A Novel Deep Learning Scheme for Motor Imagery EEG Decoding Based on Spatial Representation Fusion
Motor imagery electroencephalography (MI-EEG), which is an important subfield of active brain-computer interface (BCI) systems, can be applied to help disabled people to consciously and directly control prosthesis or external devices, aiding them in certain daily activities. However, the low signal-...
Saved in:
| Published in: | IEEE access Vol. 8; pp. 202100 - 202110 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Motor imagery electroencephalography (MI-EEG), which is an important subfield of active brain-computer interface (BCI) systems, can be applied to help disabled people to consciously and directly control prosthesis or external devices, aiding them in certain daily activities. However, the low signal-to-noise ratio and spatial resolution make MI-EEG decoding a challenging task. Recently, some deep neural approaches have shown good improvements over state-of-the-art BCI methods. In this study, an end-to-end scheme that includes a multi-layer convolution neural network is constructed for an accurate spatial representation of multi-channel grouped MI-EEG signals, which is employed to extract the useful information present in a multi-channel MI signal. Then the invariant spatial representations are captured from across-subjects training for enhancing the generalization capability through a stacked sparse autoencoder framework, which is inspired by representative deep learning models. Furthermore, a quantitative experimental analysis is conducted on our private dataset and on a public BCI competition dataset. The results show the effectiveness and significance of the proposed methodology. |
|---|---|
| AbstractList | Motor imagery electroencephalography (MI-EEG), which is an important subfield of active brain-computer interface (BCI) systems, can be applied to help disabled people to consciously and directly control prosthesis or external devices, aiding them in certain daily activities. However, the low signal-to-noise ratio and spatial resolution make MI-EEG decoding a challenging task. Recently, some deep neural approaches have shown good improvements over state-of-the-art BCI methods. In this study, an end-to-end scheme that includes a multi-layer convolution neural network is constructed for an accurate spatial representation of multi-channel grouped MI-EEG signals, which is employed to extract the useful information present in a multi-channel MI signal. Then the invariant spatial representations are captured from across-subjects training for enhancing the generalization capability through a stacked sparse autoencoder framework, which is inspired by representative deep learning models. Furthermore, a quantitative experimental analysis is conducted on our private dataset and on a public BCI competition dataset. The results show the effectiveness and significance of the proposed methodology. |
| Author | Fu, Yunfa Wang, Jin Yang, Jun Ma, Zhengmin |
| Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0002-4230-8340 surname: Yang fullname: Yang, Jun email: yang-jun@kust.edu.cn organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China – sequence: 2 givenname: Zhengmin orcidid: 0000-0001-9560-4218 surname: Ma fullname: Ma, Zhengmin organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China – sequence: 3 givenname: Jin surname: Wang fullname: Wang, Jin organization: Faculty of Information, Yunnan University, Kunming, China – sequence: 4 givenname: Yunfa surname: Fu fullname: Fu, Yunfa organization: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China |
