Interactions between plants and soil shaping the root microbiome under abiotic stress
Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial communities and their associated genes - collectively termed the root microbiome - are diverse and have been shown to play an important role in conf...
Uloženo v:
| Vydáno v: | Biochemical journal Ročník 476; číslo 19; s. 2705 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
15.10.2019
|
| Témata: | |
| ISSN: | 1470-8728, 1470-8728 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial communities and their associated genes - collectively termed the root microbiome - are diverse and have been shown to play an important role in conferring abiotic stress tolerance to their plant hosts. In light of growing concerns over the threat of water and nutrient stress facing terrestrial ecosystems, especially those used for agricultural production, increased emphasis has been placed on understanding how abiotic stress conditions influence the composition and functioning of the root microbiome and the ultimate consequences for plant health. However, the composition of the root microbiome under abiotic stress conditions will not only reflect shifts in the greater bulk soil microbial community from which plants recruit their root microbiome but also plant responses to abiotic stress, which include changes in root exudate profiles and morphology. Exploring the relative contributions of these direct and plant-mediated effects on the root microbiome has been the focus of many studies in recent years. Here, we review the impacts of abiotic stress affecting terrestrial ecosystems, specifically flooding, drought, and changes in nitrogen and phosphorus availability, on bulk soil microbial communities and plants that interact to ultimately shape the root microbiome. We conclude with a perspective outlining possible directions for future research needed to advance our understanding of the complex molecular and biochemical interactions between soil, plants, and microbes that ultimately determine the composition of the root microbiome under abiotic stress. |
|---|---|
| AbstractList | Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial communities and their associated genes - collectively termed the root microbiome - are diverse and have been shown to play an important role in conferring abiotic stress tolerance to their plant hosts. In light of growing concerns over the threat of water and nutrient stress facing terrestrial ecosystems, especially those used for agricultural production, increased emphasis has been placed on understanding how abiotic stress conditions influence the composition and functioning of the root microbiome and the ultimate consequences for plant health. However, the composition of the root microbiome under abiotic stress conditions will not only reflect shifts in the greater bulk soil microbial community from which plants recruit their root microbiome but also plant responses to abiotic stress, which include changes in root exudate profiles and morphology. Exploring the relative contributions of these direct and plant-mediated effects on the root microbiome has been the focus of many studies in recent years. Here, we review the impacts of abiotic stress affecting terrestrial ecosystems, specifically flooding, drought, and changes in nitrogen and phosphorus availability, on bulk soil microbial communities and plants that interact to ultimately shape the root microbiome. We conclude with a perspective outlining possible directions for future research needed to advance our understanding of the complex molecular and biochemical interactions between soil, plants, and microbes that ultimately determine the composition of the root microbiome under abiotic stress. Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial communities and their associated genes - collectively termed the root microbiome - are diverse and have been shown to play an important role in conferring abiotic stress tolerance to their plant hosts. In light of growing concerns over the threat of water and nutrient stress facing terrestrial ecosystems, especially those used for agricultural production, increased emphasis has been placed on understanding how abiotic stress conditions influence the composition and functioning of the root microbiome and the ultimate consequences for plant health. However, the composition of the root microbiome under abiotic stress conditions will not only reflect shifts in the greater bulk soil microbial community from which plants recruit their root microbiome but also plant responses to abiotic stress, which include changes in root exudate profiles and morphology. Exploring the relative contributions of these direct and plant-mediated effects on the root microbiome has been the focus of many studies in recent years. Here, we review the impacts of abiotic stress affecting terrestrial ecosystems, specifically flooding, drought, and changes in nitrogen and phosphorus availability, on bulk soil microbial communities and plants that interact to ultimately shape the root microbiome. We conclude with a perspective outlining possible directions for future research needed to advance our understanding of the complex molecular and biochemical interactions between soil, plants, and microbes that ultimately determine the composition of the root microbiome under abiotic stress.Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial communities and their associated genes - collectively termed the root microbiome - are diverse and have been shown to play an important role in conferring abiotic stress tolerance to their plant hosts. In light of growing concerns over the threat of water and nutrient stress facing terrestrial ecosystems, especially those used for agricultural production, increased emphasis has been placed on understanding how abiotic stress conditions influence the composition and functioning of the root microbiome and the ultimate consequences for plant health. However, the composition of the root microbiome under abiotic stress conditions will not only reflect shifts in the greater bulk soil microbial community from which plants recruit their root microbiome but also plant responses to abiotic stress, which include changes in root exudate profiles and morphology. Exploring the relative contributions of these direct and plant-mediated effects on the root microbiome has been the focus of many studies in recent years. Here, we review the impacts of abiotic stress affecting terrestrial ecosystems, specifically flooding, drought, and changes in nitrogen and phosphorus availability, on bulk soil microbial communities and plants that interact to ultimately shape the root microbiome. We conclude with a perspective outlining possible directions for future research needed to advance our understanding of the complex molecular and biochemical interactions between soil, plants, and microbes that ultimately determine the composition of the root microbiome under abiotic stress. |
| Author | Hartman, Kyle Tringe, Susannah G |
| Author_xml | – sequence: 1 givenname: Kyle surname: Hartman fullname: Hartman, Kyle organization: U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, U.S.A – sequence: 2 givenname: Susannah G surname: Tringe fullname: Tringe, Susannah G organization: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31654057$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUEtLxDAYDLLiPvTkXXL0Uk3apEmPWnysLHhxzyVJv7qRNqlJivjvLbiCp5mBmWGYNVo47wChS0puKGH57X39khMqSUn5CVpRJkgmRS4X__gSrWP8IIQywsgZWha05IxwsUL7rUsQlEnWu4g1pC8Ah8deuRSxci2O3vY4HtRo3TtOB8DB-4QHa4LX1g-AJ9dCwGoWyRocU4AYz9Fpp_oIF0fcoP3jw1v9nO1en7b13S4zjMiUaVBtVxojleailF0htdDaFFTmlWgZZUaBYEVnNDcSmOalnoMgua6g4q3ON-j6t3cM_nOCmJrBRgP9PB_8FJu8IBUnhajYbL06Wic9QNuMwQ4qfDd_V-Q_U5xjRg |
