Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: current state and future prospects

Main conclusion In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta Jg. 255; H. 1; S. 28
Hauptverfasser: Singha, Dhanawantari L., Das, Debajit, Sarki, Yogita N., Chowdhury, Naimisha, Sharma, Monica, Maharana, Jitendra, Chikkaputtaiah, Channakeshavaiah
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2022
Springer Nature B.V
Schlagworte:
ISSN:0032-0935, 1432-2048, 1432-2048
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Main conclusion In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis , tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.
AbstractList Main conclusion In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis , tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.
MAIN CONCLUSION: In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.
In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.MAIN CONCLUSIONIn a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.
Main conclusionIn a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.
In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement. CRISPR/Cas is a powerful genome-editing tool with a wide range of applications for the genetic improvement of crops. However, the constitutive genome editing of vital genes is often associated with pleiotropic effects on other genes, needless metabolic burden, or interference in the cellular machinery. Tissue-specific genome editing (TSGE), on the other hand, enables researchers to study those genes in specific cells, tissues, or organs without disturbing neighboring groups of cells. Until recently, there was only limited proof of the TSGE concept, where the CRISPR-TSKO tool was successfully used in Arabidopsis, tomato, and cotton, laying a solid foundation for crop improvement. In this review, we have laid out valuable insights into the concept and application of TSGE on relatively unexplored areas such as grain trait improvement under favorable or unfavorable conditions. We also enlisted some of the prominent tissue-specific promoters and described the procedure of their isolation with several TSGE promoter expression systems in detail. Moreover, we highlighted potential negative regulatory genes that could be targeted through TSGE using tissue-specific promoters. In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with constitutive GE such as off target and pleotropic effects for targeted crop improvement.
ArticleNumber 28
Author Chikkaputtaiah, Channakeshavaiah
Chowdhury, Naimisha
Sharma, Monica
Singha, Dhanawantari L.
Das, Debajit
Maharana, Jitendra
Sarki, Yogita N.
Author_xml – sequence: 1
  givenname: Dhanawantari L.
  orcidid: 0000-0001-5981-2933
  surname: Singha
  fullname: Singha, Dhanawantari L.
  email: dhanawantarisingha@gmail.com
  organization: Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST)
– sequence: 2
  givenname: Debajit
  orcidid: 0000-0001-7793-861X
  surname: Das
  fullname: Das, Debajit
  organization: Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST)
– sequence: 3
  givenname: Yogita N.
  orcidid: 0000-0002-7905-7362
  surname: Sarki
  fullname: Sarki, Yogita N.
  organization: Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Academy of Scientific and Innovative Research (AcSIR)
– sequence: 4
  givenname: Naimisha
  orcidid: 0000-0002-5043-0776
  surname: Chowdhury
  fullname: Chowdhury, Naimisha
  organization: Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST)
– sequence: 5
  givenname: Monica
  orcidid: 0000-0001-6204-3733
  surname: Sharma
  fullname: Sharma, Monica
  organization: Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST)
– sequence: 6
  givenname: Jitendra
  orcidid: 0000-0003-4628-5956
  surname: Maharana
  fullname: Maharana, Jitendra
  organization: Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Institute of Biological Chemistry, Academia Sinica
– sequence: 7
  givenname: Channakeshavaiah
  orcidid: 0000-0001-7329-8643
  surname: Chikkaputtaiah
  fullname: Chikkaputtaiah, Channakeshavaiah
  email: channakeshav@neist.res.in
  organization: Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Academy of Scientific and Innovative Research (AcSIR)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34962611$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URLeFP8ABWeLCJXT8ESfhhlb0Q6oEKr1HTjzeutp1th7n0H-PwxaQeqi42JbmeT0z73vCjuIUkbH3Aj4LgOaMALSsK5CiAtWKcr5iK6GVrCTo9oitAMobOlUfsxOie4BSbJo37FjpzkgjxIo9XNoUkSjEDc-BaMaK9jgGH0a-wTjtkKMLeSmHyPdbGzPxfJemeXPH1zdXP3_cnK0tcXqkjLsvfJxTwpg5ZZuR2-i4n_OckO_TtHyc6S177e2W8N3Tfcpuz7_dri-r6-8XV-uv19Wooc3V4FuPSgsYQA1d1xgHox8MulErVQvr684Z451vam2cts5L70FIsK5xZlCn7NPh29L4YUbK_S7QiNuyAU4z9dIoo2UnBPwHKmpRbOx0QT8-Q--nOcWyx0LpbolBFurDEzUPO3T9PoWdTY_9H9sLIA_AWFyhhP4vIqBfsu0P2fYl2_53tv0yZvtMNIbicphiTjZsX5aqg5RKn7jB9G_sF1S_AGMXuGE
CitedBy_id crossref_primary_10_1093_jxb_erae147
crossref_primary_10_1111_pbi_14533
crossref_primary_10_3389_fpls_2022_1042828
crossref_primary_10_3390_agriculture15010029
crossref_primary_10_1186_s42397_023_00140_3
crossref_primary_10_3390_plants11040524
crossref_primary_10_3390_cimb46100659
crossref_primary_10_1007_s00425_025_04747_5
crossref_primary_10_1371_journal_pgen_1011438
crossref_primary_10_3390_cimb46120865
crossref_primary_10_1007_s00425_022_03894_3
crossref_primary_10_1111_aab_70011
crossref_primary_10_1007_s12298_024_01423_y
crossref_primary_10_3389_fgeed_2023_1094965
crossref_primary_10_54112_bbasr_v2023i1_37
crossref_primary_10_1016_j_sajb_2024_07_038
Cites_doi 10.1371/journal.pgen.1003352
10.1073/pnas.1420294112
10.1186/s13007-018-0305-8
10.1007/s00425-014-2180-5
10.1080/21655979.2017.1282018
10.1093/nar/gkt780
10.1104/pp.15.01192
10.1186/s13578-019-0298-7
10.1111/pbi.13068
10.1186/1471-2229-11-162
10.1021/acssynbio.7b00362
10.1105/tpc.7.12.2039
10.1038/7029
10.1111/jipb.12152
10.1007/BF00019510
10.1038/s41438-020-00355-4
10.1038/s41477-020-0695-2
10.1073/pnas.95.9.5172
10.1038/s41392-019-0089-y
10.1126/science.aad5147
10.1016/j.jare.2020.10.003
10.1128/mSphere.00403-17
10.3389/fpls.2020.584151
10.3389/fpls.2016.00967
10.1038/nprot.2007.425
10.1016/j.tplants.2007.01.002
10.1186/1472-6750-13-29
10.1104/pp.107.096966
10.1105/tpc.2.12.1201
10.1186/s13059-015-0715-0
10.1016/j.envexpbott.2020.104087
10.1038/s41467-018-06129-w
10.1038/nature24023
10.1007/s00438-020-01738-x
10.1007/s00299-009-0707-1
10.1016/j.jplph.2012.05.001
10.1006/viro.1997.8637
10.1007/s11105-013-0646-4
10.1002/biot.201700561
10.3389/fpls.2018.00260
10.1104/pp.15.00636
10.1016/j.plantsci.2013.02.002
10.1080/15476286.2018.1504546
10.1007/s00425-003-1098-0
10.1016/j.plantsci.2010.07.016
10.1134/S1021443707030090
10.1023/A:1006157603096
10.1023/A:1010684908364
10.1038/srep26685
10.1186/s13068-018-1049-4
10.3390/ijms19123925
10.3389/fpls.2016.00377
10.1007/s00299-016-2000-4
10.1371/journal.pone.0236943
10.1007/BF02772805
10.3389/fpls.2019.01173
10.1038/s41438-020-00363-4
10.1023/A:1019866029629
10.1016/j.molcel.2014.04.022
10.1038/nbt.2654
10.1016/j.molp.2017.03.001
10.1038/ng2014
10.1038/srep26912
10.1038/nature13579
10.1093/jxb/ern110
10.1007/s00425-011-1432-x
10.1016/j.jgg.2013.12.001
10.1073/pnas.1808585115
10.1038/srep46890
10.1007/s11103-011-9796-7
10.1007/s00299-019-02371-8
10.1016/j.xplc.2020.100020
10.1073/pnas.1313587110
10.1016/j.plaphy.2011.02.005
10.1371/journal.pone.0242949
10.1007/s00299-010-0945-2
10.1105/tpc.3.4.371
10.1016/j.molp.2019.03.011
10.3390/ijms19061667
10.1007/s00299-012-1238-8
10.1016/j.molp.2015.10.004
10.1007/s00299-010-08517
10.1038/s41467-017-02350-1
10.1016/j.envexpbot.2020.104056
10.1534/genetics.111.134890
10.1038/nbt.2908
10.1016/j.molp.2016.05.001
10.1016/j.gene.2014.12.029
10.1038/srep10342
10.1016/j.jgg.2017.09.010
10.1016/j.plaphy.2020.01.036
10.1007/s00299-016-2062-3
10.1007/s11105-012-0458-y
10.1016/j.plantsci.2020.110613
10.1007/s00299-010-0816-x
10.1007/s00438-016-1262-4
10.1146/annurev.bi.51.070182.000425
10.1016/0092-8674(83)90331-8
10.1016/j.plantsci.2019.110301
10.1038/s41467-018-04416-0
10.1105/tpc.19.00454
10.1007/s11816-020-00612-x
10.1007/s11103-020-00989-x
10.1023/A:1005898624425
10.1186/s12934-020-01431-z
10.1186/1746-4811-4-6
10.1126/science.1138140
10.1016/B978-0-12-801185-0.00022-2
10.1105/tpc.16.00922
10.1186/s12870-019-2198-8
10.1270/jsbbs.62.133
10.1007/s11103-015-0342-x
10.1111/mpp.12546
10.1023/a:1005954621558
10.1093/jxb/ert180
10.1007/s12374-020-09272-4
10.1023/a:1016313924844
10.1111/nph.15279
10.1016/j.virusres.2017.10.009
10.1104/pp.111.175000
10.1038/srep41947
10.1007/s10059-012-0068-4
10.1016/j.ygeno.2020.09.024
10.1186/s13068-019-1467-y
10.1023/A:1014910900312
10.1104/pp.110.159517
10.1038/srep18256
10.1126/science.abb1400
10.1073/pnas.93.10.5055
10.1371/journal.pone.0181963
10.1023/a:1006312228617
10.4161/psb.3.9.5820
10.1259/bjr.20130685
10.3390/ijms19072009
10.1007/s00299-011-1003-4
10.1038/nplants.2017.18
10.3390/ijms20194702
10.1007/BF02464887
10.1111/pbi.12468
10.1126/science.aba8853
10.3389/fpls.2017.02049
10.1038/ng.220
10.1093/jxb/erw226
10.3389/fpls.2020.602680
10.1038/nbt.2969
10.1016/j.cell.2015.09.038
10.21273/JASHS.132.4.551
10.3389/fpls.2014.00273