| BookMark | eNp9UV1rGzEQFCWFpm5-QV4Efbajr9OdHl3XSQxuAnH6LPZ0K_fM-XSVzoX8-8q9tJQ-VAjt7jAzrJj35KIPPRJyzdmCc2ZulqvVerdbCCbYQjJZSFW-IZeCazPPg774q39HrlI6sHyqDBXlJamX9CH8wI5-RhzoFiH2bb-nO_cNj0h9iPRLGPO7OcIe4wtdr-8y1YXmzPoECRsaerobYGyho084REzYj3nM8O0p5fKBvPXQJbx6rTPy9Xb9vLqfbx_vNqvldu4Uq8a544Ij4yWCEKUxnGHVgK-0UDV6JqUTXqIwvAYssKwq4IiqcA0A6tJ4J2dkM_k2AQ52iO0R4osN0NpfQIh7C3FsXYdWyVp53TivS1BG1RVoxp1zQvtCVMxnr4-T1xDD9xOm0R7CKfZ5fSuUZlVhZL4zYiaWiyGliN66dvr6GKHtLGf2nJCdErLnhOxrQlkr_9H-3vj_qutJ1SLiH4URquRayJ9khJ3P |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1049_2024_5596468 crossref_primary_10_1109_TNSRE_2024_3420960 crossref_primary_10_3389_fncom_2022_1006763 crossref_primary_10_1016_j_engappai_2023_106863 crossref_primary_10_3390_brainsci13020268 crossref_primary_10_1080_10255842_2024_2356633 crossref_primary_10_3390_app15084217 crossref_primary_10_3390_app14146347 crossref_primary_10_1016_j_compbiomed_2024_109534 crossref_primary_10_1088_1741_2552_ad8962 crossref_primary_10_1155_2022_3859155 crossref_primary_10_3389_fnhum_2023_1292428 crossref_primary_10_1007_s00521_021_06352_5 crossref_primary_10_1002_ima_22913 crossref_primary_10_1016_j_cogr_2021_02_001 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_1080_15368378_2024_2415089 crossref_primary_10_3390_s21144646 crossref_primary_10_3390_s24134167 |
| Cites_doi | 10.1109/ACCESS.2019.2895688 10.1109/IWW-BCI.2018.8311535 10.1109/ICSAI.2018.8599372 10.1016/j.jnca.2018.04.015 10.1088/1741-2552/ab405f 10.1016/j.eswa.2018.08.031 10.1088/1741-2552/aaf3f6 10.1109/EMBC.2018.8512590 10.1109/ROBIO.2018.8665089 10.1109/NORSIG.2006.275210 10.3389/fnins.2012.00039 10.1038/nature14539 10.1109/IWW-BCI.2019.8737263 10.1109/EMBC.2019.8857672 10.1093/bib/bbw068 10.1088/1742-6596/1176/3/032046 10.1016/j.neunet.2014.09.003 10.1007/s11517-018-1917-x 10.1109/ICMCCE.2017.49 10.1111/mice.12367 10.1109/ACCESS.2018.2877452 10.1109/ACCESS.2019.2944067 10.1109/ICRAECC43874.2019.8995021 10.1109/CIS.2019.00025 10.1109/ECACE.2019.8679203 10.1016/S1388-2457(02)00057-3 10.1109/TNSRE.2016.2601240 10.1088/1741-2552/ab260c 10.1111/exsy.12494 10.1109/IMBIOC.2019.8777843 10.1142/S0129065717500332 10.1109/ISSPIT.2018.8642627 10.1109/JTEHM.2019.2926257 10.1109/RTEICT.2017.8256551 10.1109/TCBB.2020.3006699 10.3389/fncom.2019.00087 10.1049/htl.2016.0073 10.1109/ACCESS.2019.2892492 10.1109/TNSRE.2019.2953121 10.1016/j.jneumeth.2003.10.009 10.1109/ACCESS.2019.2962740 10.1016/j.patrec.2014.01.008 10.1088/1741-2560/4/2/R01 10.1146/annurev-statistics-010814-020120 10.1109/ICIEV.2014.6850812 10.1109/ACCESS.2019.2940034 10.1109/ACCESS.2019.2930958 10.1016/j.ijleo.2016.10.117 10.1109/SIU.2018.8404157 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.3035347 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 202110 |
| ExternalDocumentID | oai_doaj_org_article_43b4f6dcf67a494b8a601ccc26f5280f 10_1109_ACCESS_2020_3035347 9247162 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Introduction of Talent Research Start-Up Fund Project of Kunming University of Science and Technology grantid: KKSY201903028 funderid: 10.13039/501100007301 – fundername: Postdoctoral Research Foundation of Yunnan Province 2020 – fundername: National Natural Science Foundation of China grantid: 31760281 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-c121e017ea2279910e8daf8624bef033c2f3e291bae5e788a1ee45cdaae679fc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589731200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:17 EDT 2025 Mon Jun 30 06:11:53 EDT 2025 Sat Nov 29 04:14:23 EST 2025 Tue Nov 18 20:49:28 EST 2025 Wed Aug 27 02:33:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-c121e017ea2279910e8daf8624bef033c2f3e291bae5e788a1ee45cdaae679fc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9560-4218 0000-0002-4230-8340 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9247162 |
| PQID | 2460859359 |