| CitedBy_id | crossref_primary_10_3389_fagro_2022_896307 crossref_primary_10_1128_mSystems_01106_21 crossref_primary_10_1007_s10725_024_01243_w crossref_primary_10_1016_j_rhisph_2025_101120 crossref_primary_10_3389_fpls_2023_1074279 crossref_primary_10_1007_s00374_024_01882_1 crossref_primary_10_1016_j_tplants_2024_07_017 crossref_primary_10_1111_jam_15050 crossref_primary_10_1093_lambio_ovac067 crossref_primary_10_3389_fevo_2020_00167 crossref_primary_10_3390_su14042253 crossref_primary_10_7717_peerj_14933 crossref_primary_10_1016_j_apsoil_2024_105379 crossref_primary_10_1002_ajb2_16459 crossref_primary_10_1016_j_micres_2025_128178 crossref_primary_10_1016_j_plaphy_2025_110263 crossref_primary_10_1038_s41522_020_00164_6 crossref_primary_10_1016_j_soilbio_2020_107715 crossref_primary_10_3390_d15020175 crossref_primary_10_3390_plants13030384 crossref_primary_10_1007_s11104_023_06348_1 crossref_primary_10_3390_microorganisms13010041 crossref_primary_10_1016_j_jclepro_2021_130228 crossref_primary_10_1093_ismejo_wrad012 crossref_primary_10_3389_fmicb_2020_00390 crossref_primary_10_3389_fbrio_2025_1572294 crossref_primary_10_1038_s41598_022_16852_6 crossref_primary_10_1186_s12284_021_00522_8 crossref_primary_10_3390_ijms22169036 crossref_primary_10_3390_ijms252413330 crossref_primary_10_1094_MPMI_12_21_0294_FI crossref_primary_10_3389_fmicb_2022_1052567 crossref_primary_10_1007_s11816_024_00954_w crossref_primary_10_1016_j_funeco_2023_101225 crossref_primary_10_1016_j_csag_2025_100056 crossref_primary_10_3390_f15060897 crossref_primary_10_1007_s12237_025_01549_6 crossref_primary_10_1093_icb_icaf091 crossref_primary_10_1016_j_copbio_2020_12_021 crossref_primary_10_1080_07352689_2021_1959137 crossref_primary_10_3390_su12145835 crossref_primary_10_1016_j_plaphy_2023_108080 crossref_primary_10_1093_biolinnean_blac021 crossref_primary_10_1016_j_fcr_2025_109854 crossref_primary_10_1002_sae2_12018 crossref_primary_10_1007_s11157_022_09633_0 crossref_primary_10_3390_agronomy12092069 crossref_primary_10_3390_plants12061209 crossref_primary_10_1093_plcell_koae038 crossref_primary_10_1093_femsec_fiaa146 crossref_primary_10_3389_fenvs_2022_835194 crossref_primary_10_1038_s41598_025_94982_3 crossref_primary_10_1128_spectrum_00225_22 crossref_primary_10_1016_j_jenvman_2024_121180 crossref_primary_10_3390_plants13162176 crossref_primary_10_1007_s11356_021_14595_x crossref_primary_10_1016_j_micres_2023_127315 crossref_primary_10_3389_fpls_2022_1028153 crossref_primary_10_1016_j_envexpbot_2023_105486 crossref_primary_10_1016_j_plaphy_2025_109646 crossref_primary_10_3390_plants10040780 crossref_primary_10_1007_s11676_022_01517_x crossref_primary_10_1016_j_scitotenv_2020_143839 crossref_primary_10_3390_agriculture13030605 crossref_primary_10_3390_agronomy10111788 crossref_primary_10_1016_j_jaridenv_2025_105489 crossref_primary_10_3389_fmicb_2025_1565940 crossref_primary_10_3390_ijms231912035 crossref_primary_10_1128_spectrum_00068_23 crossref_primary_10_3389_fpls_2024_1396754 crossref_primary_10_3389_fsufs_2021_606454 crossref_primary_10_3390_plants12233931 crossref_primary_10_1111_pce_14403 crossref_primary_10_1007_s11104_023_05965_0 crossref_primary_10_1111_gcb_70165 crossref_primary_10_1016_j_ecoenv_2023_115172 crossref_primary_10_3390_horticulturae7050100 crossref_primary_10_1080_13102818_2022_2071634 crossref_primary_10_3389_fmicb_2023_1171104 crossref_primary_10_3390_plants13020221 crossref_primary_10_1007_s00344_023_11061_5 crossref_primary_10_1111_php_13572 crossref_primary_10_3390_microorganisms13051046 crossref_primary_10_1016_j_rhisph_2021_100362 crossref_primary_10_1016_j_heliyon_2025_e43499 crossref_primary_10_1016_j_rhisph_2025_101024 crossref_primary_10_3389_fpls_2024_1344205 crossref_primary_10_3390_microorganisms10091739 crossref_primary_10_1042_BCJ20210793 crossref_primary_10_3389_fagro_2023_1134514 crossref_primary_10_1111_nph_16957 crossref_primary_10_1186_s12866_022_02633_8 crossref_primary_10_1016_j_dib_2023_109827 crossref_primary_10_3390_f13071001 crossref_primary_10_1016_j_scitotenv_2022_154674 crossref_primary_10_1128_aem_00960_23 crossref_primary_10_1038_s41477_021_00920_2 crossref_primary_10_1016_j_envres_2022_113915 crossref_primary_10_1093_femsec_fiad070 crossref_primary_10_3389_fsufs_2020_618230 crossref_primary_10_1016_j_micres_2021_126771 crossref_primary_10_1002_ppj2_20028 crossref_primary_10_1016_j_soilbio_2023_109139 crossref_primary_10_3390_plants11091164 crossref_primary_10_3389_fpls_2025_1540659 crossref_primary_10_3389_fmicb_2022_824437 crossref_primary_10_1016_j_envexpbot_2023_105479 crossref_primary_10_1016_j_ecoenv_2023_115263 crossref_primary_10_1016_j_scitotenv_2024_177946 crossref_primary_10_1007_s10343_025_01128_6 crossref_primary_10_1111_1365_2745_13505 crossref_primary_10_3389_fmicb_2022_912701 crossref_primary_10_1007_s10811_021_02387_2 crossref_primary_10_1007_s13593_021_00748_2 crossref_primary_10_3390_soilsystems9020061 crossref_primary_10_3389_fmicb_2022_924137 crossref_primary_10_1016_j_rhisph_2023_100677 crossref_primary_10_1007_s00284_021_02618_2 crossref_primary_10_1016_j_ecolind_2023_111207 crossref_primary_10_1002_2688_8319_12027 crossref_primary_10_3389_fmicb_2021_773116 crossref_primary_10_3390_plants10091873 crossref_primary_10_3389_fbioe_2023_1191240 crossref_primary_10_1186_s12862_022_02082_x crossref_primary_10_1111_ejss_70096 crossref_primary_10_1038_s41598_024_64138_w crossref_primary_10_3389_fsufs_2023_1253735 crossref_primary_10_1016_j_chemosphere_2023_140715 crossref_primary_10_1016_j_envexpbot_2024_106006 crossref_primary_10_3390_agronomy11050977 crossref_primary_10_3389_fmicb_2020_00682 crossref_primary_10_1111_1462_2920_15433 crossref_primary_10_3389_fpls_2022_875774 crossref_primary_10_1016_j_apsoil_2023_104811 crossref_primary_10_1128_MRA_00736_20 crossref_primary_10_3390_f14040685 crossref_primary_10_3390_d17010021 crossref_primary_10_3897_BDJ_9_e60245 crossref_primary_10_1002_ece3_6798 crossref_primary_10_1016_j_envpol_2025_126895 crossref_primary_10_1016_j_ejsobi_2024_103690 crossref_primary_10_1111_ppl_13338 crossref_primary_10_1007_s00374_021_01611_y crossref_primary_10_1016_j_plantsci_2023_111694 crossref_primary_10_3390_plants12020400 crossref_primary_10_1002_pld3_518 crossref_primary_10_1093_femsec_fiae096 crossref_primary_10_1016_j_hazadv_2025_100895 crossref_primary_10_1111_wre_12619 crossref_primary_10_1016_j_scitotenv_2024_171278 crossref_primary_10_1016_j_apsoil_2025_106106 crossref_primary_10_1002_pca_2954 crossref_primary_10_1039_D2EN00403H crossref_primary_10_3390_f16040637 crossref_primary_10_3390_biology10010044 crossref_primary_10_1093_jpe_rtaf044 crossref_primary_10_1007_s44372_025_00249_6 crossref_primary_10_1007_s13199_023_00969_x crossref_primary_10_1016_j_catena_2023_106914 crossref_primary_10_3390_cells10061551 crossref_primary_10_1007_s11104_023_05908_9 crossref_primary_10_3390_microorganisms13061384 crossref_primary_10_1016_j_indcrop_2022_115434 crossref_primary_10_1016_j_stress_2024_100632 crossref_primary_10_3390_microorganisms9051036 crossref_primary_10_1016_j_jhazmat_2024_134587 crossref_primary_10_1007_s11104_025_07762_3 crossref_primary_10_1007_s10343_023_00923_3 crossref_primary_10_1016_j_tplants_2024_10_009 crossref_primary_10_1016_j_stress_2025_100915 crossref_primary_10_1111_1365_2664_14641 crossref_primary_10_3390_agriculture11100987 crossref_primary_10_3390_f16091404 crossref_primary_10_1093_plphys_kiae432 crossref_primary_10_3390_jof10100679 crossref_primary_10_53941_plantecophys_2025_100006 crossref_primary_10_1016_j_scitotenv_2024_174001 crossref_primary_10_1002_sae2_70038 crossref_primary_10_1371_journal_pone_0248030 crossref_primary_10_1186_s13007_021_00742_5 crossref_primary_10_3390_microorganisms10030540 crossref_primary_10_3390_life13051102 crossref_primary_10_1016_j_stress_2025_100907 crossref_primary_10_3390_f13030421 crossref_primary_10_3390_d13080366 crossref_primary_10_1093_plphys_kiab392 crossref_primary_10_1007_s11869_024_01601_7 crossref_primary_10_1186_s40793_023_00512_x crossref_primary_10_3389_fmicb_2022_1031064 crossref_primary_10_1007_s00248_023_02190_1 crossref_primary_10_1016_j_pedsph_2025_06_008 crossref_primary_10_3390_microorganisms12040692 crossref_primary_10_1016_j_rhisph_2024_100974 crossref_primary_10_1111_jam_15552 crossref_primary_10_3390_foods13233970 crossref_primary_10_1016_j_apsoil_2021_104241 crossref_primary_10_48130_mpb_0024_0023 crossref_primary_10_3389_fpls_2024_1484251 crossref_primary_10_1016_j_soilbio_2020_107819 crossref_primary_10_1007_s11104_024_06484_2 crossref_primary_10_1016_j_heliyon_2024_e40517 crossref_primary_10_1016_j_scitotenv_2024_173494 crossref_primary_10_3389_fagro_2024_1465165 crossref_primary_10_1016_j_tree_2025_05_001 crossref_primary_10_1002_sae2_12057 crossref_primary_10_3389_fpls_2022_1003868 crossref_primary_10_1111_jipb_13226 crossref_primary_10_1007_s12033_025_01425_5 crossref_primary_10_1016_j_jare_2025_03_008 crossref_primary_10_1016_j_envexpbot_2023_105633 crossref_primary_10_1093_ismejo_wrae006 crossref_primary_10_1093_aob_mcaf033 crossref_primary_10_1128_msystems_00224_22 |