10.1111/j.1365-313X.2010.04302.x2.x
10.1104/pp.15.00793
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7TM
7X2
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
7S9
L.6
DOI 10.1007/s00425-021-03811-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Natural Science Collection Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
Agricultural Science Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Ecology
Forestry
Botany
EISSN 1432-2048
EndPage 28
ExternalDocumentID 34962611
10_1007_s00425_021_03811_0
Genre Journal Article
Review
GrantInformation_xml – fundername: Council of Scientific and Industrial Research, India
  grantid: MLP-0007
  funderid: http://dx.doi.org/10.13039/501100001412
– fundername: Science and Engineering Research Board
  grantid: PDF/2018/002632
  funderid: http://dx.doi.org/10.13039/501100001843
– fundername: Council of Scientific and Industrial Research, India
  grantid: MLP-0007
– fundername: Science and Engineering Research Board
  grantid: PDF/2018/002632
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
06C
06D
0R~
0VY
123
199
1SB
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~F
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X2
7X7
88A
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBXY
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEJZ
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AICQM
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
DATOO
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FA8
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IPSME
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0K
M0L
M1P
M4Y
M7P
MA-
MQGED
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
P0-
P19
P2P
PF-
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SA0
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
XJT
YLTOR
Z45
Z7U
Z7V
Z7W
Z7Y
Z81
Z83
Z8O
Z8P
Z8Q
Z8S
Z8U
Z8W
ZCG
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TM
7XB
8FD
8FK
AZQEC
DWQXO
ESTFP
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
RC3
7X8
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c408t-bf8fe3410b03b9976d0cfb6edc43351af59d66fdf7546d4adf2ff0120ad7d6b3
IEDL.DBID M7P
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000736152400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0032-0935
1432-2048
IngestDate Thu Oct 02 12:10:21 EDT 2025
Sun Nov 09 09:31:59 EST 2025
Wed Nov 05 00:46:01 EST 2025
Mon Jul 21 05:45:15 EDT 2025
Sat Nov 29 04:05:42 EST 2025
Tue Nov 18 22:36:12 EST 2025
Fri Feb 21 02:46:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CRISPR-TSKO
Tissue-specific promoters (TSPs)
Abiotic stress
Tissue-specific genome editing (TSGE)
Crop improvement
Biotic stress
CRISPR-Cas9/Cas12a
Language English
License 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-bf8fe3410b03b9976d0cfb6edc43351af59d66fdf7546d4adf2ff0120ad7d6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6204-3733
0000-0001-5981-2933
0000-0002-5043-0776
0000-0001-7793-861X
0000-0002-7905-7362
0000-0003-4628-5956
0000-0001-7329-8643
PMID 34962611
PQID 2614938112
PQPubID 54047
PageCount 1
ParticipantIDs proquest_miscellaneous_2636429110
proquest_miscellaneous_2615109394
proquest_journals_2614938112
pubmed_primary_34962611
crossref_primary_10_1007_s00425_021_03811_0
crossref_citationtrail_10_1007_s00425_021_03811_0
springer_journals_10_1007_s00425_021_03811_0
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle An International Journal of Plant Biology
PublicationTitle Planta
PublicationTitleAbbrev Planta
PublicationTitleAlternate Planta
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Saed, Ismail, Zainal, Abdullah (CR97) 2012; 1691
Fu, Xue (CR30) 2010; 154
Decaestecker, Buono, Pfeiffer, Vangheluwe, Jourquin, Karimi, Van Isterdael, Beeckman, Nowack, Jacobs (CR22) 2019; 31
Liang, Eudes, Yogiswara, Jing, Benites, Yamanaka, Cheng-Yue, Baidoo, Mortimer, Scheller, Loque (CR64) 2019; 12
Wang, Xing, Dong, Zhang, Han, Wang, Chen (CR124) 2015; 16
Ficker, Wemmer, Thompson (CR28) 1997; 35
Li, Yang, Hong, Huang, Wu, Zhao (CR59) 2020; 5
Rusconi, Simeoni, Francia, Cominelli, Conti, Riboni, Simoni, Martin, Tonelli, Galbiati (CR95) 2013; 64
Tan, Yang, Zhang, Zheng, Qu, Mu, Fu, Li, Guan, Zhang, Wang, Zuo (CR110) 2011; 156
Meyer, Mumm, Imes, Endler, Weder, Al-Rasheid, Geiger, Marten, Martinoia, Hedrich (CR76) 2010; 63
Jiang, Zhou, Bi, Fromm, Yang, Weeks (CR44) 2013; 41
Kakrana, Kumar, Satheesh, Abdin, Subramaniam, Bhattacharya, Jain (CR46) 2017; 8
Tang, Xu, Ma, Wang, Liu, Wan, Shan (CR113) 2018; 9
Li, Liu, Yu, Liu, Wu (CR54) 2013; 207
Lowder, Zhang, Baltes, Paul, Tang, Zheng, Voytas, Hsieh, Zhang, Qi (CR71) 2015; 169
Walton, Christie, Whittaker, Kleinstiver (CR120) 2020; 368
Xie, Tang, He, Liu, Zhou, Liu, Ge, Li, Liu, Zhao, Qu (CR133) 2018; 13
Arango, Salazar, Welsch, Sarmiento, Beyer, Al-Babili (CR8) 2010; 29
Twell, Wing, Yamaguchi, McCormick (CR117) 1989; 217
Carsolio, Campos, Sanchez, Rocha-Sosa (CR17) 1994; 26
Zhang, Bohl-Zenger, Pounti-Kaerlas, Potrykus, Gruissem (CR144) 2003; 218
Zhong, Sretenovic, Ren, Yang, Bao, Qi, Yuan, He, Liu, Liu, Wang, Huang, Wang, Baby, Wang, Zhang, Qi, Zhang (CR147) 2019; 12
Annadana, Beekwilder, Kuipers, Visser, Outchkourov, Pereira, Udayakumar, De Jong, Jongsma (CR6) 2002; 11
Wang, MacFarlane, Maule (CR121) 1997; 234
Zavallo, Lopez Bilbao, Hopp, Heinz (CR142) 2010; 2
Goto, Yoshihara, Shigemoto, Toki, Takaiwa (CR34) 1999; 17
Yang, Costa, Leonhardt, Seigel, Schroider (CR137) 2008; 4
Yu, Zheng, Shan, Meng, Vingron, Liu, Zhu (CR139) 2014; 5
Yu, Kim, Ma, Jia, Guo, Xie, Kwak, Zhang, Bian (CR140) 2020; 14
Ali, Ali, Taskandi, Zaidy, Mahfouz (CR2) 2016; 6
Francia, Simoni, Cominelli, Tonelli, Galbiati (CR29) 2008; 3
Lei, Sun, Wang, Yu, Dei, Li, Zhang, Zhang (CR51) 2020; 7
Ren, Zhong, Wang, You, Li, Yuan, He, Qi, Tang, Zheng, Zhang (CR94) 2019; 10
Zhou, Li, Zheng, Xu, Zheng, Yang, Chen, Yu, Yan, Chen, Wang (CR149) 2020; 11
Szostak, Orr-Weaver, Rothstein, Stahl (CR109) 1983; 33
Yan, Wei, Wu, Hu, Li, Yang, Xie (CR136) 2015; 8
He, Naqvi, McLellan, Boevink, Champouret, Hein, Birch (CR38) 2018; 115
Puchta, Dujon, Hohn (CR92) 1996; 93
Tang, Ren, Yang, Bao, Zhong, He, Liu, Qi, Liu, Wang, Sretenovic (CR114) 2019; 17
Bandyopadhyay, Kancharla, Javalkote, Dasgupta, Brutnell (CR10) 2020; 11
Chen, Miao, Wang, Su, Li, Wang, Hao, Yang, He, Gao (CR19) 2012; 30
Wang, Tao, Tian, Guo, Chen, Xu, Shang, Hu (CR130) 2017; 12
Koltunow, Truettner, Cox, Walroth, Goldberg (CR49) 1990; 2
Oh, Kwon, Kim, Noh, Hong, Lee (CR85) 2011; 77
Singer, Hily, Cox (CR102) 2011; 234
Venter (CR118) 2007; 12
Qu, Xing, Liu, Xu, Song (CR93) 2008; 59
Li, Norville, Aach, McCormack, Zhang, Bush, Church, Sheen (CR53) 2013; 31
Sun, Hu, Chen, Jiang, Song, Zhang, Xi (CR107) 2015; 5
Li, Zhang, Sheen (CR55) 2014; 546
Ma, Liang, Lv, Guan, Jiang, Cheng (CR72) 2020; 290
Mikami, Toki, Endo (CR78) 2015; 88
Naoumkina, Dixon (CR82) 2011; 30
Wang, Cao, Guan, Kong, Wang, Cui, Liu, Zhou, Zhang (CR129) 2020; 149
Cermak, Curtin, Gil Humanes, Čegan, Kono, Konečná, Belanto, Starker, Mathre, Greenstein (CR18) 2017; 29
Zetsche, Gootenberg, Abudayyeh, Slaymaker, Makarova, Essletzbichler, Volz, Joung, van der Oost, Regev, Koonin, Zhang (CR143) 2015; 163
Gao, Zhao (CR32) 2014; 56
Feng, Zhang, Hua, Gao, Mao, Botella, Zhu (CR27) 2018; 19
Wang, Zhu, Ye, Liu, Zhou, Chen, Lin (CR125) 2016; 5
Arnoult, Correia, Ma, Merlo, Garcia-Gomez, Maric, Tognetti, Benner, Boulton, Saghatelian, Karlseder (CR9) 2017; 549
Li, Liu, Chen, Tian, Fan, Zhou (CR58) 2019; 19
Sassa, Ushijima, Hirano (CR100) 2002; 50
Zhou, Yang, Wang, Yu, Yu, Chen, Cheng, Yan, Chen (CR148) 2013; 13
Heang, Sassa (CR39) 2012; 62
Wakeley, Rogers, Rozycka, Greenland, Hussey (CR119) 1998; 37
Maeo, Tomiya, Hayashi, Akaiki, Morikama, Ishiguro, Nakamura (CR73) 2001; 46
Cheng, Gong, Zhao, Yang, Zhou, Li, Xiang (CR20) 2017; 44
Stromvik, Sundararaman, Vodkin (CR106) 1999; 41
Lim, Lee, Kim, Lee, Kim, Ahmad, Kim, Yi, Hur, Kwon (CR65) 2012; 34
Wu, El-Mezawy, Shah (CR131) 2011; 30
Miki, Zhang, Zeng, Feng, Zhu (CR79) 2018; 9
Mao, Zhang, Feng, Wei, Zhang, Botella, Zhu (CR74) 2015; 14
Liang, Han, Romanienko, Jasin (CR62) 1998; 95
Eid, Ali, Mahfouz (CR25) 2016; 35
Wang, Wang, Zhu, Hao, Wang, Li, Zhang, He, Lu, Lin, Ma, Zhang, He (CR122) 2008; 40
Yu, Wang, Bai, Wang, Wan, Liu, Ni (CR141) 2020; 176
Xie, Minkenberg, Yang (CR132) 2015; 112
Shen, Lv, Luo, He, Mao, Xi, Ming (CR101) 2017; 7
McLellan, Chen, He, Wu, Boevink, Tian, Birch (CR75) 2020; 1
Zhang, Zhang, Unver, Zhang (CR145) 2021; 29
Yamamoto, Taylor, Acedo, Cheng, Conkling (CR135) 1991; 3
Wang, Cheng, Shan, Zhang, Liu, Gao, Wang, Cheng (CR123) 2014; 32
Tang, Lowder, Zhang, Malzahn, Zheng, Voytas, Zhong, Chen, Ren, Li, Kirkland, Zhang, Qi (CR112) 2017; 3
Wang, Mao, Lu, Tao, Zhu (CR126) 2017; 10
Pausch, Al-Shayeb, Bisom-Rapp, Tsuchida, Li, Cress, Knott, Jacobsen, Banfield, Doudna (CR90) 2020; 369
Ye, Zhou, Lin (CR138) 2012; 31
Ali, Eid, Ali, Mahfouz (CR3) 2018; 244
Kakarougkas, Jeggo (CR45) 2014; 87
O'Malley, Alonso, Kim, Leisse, Ecker (CR86) 2007; 2
Lindahl (CR66) 1982; 51
Osakabe, Osakabe, Chiang (CR87) 2009; 28
Liu, Wu, Feng, Li, Duan, Shen, Yin, Xu, Xiong (CR70) 2021; 296