| PQPubID | 4845423 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_9247162 doaj_primary_oai_doaj_org_article_43b4f6dcf67a494b8a601ccc26f5280f proquest_journals_2460859359 crossref_citationtrail_10_1109_ACCESS_2020_3035347 crossref_primary_10_1109_ACCESS_2020_3035347 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 zhang (ref16) 2020; 1 ref54 ref10 ref17 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 vincent (ref43) 2010; 11 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 xu (ref22) 2018 ref24 ref23 lecun (ref37) 2015; 521 ref26 ref25 ref20 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref27 doi: 10.1109/ACCESS.2019.2895688 – ident: ref18 doi: 10.1109/IWW-BCI.2018.8311535 – volume: 11 start-page: 3371 year: 2010 ident: ref43 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: ref42 doi: 10.1109/ICSAI.2018.8599372 – ident: ref12 doi: 10.1016/j.jnca.2018.04.015 – ident: ref21 doi: 10.1088/1741-2552/ab405f – ident: ref53 doi: 10.1016/j.eswa.2018.08.031 – ident: ref40 doi: 10.1088/1741-2552/aaf3f6 – ident: ref52 doi: 10.1109/EMBC.2018.8512590 – volume: 1 start-page: 1291 year: 2020 ident: ref16 article-title: A survey on deep learning based brain computer interface: Recent advances and new frontiers publication-title: Proc Annu Conf Innov Technol Comput Sci Educ (ITiCSE) – ident: ref6 doi: 10.1109/ROBIO.2018.8665089 – ident: ref33 doi: 10.1109/NORSIG.2006.275210 – ident: ref13 doi: 10.3389/fnins.2012.00039 – volume: 521 start-page: 436 year: 2015 ident: ref37 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref50 doi: 10.1109/IWW-BCI.2019.8737263 – ident: ref54 doi: 10.1109/IWW-BCI.2019.8737263 – ident: ref31 doi: 10.1109/EMBC.2019.8857672 – ident: ref36 doi: 10.1093/bib/bbw068 – ident: ref24 doi: 10.1088/1742-6596/1176/3/032046 – ident: ref20 doi: 10.1016/j.neunet.2014.09.003 – ident: ref47 doi: 10.1007/s11517-018-1917-x – ident: ref45 doi: 10.1109/ICMCCE.2017.49 – ident: ref26 doi: 10.1111/mice.12367 – ident: ref35 doi: 10.1109/ACCESS.2018.2877452 – ident: ref1 doi: 10.1109/ACCESS.2019.2944067 – ident: ref34 doi: 10.1109/ICRAECC43874.2019.8995021 – ident: ref23 doi: 10.1109/EMBC.2018.8512590 – ident: ref48 doi: 10.1109/CIS.2019.00025 – ident: ref8 doi: 10.1109/ECACE.2019.8679203 – ident: ref3 doi: 10.1016/S1388-2457(02)00057-3 – ident: ref30 doi: 10.1109/TNSRE.2016.2601240 – ident: ref17 doi: 10.1088/1741-2552/ab260c – ident: ref44 doi: 10.1111/exsy.12494 – ident: ref5 doi: 10.1109/IMBIOC.2019.8777843 – ident: ref2 doi: 10.1142/S0129065717500332 – ident: ref38 doi: 10.1109/ISSPIT.2018.8642627 – ident: ref4 doi: 10.1109/JTEHM.2019.2926257 – ident: ref49 doi: 10.1109/RTEICT.2017.8256551 – ident: ref11 doi: 10.1109/TCBB.2020.3006699 – ident: ref46 doi: 10.3389/fncom.2019.00087 – ident: ref41 doi: 10.1049/htl.2016.0073 – ident: ref51 doi: 10.1109/ACCESS.2019.2892492 – ident: ref28 doi: 10.1109/TNSRE.2019.2953121 – ident: ref32 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref9 doi: 10.1109/ACCESS.2019.2962740 – ident: ref25 doi: 10.1016/j.patrec.2014.01.008 – ident: ref10 doi: 10.1088/1741-2560/4/2/R01 – ident: ref19 doi: 10.1146/annurev-statistics-010814-020120 – ident: ref14 doi: 10.1109/ICIEV.2014.6850812 – ident: ref39 doi: 10.1109/ACCESS.2019.2940034 – ident: ref15 doi: 10.1109/ACCESS.2019.2930958 – ident: ref29 doi: 10.1016/j.ijleo.2016.10.117 – ident: ref7 doi: 10.1109/SIU.2018.8404157 – start-page: 470 year: 2018 ident: ref22 article-title: Theory of generative deep learning II: Probe landscape of empirical error via norm based capacity control publication-title: Proc 5th IEEE Int Conf Cloud Comput Intell Syst (CCIS) |
| SSID | ssj0000816957 |
| Score | 2.276321 |