| ContentType | Journal Article |
| Copyright | 2019 The Author(s). |
| Copyright_xml | – notice: 2019 The Author(s). |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1042/BCJ20180615 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1470-8728 |
| ExternalDocumentID | 31654057 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Review |
| GroupedDBID | --- -DZ -~X 0R~ 23N 2WC 4.4 53G 5GY 5RE 6J9 79B A8Z AABGO AAHRG ABJNI ABPPZ ABRJW ACGFO ACGFS ACNCT ADBBV AEGXH AENEX AIAGR AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL CGR CS3 CUY CVF DU5 E3Z EBD EBS ECM EIF EJD EMOBN F5P H13 HH6 HZ~ K-O L7B ML- MV1 N9A NPM NTEUP O9- OK1 P2P RHI RNS RPM RPO SV3 TR2 TWZ WH7 XSW Y6R YNY ~02 ~KM 7X8 ESTFP |
| ID | FETCH-LOGICAL-c408t-beadf6cc8ab5768f38b7bbc318297d414cae743fcb5c8e4b56bc40e85b9e95db2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 231 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489732900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1470-8728 |
| IngestDate | Sun Sep 28 10:03:44 EDT 2025 Wed Feb 19 02:13:26 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | root microbiome host–microbe interactions abiotic stress |
| Language | English |
| License | 2019 The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-beadf6cc8ab5768f38b7bbc318297d414cae743fcb5c8e4b56bc40e85b9e95db2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6792034 |
| PMID | 31654057 |
| PQID | 2309503794 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2309503794 pubmed_primary_31654057 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-15 |
| PublicationDateYYYYMMDD | 2019-10-15 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Biochemical journal |
| PublicationTitleAlternate | Biochem J |
| PublicationYear | 2019 |
| SSID | ssj0014040 |
| Score | 2.6634338 |
| SecondaryResourceType | review_article |
| Snippet | Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2705 |
| SubjectTerms | Climatic Processes Microbiota - physiology Nitrogen - metabolism Phosphorus - metabolism Plant Roots - microbiology Plants - microbiology Soil - chemistry Soil Microbiology Stress, Physiological - physiology |
| Title | Interactions between plants and soil shaping the root microbiome under abiotic stress |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31654057 https://www.proquest.com/docview/2309503794 |
| Volume | 476 |
| WOSCitedRecordID | wos000489732900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_qBH3xY_NjfhFBfCtrm6RJnkSHQ0THHhzsrfTSFAdbN9cp-N97aTv2JAi-FPoQ0ubukl_u7ndHyE0GYaRDUJ6xznUTgPES8MFLUh8Q3nLNbSnpF9nvq9FID2qHW1GnVa72xHKjTmfG-cg7CJW18Bmqz938w3Ndo1x0tW6hsUkaDKGM02o5WkcRuF8RIrn00epDVfPzUE87D93n0NWuigLxO7Ysz5je_n-_7oDs1eiS3lfqcEg2bN4krfscb9bTb3pLy3zP0pHeJDvdVa-3FhmWjsGK41DQOneLzicuSYYmeUqL2XhCi_fEsasoYkaKgHtJp-OqjNPUUsdFW9AEX3BqWjFQjsiw9_jWffLqhgue4b5aeoBqlUXGqMTJSWVMgQQwaPahlikPuEksIo7MgDDKchAR4ECrBGirRQrhMdnKZ7k9JdQoCUoIpoFF3IcMAsPwphNKmTGTar9NrlcLGeO_uihFktvZZxGvl7JNTippxPOq8kbMHPcKEebZH0afk12UsHbnTCAuSCNDc7aXZNt8LcfF4qrUFHz2B68_UErKnA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactions+between+plants+and+soil+shaping+the+root+microbiome+under+abiotic+stress&rft.jtitle=Biochemical+journal&rft.au=Hartman%2C+Kyle&rft.au=Tringe%2C+Susannah+G&rft.date=2019-10-15&rft.issn=1470-8728&rft.eissn=1470-8728&rft.volume=476&rft.issue=19&rft.spage=2705&rft_id=info:doi/10.1042%2FBCJ20180615&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8728&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8728&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8728&client=summon |