Guan, Wang, Sun (CR35) 2017; 2
Michiels, Tucker, Van den Ende, Van Laere (CR77) 2003; 21
Buchner, Rochat, Wuilleme, Boutin (CR14) 2002; 49
Feder, Jensen, Wang, Courtney, Middleton, Van Eck, Liu, Giovannoni (CR26) 2020; 7
Bin Moon, Lee, Kang, Lee, Ha, Kim, Kim, Yoo, Kim, Ko, Kim (CR13) 2018; 9
Gago, Grima-Pettenati, Gallego (CR31) 2011; 49
Osakabe, Watanabe, Sugano, Ueta, Ishihara, Shinozaki, Osakabe (CR88) 2016; 6
Li, Li, Zhou, Wu, Fang, Pan, Lin, Luo, Wu, Li (CR57) 2016; 7
Tang, Xu, Li, Zhu, Chen, Shan, Wan (CR115) 2021; 16
Carre, Kay (CR16) 1995; 7
Song, Honda, Yamaguchi (CR103) 2007; 132
Nissim, Perli, Fridkin, Perez-Pinera, Lu (CR84) 2014; 54
Hyun, Kim, Cho, Choi, Kim, Coupland (CR42) 2015; 241
Poliner, Takeuchi, Du, Benning, Farré (CR91) 2018; 7
Wang, Wu, Zhang, Yang, Fan, Zhang, Zhao, Yuan, Zhang (CR127) 2019; 20
Burstin, Marget, Huart, Moessner, Mangin, Duchene, Desprez, Munier-Jolain, Duc (CR15) 2007; 144
Lei, Dai, Li, Yang, Li, Zhang, Zhou, Liu (CR52) 2021; 64
Li, Ouyang, Wang, Luo, Yang, Li, Sima, Zhang, Ye (CR56) 2016; 7
Liu, Yang, Li, Li, Zhou, Zhao, Fan, Lin, Chen (CR68) 2016; 67
Soyano, Kouchi, Hirota, Hayashi (CR105) 2013; 9
Liang, Zhang, Chen, Gao (CR63) 2014; 41
Anders, Niewoehner, Duerst, Jinek (CR4) 2014; 513
Andersson, Turesson, Nicolia, Falt, Samuelsson, Hofvander (CR5) 2017; 36
Lehner, Mudrak, Minesinger, Jinks-Robertson (CR50) 2012; 190
Mohanraju, Makarova, Zetsche, Zhang, Koonin, van der Oost (CR80) 2016; 353
Park, Kang, Nawkar, Lee, Paeng, Chae, Chi, Kim, Yun, Lee (CR89) 2018; 220
Safari, Zare, Negahdaripour, barekati-Mowahed M, Ghasemi Y (CR98) 2019; 9
Liu, Dong, Cui, Cong, Zhang (CR69) 2020; 19
Agarwal, Kumar, Pareek, Sharma (CR1) 2017; 292
Hou, Zhang, Propson, Howden, Chu, Sontheimer, Thomson (CR41) 2013; 110
Sanjari, Shirzadian, Zahra, Shobbar, Shahbazi (CR99) 2019; 38
Wang, Ye, Lyu, Ursache, Löytynoja, Mähönen (CR128) 2020; 6
Svitashev, Young, Schwartz, Gao, Falco, Cigan (CR108) 2015; 169
Tsai, Wyvekens, Khayter, Foden, Thapar, Reyon, Goodwin, Aryee, Joung (CR116) 2014; 32
Aoyagi, Kobayashi, Kozaki (CR7) 2018; 19
Zhu, Xie, Chen, Lee, Loque, Scheller (CR150) 2018; 11
Bernheim, Calvo-Villamañán, Basier, Cui, Rocha, Touchon, Bikard (CR12) 2017; 8
Khong, Pati, Richaud, Parizot, Bidzinski, Mai, Bès, Bourrié, Meynard, Beeckman, Selvaraj, Manabu, Genga, Brugidou, Nang Do, Guiderdoni, Morel, Gantet (CR47) 2015; 169
Cominelli, Galbiati, Albertini, Fornara, Conti, Coupland, Tonelli (CR21) 2011; 11
He, Luo, Wang, Liu, Zhang, Zhu (CR37) 2020; 176
Kim, Lim, Jang (CR48) 2020; 103
Liu, Xia, Wu, Fu, Hayward, Luo, Yan, Xiong, Fu, Wu, Lu (CR67) 2015; 557
Zhong, Yang, Shi, Wang, Wang (CR146) 2018; 19
Dwivedi, Roche, Carman (CR24) 2010; 179
Li, Wang, Cao, Chen, Ma, Lv, Sun, Qiao, Zhu, Zhang, Fan, Ma (CR61) 2021; 113
Barrangou, Fremaux, Deveau, Richards, Boyaval, Moineau, Romero, Horvath (CR11) 2007; 315
Xue, Long, Zhao, Huang, Huang, Zhang, Jiang, Yuan, Pei (CR134) 2018; 19
Jeon, Chung, Lee, Yi, Oh, An (CR43) 1999; 39
Naumkina, Bolyakina, Romanov (CR83) 2007; 54
Du, Lou, Zhang, Jiao, Liu, Wang (CR23) 2014; 32
Helbo, Lay, Jones, Liang, Gronbak (CR40) 2017; 7
Tang, Zheng, Qi, Zhang, Cheng, Tang, Voytas, Zhang (CR111) 2016; 9
Saad, Romdhane, Zouari, Ben Hsouna, Harbaoui, Brini, Ghneim-Herrera (CR96) 2020; 15
Nakade, Yamamoto, Sakuma (CR81) 2017; 8
Li, Tang, Li, Luo, Zhou, Zhang, Lv (CR60) 2020; 299
Song, Huang, Shi, Zhu, Lin (CR104) 2007; 39
Guo, Li, Jin, Xu, Miao, Yang, Miao (CR36) 2018; 14
Gleditzsch, Pausch, Müller-Esparza, Özcan, Guo, Bange, Randau (CR33) 2019; 16
Y Yu (3811_CR140) 2020; 14
Y Zhu (3811_CR150) 2018; 11
E Cominelli (3811_CR21) 2011; 11
G Song (3811_CR103) 2007; 132
JX Liu (3811_CR70) 2021; 296
C Anders (3811_CR4) 2014; 513
M Li (3811_CR57) 2016; 7
X Wang (3811_CR128) 2020; 6
A Michiels (3811_CR77) 2003; 21
J Guo (3811_CR36) 2018; 14
Y Lei (3811_CR51) 2020; 7
E Poliner (3811_CR91) 2018; 7
J Lei (3811_CR52) 2021; 64
A Kakarougkas (3811_CR45) 2014; 87
G Tang (3811_CR115) 2021; 16
RB Saad (3811_CR96) 2020; 15
JW Szostak (3811_CR109) 1983; 33
AM Koltunow (3811_CR49) 1990; 2
M Mikami (3811_CR78) 2015; 88
T Soyano (3811_CR105) 2013; 9
N Arnoult (3811_CR9) 2017; 549
LG Lowder (3811_CR71) 2015; 169
M Naoumkina (3811_CR82) 2011; 30
FF Fu (3811_CR30) 2010; 154
F Liu (3811_CR67) 2015; 557
EM Naumkina (3811_CR83) 2007; 54
F Safari (3811_CR98) 2019; 9
Y Osakabe (3811_CR87) 2009; 28
Q He (3811_CR38) 2018; 115
K Maeo (3811_CR73) 2001; 46
M Ficker (3811_CR28) 1997; 35
D Gleditzsch (3811_CR33) 2019; 16
X He (3811_CR37) 2020; 176
Y Li (3811_CR58) 2019; 19
Y Gao (3811_CR32) 2014; 56
L Nissim (3811_CR84) 2014; 54
Q Ren (3811_CR94) 2019; 10
F Rusconi (3811_CR95) 2013; 64
P Buchner (3811_CR14) 2002; 49
JS Jeon (3811_CR43) 1999; 39
Y Yang (3811_CR137) 2008; 4
S Bin Moon (3811_CR13) 2018; 9
J Guan (3811_CR35) 2017; 2
F Liang (3811_CR62) 1998; 95
X Sun (3811_CR107) 2015; 5
XJ Song (3811_CR104) 2007; 39
Z Ali (3811_CR3) 2018; 244
H Puchta (3811_CR92) 1996; 93
P Zhang (3811_CR144) 2003; 218
T Lindahl (3811_CR66) 1982; 51
RT Walton (3811_CR120) 2020; 368
L Du (3811_CR23) 2014; 32
YT Yamamoto (3811_CR135) 1991; 3
X Li (3811_CR60) 2020; 299
D Wang (3811_CR121) 1997; 234
W Jiang (3811_CR44) 2013; 41
JH Kim (3811_CR48) 2020; 103
Z Feng (3811_CR27) 2018; 19
Y Wang (3811_CR129) 2020; 149
J Arango (3811_CR8) 2010; 29
SD Singer (3811_CR102) 2011; 234
P Agarwal (3811_CR1) 2017; 292
IA Carre (3811_CR16) 1995; 7
P Pausch (3811_CR90) 2020; 369
ZP Wang (3811_CR124) 2015; 16
H Xie (3811_CR133) 2018; 13
Z Hou (3811_CR41) 2013; 110
MV Stromvik (3811_CR106) 1999; 41
H McLellan (3811_CR75) 2020; 1
J Wang (3811_CR130) 2017; 12
K Lehner (3811_CR50) 2012; 190
S Meyer (3811_CR76) 2010; 63
A Bernheim (3811_CR12) 2017; 8
R Barrangou (3811_CR11) 2007; 315
JF Li (3811_CR53) 2013; 31
S Nakade (3811_CR81) 2017; 8
LQ Qu (3811_CR93) 2008; 59
KK Dwivedi (3811_CR24) 2010; 179
JF Li (3811_CR55) 2014; 546
E Wang (3811_CR122) 2008; 40
D Twell (3811_CR117) 1989; 217
X Liu (3811_CR68) 2016; 67
M Xue (3811_CR134) 2018; 19
A Feder (3811_CR26) 2020; 7
M Wang (3811_CR126) 2017; 10
J Oh (3811_CR85) 2011; 77
H Tan (3811_CR110) 2011; 156
Y Li (3811_CR54) 2013; 207
K Xie (3811_CR132) 2015; 112
M Venter (3811_CR118) 2007; 12
F Cheng (3811_CR20) 2017; 44
D Zhang (3811_CR145) 2021; 29
CJ Lim (3811_CR65) 2012; 34
Y Hyun (3811_CR42) 2015; 241
Y Liang (3811_CR64) 2019; 12
L Chen (3811_CR19) 2012; 30
S Annadana (3811_CR6) 2002; 11
Z Liu (3811_CR69) 2020; 19
SQ Tsai (3811_CR116) 2014; 32
P Francia (3811_CR29) 2008; 3
G Tang (3811_CR113) 2018; 9
X Zhong (3811_CR146) 2018; 19
X Tang (3811_CR111) 2016; 9
H Wang (3811_CR127) 2019; 20
T Aoyagi (3811_CR7) 2018; 19
S Svitashev (3811_CR108) 2015; 169
AS Helbo (3811_CR40) 2017; 7
W Decaestecker (3811_CR22) 2019; 31
J Gago (3811_CR31) 2011; 49
PR Wakeley (3811_CR119) 1998; 37
R Ye (3811_CR138) 2012; 31
Z Li (3811_CR61) 2021; 113
T Cermak (3811_CR18) 2017; 29
Y Wang (3811_CR123) 2014; 32
X Tang (3811_CR114) 2019; 17
R Wang (3811_CR125) 2016; 5
H Li (3811_CR59) 2020; 5
M Andersson (3811_CR5) 2017; 36
L Wu (3811_CR131) 2011; 30
B Zetsche (3811_CR143) 2015; 163
X Yu (3811_CR139) 2014; 5
J Zhou (3811_CR149) 2020; 11
L Yan (3811_CR136) 2015; 8
JH Park (3811_CR89) 2018; 220
F Goto (3811_CR34) 1999; 17
R O'Malley (3811_CR86) 2007; 2
J Burstin (3811_CR15) 2007; 144
Y Yu (3811_CR141) 2020; 176
Y Mao (3811_CR74) 2015; 14
J Zhou (3811_CR148) 2013; 13
D Miki (3811_CR79) 2018; 9
D Zavallo (3811_CR142) 2010; 2
X Ma (3811_CR72) 2020; 290
A Eid (3811_CR25) 2016; 35
Z Ali (3811_CR2) 2016; 6
TR Saed (3811_CR97) 2012; 1691
S Sanjari (3811_CR99) 2019; 38
X Tang (3811_CR112) 2017; 3
D Heang (3811_CR39) 2012; 62
Z Zhong (3811_CR147) 2019; 12
A Bandyopadhyay (3811_CR10) 2020; 11
Y Osakabe (3811_CR88) 2016; 6
P Mohanraju (3811_CR80) 2016; 353
J Shen (3811_CR101) 2017; 7
H Sassa (3811_CR100) 2002; 50
J Li (3811_CR56) 2016; 7
GN Khong (3811_CR47) 2015; 169
A Kakrana (3811_CR46) 2017; 8
C Carsolio (3811_CR17) 1994; 26
Z Liang (3811_CR63) 2014; 41
References_xml – volume: 9
  issue: 3
  year: 2013
  ident: CR105
  article-title: NODULE INCEPTION directly targets NF-Y subunit genes to regulate essential processes of root nodule development in
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003352
– volume: 112
  start-page: 3570
  issue: 11
  year: 2015
  end-page: 3575
  ident: CR132
  article-title: Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system
  publication-title: PNAS
  doi: 10.1073/pnas.1420294112
– volume: 14
  start-page: 40
  year: 2018
  ident: CR36
  article-title: A simple and cost-effective method for screening of CRISPR/Cas9-induced homozygous/biallelic mutants
  publication-title: Plant Methods
  doi: 10.1186/s13007-018-0305-8
– volume: 241
  start-page: 271
  issue: 1
  year: 2015
  end-page: 284
  ident: CR42
  article-title: Site-directed mutagenesis in using dividing tissue-targeted RGEN of the CRISPR/Cass system to generate heritable null alleles
  publication-title: Planta
  doi: 10.1007/s00425-014-2180-5
– volume: 8
  start-page: 265
  issue: 3
  year: 2017
  end-page: 273
  ident: CR81
  article-title: Cas9, Cpf1 and C2c1/2/3—what's next?
  publication-title: Bioengineered
  doi: 10.1080/21655979.2017.1282018
– volume: 41
  issue: 20
  year: 2013
  ident: CR44
  article-title: Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt780
– volume: 169
  start-page: 2935
  issue: 4
  year: 2015
  end-page: 2949
  ident: CR47
  article-title: negatively regulates resistance to pathogens and drought tolerance in rice
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.01192
– volume: 9
  start-page: 36
  year: 2019
  ident: CR98
  article-title: CRISPR Cpf1 proteins: structure, function and implications for genome editing
  publication-title: Cell Biosci
  doi: 10.1186/s13578-019-0298-7
– volume: 17
  start-page: 1431
  issue: 7
  year: 2019
  end-page: 1445
  ident: CR114
  article-title: Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.13068
– volume: 11
  start-page: 162
  year: 2011
  ident: CR21
  article-title: DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-11-162
– volume: 7
  start-page: 962
  issue: 4
  year: 2018
  end-page: 968
  ident: CR91
  article-title: Nontransgenic marker-free gene disruption by an episomal CRISPR system in the oleaginous microalga, CCMP1779
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.7b00362
– volume: 7
  start-page: 2039
  year: 1995
  end-page: 2051
  ident: CR16
  article-title: Multiple DNA—protein complexes at a circadian regulated promoter element
  publication-title: Plant Cell
  doi: 10.1105/tpc.7.12.2039
– volume: 17
  start-page: 282
  issue: 3
  year: 1999
  end-page: 286
  ident: CR34
  article-title: Iron fortification of rice seed by the soybean ferritin gene
  publication-title: Nat Biotechnol
  doi: 10.1038/7029
– volume: 56
  start-page: 343
  issue: 4
  year: 2014
  end-page: 349
  ident: CR32
  article-title: Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing
  publication-title: J Integr Plant Biol
  doi: 10.1111/jipb.12152
– volume: 26
  start-page: 1995
  year: 1994
  end-page: 2001
  ident: CR17
  article-title: The expression of a chimeric nodulin 30-GUS gene is restricted to the rhizobially infected cells in transgenic nodules
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00019510
– volume: 7
  start-page: 137
  year: 2020
  ident: CR51
  article-title: Woodland strawberry WRKY71 acts as a promoter of flowering via a transcriptional regulatory cascade
  publication-title: Hortic Res
  doi: 10.1038/s41438-020-00355-4
– volume: 6
  start-page: 766
  issue: 7
  year: 2020
  end-page: 772
  ident: CR128
  article-title: An inducible genome editing system for plants
  publication-title: Nat Plants
  doi: 10.1038/s41477-020-0695-2
– volume: 95
  start-page: 5172
  year: 1998
  end-page: 5177
  ident: CR62
  article-title: Homology-directed repair is a major double-strand break repair pathway in mammalian cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.9.5172
– volume: 5
  start-page: 1
  issue: 1
  year: 2020
  ident: CR59
  article-title: Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-019-0089-y
– volume: 353
  start-page: 6299
  year: 2016
  ident: CR80
  article-title: Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
  publication-title: Science
  doi: 10.1126/science.aad5147
– volume: 29
  start-page: 207
  year: 2021
  end-page: 221
  ident: CR145
  article-title: CRISPR/Cas: a powerful tool for gene function study and crop improvement
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2020.10.003
– volume: 2
  start-page: e00403-17
  issue: 6
  year: 2017
  ident: CR35
  article-title: Chromosomal targeting by the type III-A CRISPR-Cas system can reshape genomes in
  publication-title: mSphere
  doi: 10.1128/mSphere.00403-17
– volume: 11
  year: 2020
  ident: CR10
  article-title: CRISPR-Cas12a (Cpf1): a versatile tool in the plant genome editing tool box for agricultural advancement
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.584151
– volume: 7
  start-page: 967
  year: 2016
  ident: CR56
  article-title: gene suppressed by multiple stresses plays a negative role in abiotic stress tolerance in tomato
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.00967
– volume: 2
  start-page: 2910
  year: 2007
  end-page: 2917
  ident: CR86
  article-title: An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.425
– volume: 12
  start-page: 118
  issue: 3
  year: 2007
  end-page: 124
  ident: CR118
  article-title: Synthetic promoters: genetic control through cis engineering
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2007.01.002
– volume: 13
  start-page: 29
  year: 2013
  ident: CR148
  article-title: Enhanced transgene expression in rice following selection controlled by weak promoters
  publication-title: BMC Biotechnol
  doi: 10.1186/1472-6750-13-29
– volume: 144
  start-page: 768
  issue: 2
  year: 2007
  end-page: 781
  ident: CR15
  article-title: Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.096966
– volume: 2
  start-page: 1201
  year: 1990
  end-page: 1224
  ident: CR49
  article-title: Different temporal and spatial gene expression patterns occur during anther development
  publication-title: Plant Cell
  doi: 10.1105/tpc.2.12.1201
– volume: 16
  start-page: 144
  issue: 1
  year: 2015
  ident: CR124
  article-title: Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0715-0
– volume: 176
  year: 2020
  ident: CR37
  article-title: negatively regulates abiotic stress tolerance in Arabidopsis and cotton
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbott.2020.104087
– volume: 9
  start-page: 3651
  issue: 1
  year: 2018
  ident: CR13
  article-title: Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06129-w
– volume: 549
  start-page: 548
  issue: 7673
  year: 2017
  end-page: 552
  ident: CR9
  article-title: Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN
  publication-title: Nature
  doi: 10.1038/nature24023
– volume: 296
  start-page: 179
  issue: 1
  year: 2021
  end-page: 192
  ident: CR70
  article-title: A celery transcriptional repressor AgERF8 negatively modulates abscisic acid and salt tolerance
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-020-01738-x
– volume: 28
  start-page: 1309
  issue: 9
  year: 2009
  end-page: 1317
  ident: CR87
  article-title: Characterization of the tissue-specific expression of phenylalanine ammonia-lyase gene promoter from loblolly pine ( ) in
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-009-0707-1
– volume: 1691
  start-page: 290
  year: 2012
  end-page: 300
  ident: CR97
  article-title: The stearoyl-acyl-carrier-protein desaturase promoter (Des) from oil palm confers fruit-specific GUS expression in transgenic tomato
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2012.05.001
– volume: 234
  start-page: 112
  year: 1997
  end-page: 117
  ident: CR121
  article-title: Viral determinants of pea early browning virus seed transmission in pea
  publication-title: Virology
  doi: 10.1006/viro.1997.8637
– volume: 32
  start-page: 234
  year: 2014
  end-page: 245
  ident: CR23
  article-title: Construction of flower-specific chimeric promoters and analysis of their activities in transgenic Torenia
  publication-title: Plant Mol Biol Rep
  doi: 10.1007/s11105-013-0646-4
– volume: 13
  start-page: 10
  issue: 4
  year: 2018
  ident: CR133
  article-title: SaCas9 requires 5′-NNGRRT-3′ PAM for sufficient cleavage and possesses higher cleavage activity than SpCas9 or FnCpf1 in human cells
  publication-title: Biotechnol J
  doi: 10.1002/biot.201700561
– volume: 9
  start-page: 260
  year: 2018
  ident: CR113
  article-title: Seed-specific expression of AtLEC1 increased oil content and altered fatty acid composition in seeds of peanut ( L.)
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00260
– volume: 169
  start-page: 971
  issue: 2
  year: 2015
  end-page: 985
  ident: CR71
  article-title: A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00636
– volume: 207
  start-page: 37
  year: 2013
  end-page: 44
  ident: CR54
  article-title: Isolation and characterization of two novel root-specific promoters in rice ( L.)
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2013.02.002
– volume: 16
  start-page: 504
  issue: 4
  year: 2019
  end-page: 517
  ident: CR33
  article-title: PAM identification by CRISPR-Cas s effector complexes: diversified mechanisms and structures
  publication-title: RNA Biol
  doi: 10.1080/15476286.2018.1504546
– volume: 218
  start-page: 192
  year: 2003
  end-page: 203
  ident: CR144
  article-title: Two cassava promoters related to vascular expression and storage root formation
  publication-title: Planta
  doi: 10.1007/s00425-003-1098-0
– volume: 179
  start-page: 549
  year: 2010
  end-page: 552
  ident: CR24
  article-title: Expression in Arabidopsis of a nucellus-specific promoter from watermelon ( )
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2010.07.016
– volume: 54
  start-page: 350
  year: 2007
  end-page: 359
  ident: CR83
  article-title: Organ-specificity and inducibility of patatin class I promoter from potato in transgenic Arabidopsis plants
  publication-title: Russ J Plant Physiol
  doi: 10.1134/S1021443707030090
– volume: 39
  start-page: 35
  year: 1999
  end-page: 44
  ident: CR43
  article-title: Isolation and characterization of an anther-specific gene, RA8, from rice ( L.)
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1006157603096
– volume: 46
  start-page: 627
  year: 2001
  end-page: 637
  ident: CR73
  article-title: Sugar responsible elements in the promoter of a gene for b-amylase of sweet potato
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1010684908364
– volume: 6
  start-page: 26685
  year: 2016
  ident: CR88
  article-title: Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants
  publication-title: Sci Rep
  doi: 10.1038/srep26685
– volume: 11
  start-page: 46
  year: 2018
  ident: CR150
  article-title: A transgene design for enhancing oil content in Arabidopsis and Camelina seeds
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-018-1049-4
– volume: 19
  start-page: 3925
  year: 2018
  ident: CR27
  article-title: A highly efficient cell division-specific CRISPR/Cas9 system generates homozygous mutants for multiple genes in Arabidopsis
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19123925
– volume: 7
  start-page: 377
  year: 2016
  ident: CR57
  article-title: Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.00377
– volume: 35
  start-page: 1555
  issue: 7
  year: 2016
  end-page: 1558
  ident: CR25
  article-title: High efficiency of targeted mutagenesis in Arabidopsis via meiotic promoter-driven expression of Cas9 endonuclease
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-016-2000-4
– volume: 15
  start-page: e0236943
  issue: 7
  year: 2020
  ident: CR96
  article-title: Characterization of a novel LmSAP gene promoter from : tissue specificity and environmental stress responsiveness
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0236943
– volume: 21
  start-page: 295
  year: 2003
  end-page: 302
  ident: CR77
  article-title: Chromosomal walking of flanking regions from short known sequences in GC-rich plant genomic DNA
  publication-title: Plant Mol Biol Rep
  doi: 10.1007/BF02772805
– volume: 10
  start-page: 1173
  year: 2019
  ident: CR94
  article-title: Bidirectional promoter based CRISPR-Cas9 systems for plant genome editing
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2019.01173
– volume: 7
  start-page: 142
  year: 2020
  ident: CR26
  article-title: Tomato fruit as a model for tissue-specific gene silencing in crop plants
  publication-title: Hortic Res
  doi: 10.1038/s41438-020-00363-4
– volume: 50
  start-page: 371
  year: 2002
  end-page: 377
  ident: CR100
  article-title: A pistil-specific thaumatin/PR5-like protein gene of Japanese pear ( ): sequence and promoter activity of the 5′ region in transgenic tobacco
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1019866029629
– volume: 54
  start-page: 698
  issue: 4
  year: 2014
  end-page: 710
  ident: CR84
  article-title: Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.04.022
– volume: 31
  start-page: 688
  issue: 8
  year: 2013
  end-page: 691
  ident: CR53
  article-title: Multiplex and homologous recombination–mediated genome editing in Arabidopsis and using guide RNA and Cas9
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2654
– volume: 10
  start-page: 1011
  issue: 7
  year: 2017
  end-page: 1013
  ident: CR126
  article-title: Multiplex gene editing in rice using the CRISPR-Cpf1 system
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2017.03.001
– volume: 39
  start-page: 623
  year: 2007
  end-page: 630
  ident: CR104
  article-title: A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase
  publication-title: Nat Genet
  doi: 10.1038/ng2014
– volume: 6
  start-page: 26912
  year: 2016
  ident: CR2
  article-title: CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion
  publication-title: Sci Rep
  doi: 10.1038/srep26912
– volume: 513
  start-page: 569
  issue: 7519
  year: 2014
  end-page: 573
  ident: CR4
  article-title: Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
  publication-title: Nature
  doi: 10.1038/nature13579
– volume: 59
  start-page: 2417
  issue: 9
  year: 2008
  end-page: 2424
  ident: CR93
  article-title: Expression pattern and activity of six glutelin gene promoters in transgenic rice
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ern110
– volume: 234
  start-page: 623
  issue: 3
  year: 2011
  end-page: 637
  ident: CR102
  article-title: The sucrose synthase-1 promoter from directs expression of the β-glucuronidase reporter gene in phloem tissue and in response to wounding in transgenic plants
  publication-title: Planta
  doi: 10.1007/s00425-011-1432-x
– volume: 41
  start-page: 63
  year: 2014
  end-page: 68
  ident: CR63
  article-title: Targeted mutagenesis in using TALENs and the CRISPR/Cas system
  publication-title: J Genet Genom
  doi: 10.1016/j.jgg.2013.12.001
– volume: 115
  start-page: E7834
  issue: 33
  year: 2018
  end-page: E7843
  ident: CR38
  article-title: Plant pathogen effector utilizes host susceptibility factor NRL1 to degrade the immune regulator SWAP70
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1808585115
– volume: 7
  start-page: 40641
  year: 2017
  ident: CR101
  article-title: The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice
  publication-title: Sci Rep
  doi: 10.1038/srep46890
– volume: 77
  start-page: 91
  year: 2011
  end-page: 103
  ident: CR85
  article-title: A dual role for MYB60 in stomatal regulation and root growth of under drought stress
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-011-9796-7
– volume: 38
  start-page: 361
  year: 2019
  end-page: 376
  ident: CR99
  article-title: Systematic analysis of NAC transcription factors’ gene family and identification of post-flowering drought stress responsive members in sorghum
  publication-title: Plant Cell
  doi: 10.1007/s00299-019-02371-8
– volume: 1
  year: 2020
  ident: CR75
  article-title: The ubiquitin E3 ligase PUB17 positively regulates immunity by targeting a negative regulator, KH17, for degradation
  publication-title: Plant Commun
  doi: 10.1016/j.xplc.2020.100020
– volume: 110
  start-page: 15644
  year: 2013
  end-page: 15649
  ident: CR41
  article-title: Efficient genome engineering in human pluripotent stem cells using Cas9 from
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1313587110
– volume: 49
  start-page: 413
  issue: 4
  year: 2011
  end-page: 419
  ident: CR31
  article-title: Vascular-specific expression of GUS and GFP reporter genes in transgenic grapevine ( L. cv. Albariño) conferred by the EgCCR promoter of
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2011.02.005
– volume: 16
  start-page: e0242949
  issue: 3
  year: 2021
  ident: CR115
  article-title: Cloning and functional characterization of seed-specific LEC1A promoter from peanut ( L.)
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0242949
– volume: 30
  start-page: 75
  year: 2011
  end-page: 80
  ident: CR131
  article-title: A seed coat outer integument-specific promoter for
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-010-0945-2
– volume: 3
  start-page: 371
  year: 1991
  end-page: 382
  ident: CR135
  article-title: Characterization of cis-acting sequences regulating root-specific gene expression in tobacco
  publication-title: Plant Cell
  doi: 10.1105/tpc.3.4.371
– volume: 12
  start-page: 1027
  year: 2019
  end-page: 1036
  ident: CR147
  article-title: Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2019.03.011
– volume: 19
  start-page: 1667
  issue: 6
  year: 2018
  ident: CR7
  article-title: Design of a seed-specific chimeric promoter with a modified expression profile to improve seed oil content
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19061667
– volume: 31
  start-page: 1159
  year: 2012
  end-page: 1172
  ident: CR138
  article-title: Two novel positive cis-regulatory elements involved in green tissue-specific promoter activity in rice ( L. ssp.)
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-012-1238-8
– volume: 8
  start-page: 1820
  issue: 12
  year: 2015
  end-page: 1823
  ident: CR136
  article-title: High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR Cas9 system
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2015.10.004
– volume: 29
  start-page: 651
  year: 2010
  end-page: 659
  ident: CR8
  article-title: Putative storage root specific promoters from cassava and yam: cloning and evaluation in transgenic carrots as a model system
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-010-08517
– volume: 8
  start-page: 2094
  year: 2017
  ident: CR12
  article-title: Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02350-1
– volume: 176
  year: 2020
  ident: CR141
  article-title: The soybean F-box protein GmFBX176 regulates ABA-mediated responses to drought and salt stress
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2020.104056
– volume: 190
  start-page: 501
  year: 2012
  end-page: 510
  ident: CR50
  article-title: Frameshift mutagenesis: the roles of primer-template misalignment and the nonhomologous end-joining pathway in
  publication-title: Genetics
  doi: 10.1534/genetics.111.134890
– volume: 32
  start-page: 569
  issue: 6
  year: 2014
  end-page: 576
  ident: CR116
  article-title: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2908
– volume: 9
  start-page: 1088
  year: 2016
  end-page: 1091
  ident: CR111
  article-title: Single transcript CRISPR-Cas9 system for efficient genome editing in plants
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2016.05.001
– volume: 557
  start-page: 163
  issue: 2
  year: 2015
  end-page: 171
  ident: CR67
  article-title: Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis
  publication-title: Gene
  doi: 10.1016/j.gene.2014.12.029
– volume: 5
  start-page: 10342
  year: 2015
  ident: CR107
  article-title: Targeted mutagenesis in soybean using the CRISPR-Cas9 system
  publication-title: Sci Rep
  doi: 10.1038/srep10342
– volume: 44
  start-page: 541
  issue: 11
  year: 2017
  end-page: 548
  ident: CR20
  article-title: Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon
  publication-title: J Genet Genom
  doi: 10.1016/j.jgg.2017.09.010
– volume: 149
  start-page: 96
  year: 2020
  end-page: 110
  ident: CR129
  article-title: Overexpressing the NAC transcription factor LpNAC13 from in tobacco negatively regulates the drought response and positively regulates the salt response
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2020.01.036
– volume: 36
  start-page: 117
  year: 2017
  end-page: 128
  ident: CR5
  article-title: Efficient targeted multiallelic mutagenesis in tetraploid potato ( ) by transient CRISPR-Cas9 expression in protoplasts
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-016-2062-3
– volume: 30
  start-page: 1426
  year: 2012
  end-page: 1432
  ident: CR19
  article-title: Characterization of a novel pollen-specific promoter from wheat ( L.)
  publication-title: Plant Mol Biol Rep
  doi: 10.1007/s11105-012-0458-y
– volume: 299
  year: 2020
  ident: CR60
  article-title: A wheat R2R3 MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2020.110613
– volume: 2
  start-page: 239
  year: 2010
  end-page: 248
  ident: CR142
  article-title: Isolation and functional characterization of two novel seed-specific promoters from sunflower ( L.)
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-010-0816-x
– volume: 292
  start-page: 145
  issue: 1
  year: 2017
  end-page: 156
  ident: CR1
  article-title: Fruit preferential activity of the tomato RIP1 gene promoter in transgenic tomato and Arabidopsis
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-016-1262-4
– volume: 51
  start-page: 61
  year: 1982
  end-page: 87
  ident: CR66
  article-title: DNA repair enzymes
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.bi.51.070182.000425
– volume: 33
  start-page: 25
  issue: 1
  year: 1983
  end-page: 35
  ident: CR109
  article-title: The double-strand-break repair model for recombination
  publication-title: Cell
  doi: 10.1016/0092-8674(83)90331-8
– volume: 290
  year: 2020
  ident: CR72
  article-title: Histone deacetylase gene PtHDT902 modifies adventitious root formation and negatively regulates salt stress tolerance in poplar
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2019.110301
– volume: 9
  start-page: 1967
  year: 2018
  ident: CR79
  article-title: CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04416-0
– volume: 31
  start-page: 2868
  issue: 12
  year: 2019
  end-page: 2887
  ident: CR22
  article-title: CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00454
– volume: 14
  start-page: 397
  issue: 4
  year: 2020
  end-page: 406
  ident: CR140
  article-title: A novel ethylene-responsive factor IbERF4 from sweetpotato negatively regulates abiotic stress
  publication-title: Plant Biotechnol Rep
  doi: 10.1007/s11816-020-00612-x
– volume: 103
  start-page: 235
  issue: 3
  year: 2020
  end-page: 252
  ident: CR48
  article-title: Oryza sativa drought-, heat-, and salt-induced RING finger protein 1 ( ) negatively regulates abiotic stress-responsive gene expression
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-020-00989-x
– volume: 35
  start-page: 425
  year: 1997
  end-page: 431
  ident: CR28
  article-title: A promoter directing high level expression in pistils of transgenic plants
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1005898624425
– volume: 19
  start-page: 172
  year: 2020
  ident: CR69
  article-title: Application of different types of CRISPR/Cas-based systems in bacteria
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-020-01431-z
– volume: 4
  start-page: 6
  year: 2008
  ident: CR137
  article-title: Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-4-6
– volume: 315
  start-page: 1709
  year: 2007
  end-page: 1712
  ident: CR11
  article-title: CRISPR provides acquired resistance against viruses in prokaryotes
  publication-title: Science
  doi: 10.1126/science.1138140
– volume: 546
  start-page: 459
  year: 2014
  end-page: 472
  ident: CR55
  article-title: Cas9-based genome editing in Arabidopsis and tobacco
  publication-title: Methods Enzymol
  doi: 10.1016/B978-0-12-801185-0.00022-2
– volume: 29
  start-page: 1196
  year: 2017
  end-page: 1217
  ident: CR18
  article-title: A multipurpose toolkit to enable advanced genome engineering in plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00922
– volume: 19
  start-page: 584
  year: 2019
  ident: CR58
  article-title: Genome-scale mining of root-preferential genes from maize and characterization of their promoter activity
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-019-2198-8
– volume: 62
  start-page: 133
  issue: 2
  year: 2012
  end-page: 141
  ident: CR39
  article-title: An atypical bHLH protein encoded by POSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG
  publication-title: Breed Sci
  doi: 10.1270/jsbbs.62.133
– volume: 88
  start-page: 561
  year: 2015
  end-page: 572
  ident: CR78
  article-title: Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-015-0342-x
– volume: 19
  start-page: 607
  issue: 3
  year: 2018
  end-page: 614
  ident: CR146
  article-title: The DnaJ protein OsDjA6 negatively regulates rice innate immunity to the blast fungus
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12546
– volume: 37
  start-page: 187
  year: 1998
  end-page: 192
  ident: CR119
  article-title: A maize pectin methyl esterase-like gene, ZmC5, specifically expressed in pollen
  publication-title: Plant Mol Biol
  doi: 10.1023/a:1005954621558
– volume: 64
  start-page: 3361
  issue: 11
  year: 2013
  end-page: 3371
  ident: CR95
  article-title: The Arabidopsis thaliana MYB60 promoter provides a tool for the spatio-temporal control of gene expression in stomatal guard cells
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert180
– volume: 64
  start-page: 13
  issue: 1
  year: 2021
  end-page: 21
  ident: CR52
  article-title: Tissue-specific CRISPR/Cas9 system of cotton pollen with GhPLIMP2b and GhMYB24 promoters
  publication-title: J Plant Biol
  doi: 10.1007/s12374-020-09272-4
– volume: 11
  start-page: 437
  issue: 4
  year: 2002
  end-page: 445
  ident: CR6
  article-title: Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of
  publication-title: Transgenic Res
  doi: 10.1023/a:1016313924844
– volume: 220
  start-page: 163
  year: 2018
  end-page: 177
  ident: CR89
  article-title: EMR, a cytosolic-abundant ring finger E3 ligase, mediates ER-associated protein degradation in Arabidopsis
  publication-title: New Phytol
  doi: 10.1111/nph.15279
– volume: 244
  start-page: 333
  year: 2018
  end-page: 337
  ident: CR3
  article-title: Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in and Arabidopsis
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2017.10.009
– volume: 156
  start-page: 1577
  issue: 3
  year: 2011
  end-page: 1588
  ident: CR110
  article-title: Enhanced seed oil production in canola by conditional expression of LEAFY COTYLEDON1 and LEC1-LIKEin developing seeds
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175000
– volume: 7
  start-page: 41947
  year: 2017
  ident: CR40
  article-title: Nucleosome positioning and NDR structure at RNA polymerase III promoters
  publication-title: Sci Rep
  doi: 10.1038/srep41947
– volume: 34
  start-page: 53
  issue: 1
  year: 2012
  end-page: 59
  ident: CR65
  article-title: Screening of tissue-specific genes and promoters in tomato by comparing genome wide expression profiles of Arabidopsis orthologues
  publication-title: Mol Cells
  doi: 10.1007/s10059-012-0068-4
– volume: 113
  start-page: 462
  issue: 1, Part 2
  year: 2021
  end-page: 474
  ident: CR61
  article-title: , a member of tubby-like proteins, interacts with GhSKP1A to negatively regulate plant osmotic stress
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.09.024
– volume: 12
  start-page: 1
  issue: 1
  year: 2019
  end-page: 5
  ident: CR64
  article-title: A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-019-1467-y
– volume: 49
  start-page: 171
  year: 2002
  end-page: 186
  ident: CR14
  article-title: Characterization of a tissue-specific and developmentally regulated b-1,3-glucanase gene in pea ( )
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1014910900312
– volume: 154
  start-page: 927
  issue: 2
  year: 2010
  end-page: 938
  ident: CR30
  article-title: Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.159517
– volume: 5
  start-page: 18256
  year: 2016
  ident: CR125
  article-title: Novel green tissue-specific synthetic promoters and cis-regulatory elements in rice
  publication-title: Sci Rep
  doi: 10.1038/srep18256
– volume: 369
  start-page: 333
  issue: 6501
  year: 2020
  end-page: 337
  ident: CR90
  article-title: CRISPR-CasΦ from huge phages is a hypercompact genome editor
  publication-title: Science
  doi: 10.1126/science.abb1400
– volume: 93
  start-page: 5055
  issue: 10
  year: 1996
  end-page: 5060
  ident: CR92
  article-title: Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.93.10.5055
– volume: 12
  start-page: e0181963
  issue: 7
  year: 2017
  ident: CR130
  article-title: The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to f. sp.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0181963
– volume: 41
  start-page: 217
  year: 1999
  end-page: 231
  ident: CR106
  article-title: A novel promoter from soybean that is active in a complex developmental pattern with and without its proximal 650 base pairs
  publication-title: Plant Mol Biol
  doi: 10.1023/a:1006312228617
– volume: 3
  start-page: 684
  issue: 9
  year: 2008
  end-page: 686
  ident: CR29
  article-title: Gene trap-based identification of a guard cell promoter in Arabidopsis
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.3.9.5820
– volume: 87
  start-page: 20130685
  issue: 1035
  year: 2014
  ident: CR45
  article-title: DNA DSB repair pathway choice: an orchestrated handover mechanism
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20130685
– volume: 19
  start-page: 2009
  issue: 7
  year: 2018
  ident: CR134
  article-title: Isolation and characterization of a green-tissue promoter from common wild rice ( Griff.)
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19072009
– volume: 30
  start-page: 997
  year: 2011
  end-page: 1006
  ident: CR82
  article-title: Characterization of the mannan synthase promoter from guar ( )
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-011-1003-4
– volume: 3
  start-page: 17018
  year: 2017
  ident: CR112
  article-title: A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants
  publication-title: Nat Plants
  doi: 10.1038/nplants.2017.18
– volume: 20
  start-page: 4702
  issue: 19
  year: 2019
  ident: CR127
  article-title: CRISPR/Cas9-based mutagenesis of starch biosynthetic genes in sweet potato ( ) for the improvement of starch quality
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20194702
– volume: 217
  start-page: 240
  year: 1989
  end-page: 245
  ident: CR117
  article-title: Isolation and expression of an anther-specific gene from tomato
  publication-title: Mol Gen Genet
  doi: 10.1007/BF02464887
– volume: 14
  start-page: 519
  issue: 2
  year: 2015
  end-page: 532
  ident: CR74
  article-title: Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12468
– volume: 368
  start-page: 290
  issue: 6488
  year: 2020
  end-page: 296
  ident: CR120
  article-title: Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants
  publication-title: Science
  doi: 10.1126/science.aba8853
– volume: 8
  start-page: 2049
  year: 2017
  ident: CR46
  article-title: Identification validation and utilization of novel nematode-responsive root-specific promoters in Arabidopsis for inducing host delivered RNAi mediated root-knot nematode resistance
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.02049
– volume: 40
  start-page: 1370
  year: 2008
  end-page: 1374
  ident: CR122
  article-title: Control of rice grain-filling and yield by a gene with a potential signature of domestication
  publication-title: Nat Genet
  doi: 10.1038/ng.220
– volume: 67
  start-page: 4403
  year: 2016
  end-page: 4413
  ident: CR68
  article-title: The intergenic region of the maize defensin-like protein genes Def1 and Def2 functions as an embryo-specific asymmetric bidirectional promoter
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erw226
– volume: 11
  year: 2020
  ident: CR149
  article-title: Targeted transgene expression in rice using a callus strong promoter for selectable marker gene control
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.602680
– volume: 32
  start-page: 947
  year: 2014
  end-page: 951
  ident: CR123
  article-title: Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2969
– volume: 163
  start-page: 759
  issue: 3
  year: 2015
  end-page: 771
  ident: CR143
  article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cass system
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.038
– volume: 132
  start-page: 551
  year: 2007
  end-page: 556
  ident: CR103
  article-title: Expression of a rice chlorophyll / binding protein promoter in sweet potato
  publication-title: J Am Soc Hortic Sci
  doi: 10.21273/JASHS.132.4.551
– volume: 5
  start-page: 273
  year: 2014
  ident: CR139
  article-title: Reconstruction of gene regulatory network related to photosynthesis in Arabidopsis thaliana
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2014.00273
– volume: 63
  start-page: 1054
  year: 2010
  end-page: 1062
  ident: CR76
  article-title: AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04302.x2.x
– volume: 169
  start-page: 931
  year: 2015
  end-page: 945
  ident: CR108
  article-title: Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00793
– volume: 32
  start-page: 234
  year: 2014
  ident: 3811_CR23
  publication-title: Plant Mol Biol Rep
  doi: 10.1007/s11105-013-0646-4
– volume: 49
  start-page: 413
  issue: 4
  year: 2011
  ident: 3811_CR31
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2011.02.005
– volume: 26
  start-page: 1995
  year: 1994
  ident: 3811_CR17
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00019510
– volume: 11
  year: 2020
  ident: 3811_CR149
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.602680
– volume: 6
  start-page: 26685
  year: 2016
  ident: 3811_CR88
  publication-title: Sci Rep
  doi: 10.1038/srep26685
– volume: 93
  start-page: 5055
  issue: 10
  year: 1996
  ident: 3811_CR92
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.93.10.5055
– volume: 63
  start-page: 1054
  year: 2010
  ident: 3811_CR76
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04302.x2.x
– volume: 176
  year: 2020
  ident: 3811_CR141
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2020.104056
– volume: 369
  start-page: 333
  issue: 6501
  year: 2020
  ident: 3811_CR90
  publication-title: Science
  doi: 10.1126/science.abb1400
– volume: 7
  start-page: 377
  year: 2016
  ident: 3811_CR57
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.00377
– volume: 234
  start-page: 623
  issue: 3
  year: 2011
  ident: 3811_CR102
  publication-title: Planta
  doi: 10.1007/s00425-011-1432-x
– volume: 2
  start-page: 2910
  year: 2007
  ident: 3811_CR86
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.425
– volume: 5
  start-page: 1
  issue: 1
  year: 2020
  ident: 3811_CR59
  publication-title: Signal Transduct Target Ther
  doi: 10.1038/s41392-019-0089-y
– volume: 244
  start-page: 333
  year: 2018
  ident: 3811_CR3
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2017.10.009
– volume: 35
  start-page: 425
  year: 1997
  ident: 3811_CR28
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1005898624425
– volume: 49
  start-page: 171
  year: 2002
  ident: 3811_CR14
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1014910900312
– volume: 353
  start-page: 6299
  year: 2016
  ident: 3811_CR80
  publication-title: Science
  doi: 10.1126/science.aad5147
– volume: 11
  start-page: 46
  year: 2018
  ident: 3811_CR150
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-018-1049-4
– volume: 77
  start-page: 91
  year: 2011
  ident: 3811_CR85
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-011-9796-7
– volume: 3
  start-page: 684
  issue: 9
  year: 2008
  ident: 3811_CR29
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.3.9.5820
– volume: 112
  start-page: 3570
  issue: 11
  year: 2015
  ident: 3811_CR132
  publication-title: PNAS
  doi: 10.1073/pnas.1420294112
– volume: 110
  start-page: 15644
  year: 2013
  ident: 3811_CR41
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1313587110
– volume: 190
  start-page: 501
  year: 2012
  ident: 3811_CR50
  publication-title: Genetics
  doi: 10.1534/genetics.111.134890
– volume: 8
  start-page: 1820
  issue: 12
  year: 2015
  ident: 3811_CR136
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2015.10.004
– volume: 64
  start-page: 13
  issue: 1
  year: 2021
  ident: 3811_CR52
  publication-title: J Plant Biol
  doi: 10.1007/s12374-020-09272-4
– volume: 9
  start-page: 260
  year: 2018
  ident: 3811_CR113
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00260
– volume: 13
  start-page: 29
  year: 2013
  ident: 3811_CR148
  publication-title: BMC Biotechnol
  doi: 10.1186/1472-6750-13-29
– volume: 7
  start-page: 137
  year: 2020
  ident: 3811_CR51
  publication-title: Hortic Res
  doi: 10.1038/s41438-020-00355-4
– volume: 41
  issue: 20
  year: 2013
  ident: 3811_CR44
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt780
– volume: 17
  start-page: 282
  issue: 3
  year: 1999
  ident: 3811_CR34
  publication-title: Nat Biotechnol
  doi: 10.1038/7029
– volume: 9
  start-page: 1967
  year: 2018
  ident: 3811_CR79
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04416-0
– volume: 7
  start-page: 142
  year: 2020
  ident: 3811_CR26
  publication-title: Hortic Res
  doi: 10.1038/s41438-020-00363-4
– volume: 8
  start-page: 2094
  year: 2017
  ident: 3811_CR12
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02350-1
– volume: 103
  start-page: 235
  issue: 3
  year: 2020
  ident: 3811_CR48
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-020-00989-x
– volume: 169
  start-page: 971
  issue: 2
  year: 2015
  ident: 3811_CR71
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00636
– volume: 32
  start-page: 569
  issue: 6
  year: 2014
  ident: 3811_CR116
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2908
– volume: 549
  start-page: 548
  issue: 7673
  year: 2017
  ident: 3811_CR9
  publication-title: Nature
  doi: 10.1038/nature24023
– volume: 30
  start-page: 997
  year: 2011
  ident: 3811_CR82
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-011-1003-4
– volume: 9
  issue: 3
  year: 2013
  ident: 3811_CR105
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003352
– volume: 144
  start-page: 768
  issue: 2
  year: 2007
  ident: 3811_CR15
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.096966
– volume: 32
  start-page: 947
  year: 2014
  ident: 3811_CR123
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2969
– volume: 19
  start-page: 3925
  year: 2018
  ident: 3811_CR27
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19123925
– volume: 11
  start-page: 162
  year: 2011
  ident: 3811_CR21
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-11-162
– volume: 2
  start-page: e00403-17
  issue: 6
  year: 2017
  ident: 3811_CR35
  publication-title: mSphere
  doi: 10.1128/mSphere.00403-17
– volume: 41
  start-page: 63
  year: 2014
  ident: 3811_CR63
  publication-title: J Genet Genom
  doi: 10.1016/j.jgg.2013.12.001
– volume: 62
  start-page: 133
  issue: 2
  year: 2012
  ident: 3811_CR39
  publication-title: Breed Sci
  doi: 10.1270/jsbbs.62.133
– volume: 8
  start-page: 265
  issue: 3
  year: 2017
  ident: 3811_CR81
  publication-title: Bioengineered
  doi: 10.1080/21655979.2017.1282018
– volume: 17
  start-page: 1431
  issue: 7
  year: 2019
  ident: 3811_CR114
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.13068
– volume: 5
  start-page: 273
  year: 2014
  ident: 3811_CR139
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2014.00273
– volume: 19
  start-page: 172
  year: 2020
  ident: 3811_CR69
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-020-01431-z
– volume: 30
  start-page: 75
  year: 2011
  ident: 3811_CR131
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-010-0945-2
– volume: 10
  start-page: 1011
  issue: 7
  year: 2017
  ident: 3811_CR126
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2017.03.001
– volume: 12
  start-page: 1
  issue: 1
  year: 2019
  ident: 3811_CR64
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-019-1467-y
– volume: 234
  start-page: 112
  year: 1997
  ident: 3811_CR121
  publication-title: Virology
  doi: 10.1006/viro.1997.8637
– volume: 19
  start-page: 1667
  issue: 6
  year: 2018
  ident: 3811_CR7
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19061667
– volume: 4
  start-page: 6
  year: 2008
  ident: 3811_CR137
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-4-6
– volume: 315
  start-page: 1709
  year: 2007
  ident: 3811_CR11
  publication-title: Science
  doi: 10.1126/science.1138140
– volume: 9
  start-page: 1088
  year: 2016
  ident: 3811_CR111
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2016.05.001
– volume: 59
  start-page: 2417
  issue: 9
  year: 2008
  ident: 3811_CR93
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ern110
– volume: 557
  start-page: 163
  issue: 2
  year: 2015
  ident: 3811_CR67
  publication-title: Gene
  doi: 10.1016/j.gene.2014.12.029
– volume: 12
  start-page: e0181963
  issue: 7
  year: 2017
  ident: 3811_CR130
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0181963
– volume: 35
  start-page: 1555
  issue: 7
  year: 2016
  ident: 3811_CR25
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-016-2000-4
– volume: 16
  start-page: 144
  issue: 1
  year: 2015
  ident: 3811_CR124
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0715-0
– volume: 30
  start-page: 1426
  year: 2012
  ident: 3811_CR19
  publication-title: Plant Mol Biol Rep
  doi: 10.1007/s11105-012-0458-y
– volume: 241
  start-page: 271
  issue: 1
  year: 2015
  ident: 3811_CR42
  publication-title: Planta
  doi: 10.1007/s00425-014-2180-5
– volume: 7
  start-page: 2039
  year: 1995
  ident: 3811_CR16
  publication-title: Plant Cell
  doi: 10.1105/tpc.7.12.2039
– volume: 149
  start-page: 96
  year: 2020
  ident: 3811_CR129
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2020.01.036
– volume: 54
  start-page: 698
  issue: 4
  year: 2014
  ident: 3811_CR84
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.04.022
– volume: 6
  start-page: 26912
  year: 2016
  ident: 3811_CR2
  publication-title: Sci Rep
  doi: 10.1038/srep26912
– volume: 8
  start-page: 2049
  year: 2017
  ident: 3811_CR46
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.02049
– volume: 11
  year: 2020
  ident: 3811_CR10
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.584151
– volume: 207
  start-page: 37
  year: 2013
  ident: 3811_CR54
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2013.02.002
– volume: 513
  start-page: 569
  issue: 7519
  year: 2014
  ident: 3811_CR4
  publication-title: Nature
  doi: 10.1038/nature13579
– volume: 6
  start-page: 766
  issue: 7
  year: 2020
  ident: 3811_CR128
  publication-title: Nat Plants
  doi: 10.1038/s41477-020-0695-2
– volume: 29
  start-page: 651
  year: 2010
  ident: 3811_CR8
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-010-08517
– volume: 113
  start-page: 462
  issue: 1, Part 2
  year: 2021
  ident: 3811_CR61
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.09.024
– volume: 10
  start-page: 1173
  year: 2019
  ident: 3811_CR94
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2019.01173
– volume: 40
  start-page: 1370
  year: 2008
  ident: 3811_CR122
  publication-title: Nat Genet
  doi: 10.1038/ng.220
– volume: 290
  year: 2020
  ident: 3811_CR72
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2019.110301
– volume: 50
  start-page: 371
  year: 2002
  ident: 3811_CR100
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1019866029629
– volume: 95
  start-page: 5172
  year: 1998
  ident: 3811_CR62
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.9.5172
– volume: 41
  start-page: 217
  year: 1999
  ident: 3811_CR106
  publication-title: Plant Mol Biol
  doi: 10.1023/a:1006312228617
– volume: 19
  start-page: 2009
  issue: 7
  year: 2018
  ident: 3811_CR134
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19072009
– volume: 44
  start-page: 541
  issue: 11
  year: 2017
  ident: 3811_CR20
  publication-title: J Genet Genom
  doi: 10.1016/j.jgg.2017.09.010
– volume: 37
  start-page: 187
  year: 1998
  ident: 3811_CR119
  publication-title: Plant Mol Biol
  doi: 10.1023/a:1005954621558
– volume: 39
  start-page: 35
  year: 1999
  ident: 3811_CR43
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1006157603096
– volume: 7
  start-page: 40641
  year: 2017
  ident: 3811_CR101
  publication-title: Sci Rep
  doi: 10.1038/srep46890
– volume: 218
  start-page: 192
  year: 2003
  ident: 3811_CR144
  publication-title: Planta
  doi: 10.1007/s00425-003-1098-0
– volume: 38
  start-page: 361
  year: 2019
  ident: 3811_CR99
  publication-title: Plant Cell
  doi: 10.1007/s00299-019-02371-8
– volume: 1
  year: 2020
  ident: 3811_CR75
  publication-title: Plant Commun
  doi: 10.1016/j.xplc.2020.100020
– volume: 12
  start-page: 118
  issue: 3
  year: 2007
  ident: 3811_CR118
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2007.01.002
– volume: 36
  start-page: 117
  year: 2017
  ident: 3811_CR5
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-016-2062-3
– volume: 14
  start-page: 519
  issue: 2
  year: 2015
  ident: 3811_CR74
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.12468
– volume: 87
  start-page: 20130685
  issue: 1035
  year: 2014
  ident: 3811_CR45
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20130685
– volume: 12
  start-page: 1027
  year: 2019
  ident: 3811_CR147
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2019.03.011
– volume: 34
  start-page: 53
  issue: 1
  year: 2012
  ident: 3811_CR65
  publication-title: Mol Cells
  doi: 10.1007/s10059-012-0068-4
– volume: 132
  start-page: 551
  year: 2007
  ident: 3811_CR103
  publication-title: J Am Soc Hortic Sci
  doi: 10.21273/JASHS.132.4.551
– volume: 179
  start-page: 549
  year: 2010
  ident: 3811_CR24
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2010.07.016
– volume: 7
  start-page: 41947
  year: 2017
  ident: 3811_CR40
  publication-title: Sci Rep
  doi: 10.1038/srep41947
– volume: 31
  start-page: 1159
  year: 2012
  ident: 3811_CR138
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-012-1238-8
– volume: 29
  start-page: 1196
  year: 2017
  ident: 3811_CR18
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00922
– volume: 67
  start-page: 4403
  year: 2016
  ident: 3811_CR68
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erw226
– volume: 13
  start-page: 10
  issue: 4
  year: 2018
  ident: 3811_CR133
  publication-title: Biotechnol J
  doi: 10.1002/biot.201700561
– volume: 31
  start-page: 688
  issue: 8
  year: 2013
  ident: 3811_CR53
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2654
– volume: 169
  start-page: 931
  year: 2015
  ident: 3811_CR108
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00793
– volume: 9
  start-page: 3651
  issue: 1
  year: 2018
  ident: 3811_CR13
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06129-w
– volume: 176
  year: 2020
  ident: 3811_CR37
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbott.2020.104087
– volume: 31
  start-page: 2868
  issue: 12
  year: 2019
  ident: 3811_CR22
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00454
– volume: 115
  start-page: E7834
  issue: 33
  year: 2018
  ident: 3811_CR38
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1808585115
– volume: 7
  start-page: 962
  issue: 4
  year: 2018
  ident: 3811_CR91
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.7b00362
– volume: 368
  start-page: 290
  issue: 6488
  year: 2020
  ident: 3811_CR120
  publication-title: Science
  doi: 10.1126/science.aba8853
– volume: 16
  start-page: e0242949
  issue: 3
  year: 2021
  ident: 3811_CR115
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0242949
– volume: 163
  start-page: 759
  issue: 3
  year: 2015
  ident: 3811_CR143
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.038
– volume: 3
  start-page: 371
  year: 1991
  ident: 3811_CR135
  publication-title: Plant Cell
  doi: 10.1105/tpc.3.4.371
– volume: 14
  start-page: 397
  issue: 4
  year: 2020
  ident: 3811_CR140
  publication-title: Plant Biotechnol Rep
  doi: 10.1007/s11816-020-00612-x
– volume: 15
  start-page: e0236943
  issue: 7
  year: 2020
  ident: 3811_CR96
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0236943
– volume: 156
  start-page: 1577
  issue: 3
  year: 2011
  ident: 3811_CR110
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175000
– volume: 292
  start-page: 145
  issue: 1
  year: 2017
  ident: 3811_CR1
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-016-1262-4
– volume: 154
  start-page: 927
  issue: 2
  year: 2010
  ident: 3811_CR30
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.159517
– volume: 299
  year: 2020
  ident: 3811_CR60
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2020.110613
– volume: 11
  start-page: 437
  issue: 4
  year: 2002
  ident: 3811_CR6
  publication-title: Transgenic Res
  doi: 10.1023/a:1016313924844
– volume: 56
  start-page: 343
  issue: 4
  year: 2014
  ident: 3811_CR32
  publication-title: J Integr Plant Biol
  doi: 10.1111/jipb.12152
– volume: 220
  start-page: 163
  year: 2018
  ident: 3811_CR89
  publication-title: New Phytol
  doi: 10.1111/nph.15279
– volume: 19
  start-page: 584
  year: 2019
  ident: 3811_CR58
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-019-2198-8
– volume: 1691
  start-page: 290
  year: 2012
  ident: 3811_CR97
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2012.05.001
– volume: 2
  start-page: 239
  year: 2010
  ident: 3811_CR142
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-010-0816-x
– volume: 2
  start-page: 1201
  year: 1990
  ident: 3811_CR49
  publication-title: Plant Cell
  doi: 10.1105/tpc.2.12.1201
– volume: 7
  start-page: 967
  year: 2016
  ident: 3811_CR56
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.00967
– volume: 33
  start-page: 25
  issue: 1
  year: 1983
  ident: 3811_CR109
  publication-title: Cell
  doi: 10.1016/0092-8674(83)90331-8
– volume: 46
  start-page: 627
  year: 2001
  ident: 3811_CR73
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1010684908364
– volume: 88
  start-page: 561
  year: 2015
  ident: 3811_CR78
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-015-0342-x
– volume: 16
  start-page: 504
  issue: 4
  year: 2019
  ident: 3811_CR33
  publication-title: RNA Biol
  doi: 10.1080/15476286.2018.1504546
– volume: 9
  start-page: 36
  year: 2019
  ident: 3811_CR98
  publication-title: Cell Biosci
  doi: 10.1186/s13578-019-0298-7
– volume: 51
  start-page: 61
  year: 1982
  ident: 3811_CR66
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.bi.51.070182.000425
– volume: 14
  start-page: 40
  year: 2018
  ident: 3811_CR36
  publication-title: Plant Methods
  doi: 10.1186/s13007-018-0305-8
– volume: 296
  start-page: 179
  issue: 1
  year: 2021
  ident: 3811_CR70
  publication-title: Mol Genet Genom
  doi: 10.1007/s00438-020-01738-x
– volume: 64
  start-page: 3361
  issue: 11
  year: 2013
  ident: 3811_CR95
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert180
– volume: 5
  start-page: 18256
  year: 2016
  ident: 3811_CR125
  publication-title: Sci Rep
  doi: 10.1038/srep18256
– volume: 5
  start-page: 10342
  year: 2015
  ident: 3811_CR107
  publication-title: Sci Rep
  doi: 10.1038/srep10342
– volume: 3
  start-page: 17018
  year: 2017
  ident: 3811_CR112
  publication-title: Nat Plants
  doi: 10.1038/nplants.2017.18
– volume: 546
  start-page: 459
  year: 2014
  ident: 3811_CR55
  publication-title: Methods Enzymol
  doi: 10.1016/B978-0-12-801185-0.00022-2
– volume: 19
  start-page: 607
  issue: 3
  year: 2018
  ident: 3811_CR146
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12546
– volume: 217
  start-page: 240
  year: 1989
  ident: 3811_CR117
  publication-title: Mol Gen Genet
  doi: 10.1007/BF02464887
– volume: 21
  start-page: 295
  year: 2003
  ident: 3811_CR77
  publication-title: Plant Mol Biol Rep
  doi: 10.1007/BF02772805
– volume: 28
  start-page: 1309
  issue: 9
  year: 2009
  ident: 3811_CR87
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-009-0707-1
– volume: 169
  start-page: 2935
  issue: 4
  year: 2015
  ident: 3811_CR47
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.01192
– volume: 29
  start-page: 207
  year: 2021
  ident: 3811_CR145
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2020.10.003
– volume: 39
  start-page: 623
  year: 2007
  ident: 3811_CR104
  publication-title: Nat Genet
  doi: 10.1038/ng2014
– volume: 20
  start-page: 4702
  issue: 19
  year: 2019
  ident: 3811_CR127
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20194702
– volume: 54
  start-page: 350
  year: 2007
  ident: 3811_CR83
  publication-title: Russ J Plant Physiol
  doi: 10.1134/S1021443707030090
SSID ssj0014377
Score 2.469595
SecondaryResourceType review_article
Snippet Main conclusion In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle...
In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle associated with...
Main conclusionIn a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle...
MAIN CONCLUSION: In a nutshell, tissue-specific CRISPR/Cas genome editing is the most promising approach for crop improvement which can bypass the hurdle...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 28
SubjectTerms Agriculture
Arabidopsis
Biomedical and Life Sciences
Cotton
CRISPR
CRISPR-Cas Systems - genetics
CRISPR/Cas-mediated gene editing to ensure product quality and plant performance
Crop improvement
Crops
Ecology
Forestry
Gene Editing
Genes
genetic improvement
Genome editing
Genome, Plant - genetics
Genomes
Life Sciences
Plant Breeding
Plant Sciences
Plants, Genetically Modified - genetics
Promoters
Review
Tissues
Tomatoes
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB-qVdGHtp5fZ7Wk4Fu7uJtkv3yzh2KhiJwivi3JJhFB9_TuFPzvncl-iFiF9mVZ2GwSMpPMTGbmNwA72qLQ4TIJIs1tINNEBdpFdG8VG1QQstAYX7XkT3p8nF1c5CdNUtikjXZvXZL-pO6S3Tx_BRRSQN4tfM7ARxR3GRVsGJ6ed74DKdIaKVPwgNx8TarM3_t4KY5e6Ziv_KNe7Bx-_r8Jf4FPjZrJ9mu-WIYPturB0v7luIHasD2Y-zVCxfCxB_MHHrka3xaoUCdVf1uBuyM1plMQB2RTT5yAkjIpsIgRruuNZSj2KGaaXVXs9prCaVhT9IcNhr9PT4a7AzVhNVL0HitrHCjmE5iYqgyr0UwYLobP9pyswtnhwdngKGjKMwQlEnGKNM2cRSEY6lDoHNUaE5ZOJ9aUUog4Ui7OTZI449JYJkYq47hzlKurTGoSLdZgthpVdgOY4rEiSzXTOpZG8Fw7roRNdabQvhKqD1FLpKJsoMupgsZ10YEu-7UucK0Lv9ZF2Icf3T-3NXDHu623WtoXzSaeFGhcypy-8z587z7j9iOfiqrs6N63iQmRK5fvtRFo5aFUwWHWa77qpkR4_dhH1IefLRM9T-Dt-W7-W_OvsMgpbcNfHW3B7HR8b7dhrnxABhp_89vnCYacEgo
  priority: 102
  providerName: Springer Nature
Title Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: current state and future prospects
URI https://link.springer.com/article/10.1007/s00425-021-03811-0
https://www.ncbi.nlm.nih.gov/pubmed/34962611
https://www.proquest.com/docview/2614938112
https://www.proquest.com/docview/2615109394
https://www.proquest.com/docview/2636429110
Volume 255
WOSCitedRecordID wos000736152400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-2048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014377
  issn: 0032-0935
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB6ax6GXvh9uU6NCb63IrqR99VIak5DS1hgnFN8WaSVBIF07thPIv--MVt5QQn3pRWBW3h34RpqRZuYbgA_GodERKuepEY6rItfc-JTurTKLDkKZWBu6lvwoxuNyNqsm8cJtFdMqN3ti2KjtvKE78kP09FWF5iUVXxZXnLpGUXQ1ttDYgT1iSRAhdW_SRxGULDrOTCk4Bfxi0UwonQvayilBgWJlOP5tmO55m_cipcEAnTz-X9GfwKPoerKvna48hQeufQb7R3N0D2-fw9WpXtK2h99m64AGpypMyiRiROT62zG0c5QkzS5atrik_BkWu_yw0fTb2WR6ONIr1lFDf2ZNR_zEQsUS061lHX0JQ-FDeefqBZyfHJ-PTnnsx8AbRG2NIJbeodVLTCJNhX6MTRpvcmcbJWWWap9VNs-99UWmcqu09cJ7Ks7VtrC5kS9ht5237jUwLTJNR9PSmExZKSrjhZauMKXGA5XUA0g3WNRN5CqnlhmXdc-yHPCrEb864FcnA_jY_2fRMXVsnX2wwaqOq3ZV3wE1gPf9Y1xvFETRrZtfhzkZUXBVatscicc6NCP4mVed-vQiEUE_viMdwKeNPt0J8G9532yX9y08FFSXEe6GDmB3vbx272C_uUGFWQ5hp5gVYSyHsHd0PJ5M8dfP5PswrBccp2e__gDgKxaX
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VUgkulFfLQgEjwQmiJrbzqoQQLFS72u2qKnvoLbJjW6pUstvdLag_iv_IjPOoUMXeeuCSS5xkknyeGXtmvgF4qy0aHS6TINLcBjJNVKBdRPtWsUEHIQuN8V1Lxulkkp2e5scb8LuthaG0ylYnekVtZiXtke-jpy9zNC8R_zS_CKhrFEVX2xYaNSxG9uoXLtmWH4df8f--4_zw27Q_CJquAkGJz16hKJmzqLtDHQqdozU2Yel0Yk0phYgj5eLcJIkzLo1lYqQyjjtHJabKpCbRAm97B-5KGQrKIDwKR13QQoq0pugUPKD4YlOj4yv1_OQIKB-CQnN4_NsO3nBubwRmvb073P7PvtRDeNA41uxzPRMewYatHsPWlxk6v1dP4GKgFqTU8VXZymMtoBpTypNiRFP7wzK04pQCzs4qNj-n7CDW9DBi_ZPh9-OT_b5aspr4-oCVNa0V8_VYTFWG1eQsDL-VL15dPoXpbbztDmxWs8o-A6Z4rGjhnWkdSyN4rh1XwqY6U7hcFKoHUfvri7JhYqeGIOdFxyHt4VIgXAoPlyLswfvumnnNQ7J29F4LjaLRScviGhc9eNOdRm1CISJV2dmlHxMTwVgu140RuGhFI4mP2a3R2olE7QfwHlEPPrTwvRbg3_I-Xy_va7g3mB6Ni_FwMnoB9zlVoPhdsD3YXC0u7UvYKn8ieBav_IRkUNwyrP8AkbZv4A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VtEJceBcCBRYJTmDF3l2_kBCiaaNGraIo9NCbtevdlZCKkyYpqD-Nf8fM-lGhitx64OKL1_bY_nZmdmfmG4B32qLR4TIJIs1tINNEBdpFtG8VG3QQstAY37XkJJ1MsrOzfLoFv9taGEqrbHWiV9RmXtIe-QA9fZmjeYn4wDVpEdOD0ZfFRUAdpCjS2rbTqCFybK9-4fJt9Xl8gP_6Peejw9PhUdB0GAhKlGONYmXOoh4PdSh0jpbZhKXTiTWlFCKOlItzkyTOuDSWiZHKOO4clZsqk5pEC7ztHdhO0ceQPdjeP5xMZ10IQ4q0JuwUPKBoY1Ox4-v2_FQJKDuCAnV4_Nsq3nB1b4RpvfUbPfiPv9tDuN-43OxrPUcewZatHsPO_hzd4qsncHGklqTu8bXZ2qMwoOpTyqBiRGD7wzK075Qczr5XbHFOeUOs6W7EhrPxt-lsMFQrVlNif2JlTXjFfKUWU5VhNW0Lw-_my1pXT-H0Nt52F3rVvLLPgSkeK1qSZ1rH0giea8eVsKnOFC4khepD1MKgKBuOdmoVcl507NIeOgVCp_DQKcI-fOiuWdQMJRtH77UwKRpttSquMdKHt91p1DMUPFKVnV_6MTFRj-Vy0xiBy1k0n_iYZzVyO5GoMQHeI-rDxxbK1wL8W94Xm-V9A3cRzcXJeHL8Eu5xKk3x22N70FsvL-0r2Cl_InaWr5vZyaC4ZVz_ASRuegk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+tissue-specific+genome+editing+in+plants+through+CRISPR%2FCas+system%3A+current+state+and+future+prospects&rft.jtitle=Planta&rft.au=Singha%2C+Dhanawantari+L&rft.au=Das%2C+Debajit&rft.au=Sarki%2C+Yogita+N&rft.au=Chowdhury%2C+Naimisha&rft.date=2022-01-01&rft.issn=1432-2048&rft.eissn=1432-2048&rft.volume=255&rft.issue=1&rft.spage=28&rft_id=info:doi/10.1007%2Fs00425-021-03811-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0935&client=summon