| Snippet | Motor imagery electroencephalography (MI-EEG), which is an important subfield of active brain-computer interface (BCI) systems, can be applied to help disabled... Motor imagery electroencephalography (MI-EEG), which is an important subfield of active brain–computer interface (BCI) systems, can be applied to help disabled... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 202100 |
| SubjectTerms | Artificial neural networks Biological neural networks Brain–computer interface Convolution convolution neural network Datasets Decoding Deep learning discriminative and representative deep learning Electroencephalography feature fusion Human-computer interface Imagery Multilayers People with disabilities Prostheses Representations Signal to noise ratio Spatial resolution stacked sparse autoencoder Task analysis Training |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ6oEeKspDLFDkA0ciYsdx4uOy3QUOrBC0EjfLjzGqBAmCBan_vmPHrFaqRC-9RuMknhnPzGfZ3xByzHzViCAkVm6NLDD68UIZawrlmWWBi-ClTc0mmvm8vbtT1yutvuKZsIEeeFDcqaisCNK7IBsjlLCtQQjhnOMy1LwtQ4y-WPWsgKkUg1smVd1kmiFWqtPxZIIzQkDIEaeWVV3FhiorqSgx9ucWK3_F5ZRsZpvkS64S6Xj4u69kDbot8nmFO3Cb2DGd92_wQL8DPNFMk3pPb9EIj0CxFKVXPeJpevkYWSp-0-n0HEVdH3MVPcPc5Wnf0diRGD2Q3qQDsfkeUkdnr3ETbYf8nE1_TC6K3DChcKJsF4VjnAEuMTCRFxALAWi9CfEKiIVQVpXjoQKumDVQA2JfwwBE7bwxIBsVXLVL1ru-gz1CcaR3WDswbzDHW9UarPxME6BEczRSjgh_1512mU08NrV40AlVlEoPCtdR4TorfEROloOeBjKNj8XPolGWopEJOz1A_9DZP_S__GNEtqNJly9BvBlJs0bk8N3EOq_aF82FTPxvtdr_H58-IBtxOsOGzSFZXzy_wjfyyb0tfr08HyWH_QNmaOwG priority: 102 providerName: Directory of Open Access Journals |
| Title | A Novel Deep Learning Scheme for Motor Imagery EEG Decoding Based on Spatial Representation Fusion |
| URI | https://ieeexplore.ieee.org/document/9247162 https://www.proquest.com/docview/2460859359 https://doaj.org/article/43b4f6dcf67a494b8a601ccc26f5280f |
| Volume | 8 |
| WOSCitedRecordID | wos000589731200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (WRLC) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc48CqIhVL5wLGhieM48XG77AKHrhAPqTfLjzFCapOq3a3Ehd_O2HGjSiAkLlEU2ZaTz4_5Jp5vAN5Uvm5FEJIst1YWtPrxQhlrCuUrWwUugpc2JZto1-vu7Ex92oGjKRYGEdPhM3wbb9O_fD-4bXSVHRNXiIJHu7BLLY-xWpM_JSaQUE2bhYWqUh3PFwt6B6KAnJhpWTd1TKFyZ_NJGv05qcofK3HaXlaP_q9jj-FhNiPZfMT9Cexg_xQe3BEX3Ac7Z-vhBs_ZO8RLlnVUv7MvhNIFMrJV2elAhJt9vIgyFj_ZcvmeirohbmbshDY3z4aexZTFNETZ53RiNgcq9Wy1jV62Z_Bttfy6-FDkjAqFE2W3KVzFK6Q5iCYKB5KlgJ03IcaIWAxlXTseauSqsgYbJHJsKkTROG8MylYFVz-HvX7o8QUwqukdGReVN2QEWNUZMg1NG7C0IrRSzoDffmrtstx4zHpxrhPtKJUe8dERH53xmcHRVOlyVNv4d_GTiOFUNEplpwcEjs4zT4uaOiS9C7I1QgnbGeKgzjkuQ8O7MsxgPwI6NZKxnMHB7YjQeVpfay5kEohr1Mu_13oF92MHRx_NAextrrb4Gu65m82P66vDRPjpevpreZhG72-iaurM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKQaIc-CqoCwV84NjQ2HGc-LhddmlFu0JQpN4sf4wRUptU7W4l_j1jx40qgZC4RZEdOXm2583E84aQ98xXjQhCInNrZIG7Hy-UsaZQnlkWuAhe2lRsolku27Mz9WWD7I25MACQDp_Bh3iZ_uX73q1jqGwffYUoeHSP3K-F4GzI1hojKrGEhKqbLC3ESrU_nc3wLdAJ5OibllVdxSIqd8xPUunPZVX-2IuTgVk8-b-hPSWPM5Gk0wH5Z2QDuufk0R15wW1ip3TZ38A5_QhwSbOS6g_6DXG6AIpslZ706HLTo4soZPGLzuefsKnrozmjB2jePO07GosW4ySlX9OZ2Zyq1NHFOsbZXpDvi_np7LDINRUKJ8p2VTjGGeAqBBOlA5ErQOtNiFkiFkJZVY6HCrhi1kAN6B4bBiBq540B2ajgqpdks-s72CEUe3qH9IJ5gzTAqtYgOTRNgNKK0Eg5Ifz2U2uXBcdj3YtznRyPUukBHx3x0RmfCdkbO10Oehv_bn4QMRybRrHsdAPB0XntaVHhgKR3QTZGKGFbg16oc47LUPO2DBOyHQEdH5KxnJDd2xmh88K-1lzIJBFXq1d_7_WOPDw8PTnWx0fLz6_JVhzsELHZJZurqzW8IQ_czern9dXbNHt_A-t66-0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Deep+Learning+Scheme+for+Motor+Imagery+EEG+Decoding+Based+on+Spatial+Representation+Fusion&rft.jtitle=IEEE+access&rft.au=Yang%2C+Jun&rft.au=Ma%2C+Zhengmin&rft.au=Wang%2C+Jin&rft.au=Fu%2C+Yunfa&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=202100&rft.epage=202110&rft_id=info:doi/10.1109%2FACCESS.2020.3035347&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3035347 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |