2019.8857672
– ident: ref36
  doi: 10.1093/bib/bbw068
– ident: ref24
  doi: 10.1088/1742-6596/1176/3/032046
– ident: ref20
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref47
  doi: 10.1007/s11517-018-1917-x
– ident: ref45
  doi: 10.1109/ICMCCE.2017.49
– ident: ref26
  doi: 10.1111/mice.12367
– ident: ref35
  doi: 10.1109/ACCESS.2018.2877452
– ident: ref1
  doi: 10.1109/ACCESS.2019.2944067
– ident: ref34
  doi: 10.1109/ICRAECC43874.2019.8995021
– ident: ref23
  doi: 10.1109/EMBC.2018.8512590
– ident: ref48
  doi: 10.1109/CIS.2019.00025
– ident: ref8
  doi: 10.1109/ECACE.2019.8679203
– ident: ref3
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref30
  doi: 10.1109/TNSRE.2016.2601240
– ident: ref17
  doi: 10.1088/1741-2552/ab260c
– ident: ref44
  doi: 10.1111/exsy.12494
– ident: ref5
  doi: 10.1109/IMBIOC.2019.8777843
– ident: ref2
  doi: 10.1142/S0129065717500332
– ident: ref38
  doi: 10.1109/ISSPIT.2018.8642627
– ident: ref4
  doi: 10.1109/JTEHM.2019.2926257
– ident: ref49
  doi: 10.1109/RTEICT.2017.8256551
– ident: ref11
  doi: 10.1109/TCBB.2020.3006699
– ident: ref46
  doi: 10.3389/fncom.2019.00087
– ident: ref41
  doi: 10.1049/htl.2016.0073
– ident: ref51
  doi: 10.1109/ACCESS.2019.2892492
– ident: ref28
  doi: 10.1109/TNSRE.2019.2953121
– ident: ref32
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref9
  doi: 10.1109/ACCESS.2019.2962740
– ident: ref25
  doi: 10.1016/j.patrec.2014.01.008
– ident: ref10
  doi: 10.1088/1741-2560/4/2/R01
– ident: ref19
  doi: 10.1146/annurev-statistics-010814-020120
– ident: ref14
  doi: 10.1109/ICIEV.2014.6850812
– ident: ref39
  doi: 10.1109/ACCESS.2019.2940034
– ident: ref15
  doi: 10.1109/ACCESS.2019.2930958
– ident: ref29
  doi: 10.1016/j.ijleo.2016.10.117
– ident: ref7
  doi: 10.1109/SIU.2018.8404157
– start-page: 470
  year: 2018
  ident: ref22
  article-title: Theory of generative deep learning II: Probe landscape of empirical error via norm based capacity control
  publication-title: Proc 5th IEEE Int Conf Cloud Comput Intell Syst (CCIS)
SSID ssj0000816957
Score 2.276224
Snippet Motor imagery electroencephalography (MI-EEG), which is an important subfield of active brain-computer interface (BCI) systems, can be applied to help disabled...
Motor imagery electroencephalography (MI-EEG), which is an important subfield of active brain–computer interface (BCI) systems, can be applied to help disabled...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 202100
SubjectTerms Artificial neural networks
Biological neural networks
Brain–computer interface
Convolution
convolution neural network
Datasets
Decoding
Deep learning
discriminative and representative deep learning
Electroencephalography
feature fusion
Human-computer interface
Imagery
Multilayers
People with disabilities
Prostheses
Representations
Signal to noise ratio
Spatial resolution
stacked sparse autoencoder
Task analysis
Training
SummonAdditionalLinks – databaseName: IEEE
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaigMceBXE0oJ84NhQx3YePm6XXeDACvGQerNsZ4wqtUnV7lbi33fGcaNKICRuUWRHTr6xx9_E8w1j76qoRdCAJAcqKLTxVWGEL4sowTvR-qYMIRWbaNbr9vTUfN1hR1MuDACkw2fwni7Tv_xuCFsKlR0jVyDBo1222zT1mKs1xVOogISpmiwsVApzPF8s8B2QAkpkpkJVikqo3HM-SaM_F1X5YyVO7mX15P8G9pQ9zttIPh9xf8Z2oH_OHt0TF9xnfs7Xww2c8w8AlzzrqP7i3xGlC-C4V-VfBiTc_PMFyVj85svlR2waBnJm_ASdW8eHnlPJYjRR_i2dmM2JSj1fbSnK9oL9XC1_LD4VuaJCEbRoN0UoZQk4B8GRcCDuFKDtXKQcEQ9RKBVkVCBN6R0ih-TYlQC6Cp1zUDcmBvWS7fVDD68Yd5pioHXsfOd12SkTDOAC4ZDu1cY1asbk3ae2IcuNU9WLc5tohzB2xMcSPjbjM2NHU6fLUW3j381PCMOpKUllpxsIjs0zz2rlday7EOsGx6x965CDhhBkHSvZijhj-wTo9JCM5Ywd3lmEzdP62kpdJ4G4yrz-e68D9pAGOMZoDtne5moLb9iDcLM5u756myz2Fsdl6MM
  priority: 102
  providerName: IEEE
Title A Novel Deep Learning Scheme for Motor Imagery EEG Decoding Based on Spatial Representation Fusion
URI https://ieeexplore.ieee.org/document/9247162
https://www.proquest.com/docview/2460859359
https://doaj.org/article/43b4f6dcf67a494b8a601ccc26f5280f
Volume 8
WOSCitedRecordID wos000589731200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07bxQxELZQlAIKRAiIgxC5oGQVv_bh8nLcAUVOiIeUzrK9Y4SU7EbJJRINv50Zr3M6CQkami1W3odnxh5_luf7GHtTJyOiAQQ5UENlbKgrK4KskoLgRRdaGWMWm2jX6-783H7akfqiM2ETPfBkuBOjg0lNH1PTemNN6DxCiBijalKtOpFo9hWt3QFTeQ7uZGPrttAMSWFP5osF9ggBoUKcKnStSVBlJxVlxv4isfLHvJyTzeoJe1xWiXw-_d0BewDDU_ZohzvwkIU5X493cMHfAVzxQpP6nX9BJ1wCx6UoPxsRT_OPl8RS8ZMvl--xaRwpV_FTzF09HwdOisQYgfxzPhBb6pAGvrqlTbRn7Ntq-XXxoSqCCVU0ottUUSoJOMTAEy8gLgSg632iEpAASWgdVdKgrAweHYPY10sAU8fee2ham6J-zvaGcYAXjKOtiaom9aEPRvbaRgs4_j2iucb6Vs-Yuredi4VNnEQtLlxGFcK6yeCODO6KwWfs7fahq4lM4-_NT8kp26bEhJ1vYHy4Eh_uX_ExY4fk0u1LEG8SadaMHd272JVRe-OUaTL_W21f_o9Pv2IPqTvThs0R29tc38Jrth_vNj9uro9zwOL17NfyOJcd_gasRO5e
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VgkQ58FVQFwr4wLGhjuN8-LhddmlFu0JQpN4s2xkjpDap2t1K_HvGjhtVAiFxiyI7cvLGHr-J5w3A-9JL7iQSycESM6lsmSlu88wLtIY3ts6di8Um6uWyOTtTXzZgb8yFQcR4-Aw_hMv4L7_t3TqEyvaJKwTBo3twv5RS8CFba4yohBISqqyTtFDO1f50NqO3IBIoiJvyoixCEZU77ieq9KeyKn-sxdHBLJ7839CewuO0kWTTAflnsIHdc3h0R15wG-yULfsbPGcfES9ZUlL9wb4RThfIaLfKTnqi3OzoIghZ_GLz-Sdq6vrgztgBubeW9R0LRYvJSNnXeGY2pSp1bLEOcbYX8H0xP50dZqmmQuYkb1aZy0WONAvRBOlA2itg0xofskQsel4UTvgChcqtIeyIHpscUZauNQarWnlXvITNru9wB5iRIQpa-da2VuZtoZxCWiIMEb5KmbqYgLj91NolwfFQ9-JcR-LBlR7w0QEfnfCZwN7Y6XLQ2_h384OA4dg0iGXHGwSOTnNPy8JKX7XOVzWNWdrGEAt1zonKl6LhfgLbAdDxIQnLCezeWoROE_taC1lFibhSvfp7r3fw8PD05FgfHy0_v4atMNghYrMLm6urNb6BB-5m9fP66m203t8HOOwK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Deep+Learning+Scheme+for+Motor+Imagery+EEG+Decoding+Based+on+Spatial+Representation+Fusion&rft.jtitle=IEEE+access&rft.au=Yang%2C+Jun&rft.au=Ma%2C+Zhengmin&rft.au=Wang%2C+Jin&rft.au=Fu%2C+Yunfa&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=202100&rft.epage=202110&rft_id=info:doi/10.1109%2FACCESS.2020.3035347&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3035347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon