Interactions between plants and soil shaping the root microbiome under abiotic stress

Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial communities and their associated genes - collectively termed the root microbiome - are diverse and have been shown to play an important role in conf...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biochemical journal Ročník 476; číslo 19; s. 2705
Hlavní autoři: Hartman, Kyle, Tringe, Susannah G
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 15.10.2019
Témata:
ISSN:1470-8728, 1470-8728
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial communities and their associated genes - collectively termed the root microbiome - are diverse and have been shown to play an important role in conferring abiotic stress tolerance to their plant hosts. In light of growing concerns over the threat of water and nutrient stress facing terrestrial ecosystems, especially those used for agricultural production, increased emphasis has been placed on understanding how abiotic stress conditions influence the composition and functioning of the root microbiome and the ultimate consequences for plant health. However, the composition of the root microbiome under abiotic stress conditions will not only reflect shifts in the greater bulk soil microbial community from which plants recruit their root microbiome but also plant responses to abiotic stress, which include changes in root exudate profiles and morphology. Exploring the relative contributions of these direct and plant-mediated effects on the root microbiome has been the focus of many studies in recent years. Here, we review the impacts of abiotic stress affecting terrestrial ecosystems, specifically flooding, drought, and changes in nitrogen and phosphorus availability, on bulk soil microbial communities and plants that interact to ultimately shape the root microbiome. We conclude with a perspective outlining possible directions for future research needed to advance our understanding of the complex molecular and biochemical interactions between soil, plants, and microbes that ultimately determine the composition of the root microbiome under abiotic stress.
AbstractList Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial communities and their associated genes - collectively termed the root microbiome - are diverse and have been shown to play an important role in conferring abiotic stress tolerance to their plant hosts. In light of growing concerns over the threat of water and nutrient stress facing terrestrial ecosystems, especially those used for agricultural production, increased emphasis has been placed on understanding how abiotic stress conditions influence the composition and functioning of the root microbiome and the ultimate consequences for plant health. However, the composition of the root microbiome under abiotic stress conditions will not only reflect shifts in the greater bulk soil microbial community from which plants recruit their root microbiome but also plant responses to abiotic stress, which include changes in root exudate profiles and morphology. Exploring the relative contributions of these direct and plant-mediated effects on the root microbiome has been the focus of many studies in recent years. Here, we review the impacts of abiotic stress affecting terrestrial ecosystems, specifically flooding, drought, and changes in nitrogen and phosphorus availability, on bulk soil microbial communities and plants that interact to ultimately shape the root microbiome. We conclude with a perspective outlining possible directions for future research needed to advance our understanding of the complex molecular and biochemical interactions between soil, plants, and microbes that ultimately determine the composition of the root microbiome under abiotic stress.
Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial communities and their associated genes - collectively termed the root microbiome - are diverse and have been shown to play an important role in conferring abiotic stress tolerance to their plant hosts. In light of growing concerns over the threat of water and nutrient stress facing terrestrial ecosystems, especially those used for agricultural production, increased emphasis has been placed on understanding how abiotic stress conditions influence the composition and functioning of the root microbiome and the ultimate consequences for plant health. However, the composition of the root microbiome under abiotic stress conditions will not only reflect shifts in the greater bulk soil microbial community from which plants recruit their root microbiome but also plant responses to abiotic stress, which include changes in root exudate profiles and morphology. Exploring the relative contributions of these direct and plant-mediated effects on the root microbiome has been the focus of many studies in recent years. Here, we review the impacts of abiotic stress affecting terrestrial ecosystems, specifically flooding, drought, and changes in nitrogen and phosphorus availability, on bulk soil microbial communities and plants that interact to ultimately shape the root microbiome. We conclude with a perspective outlining possible directions for future research needed to advance our understanding of the complex molecular and biochemical interactions between soil, plants, and microbes that ultimately determine the composition of the root microbiome under abiotic stress.Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial communities and their associated genes - collectively termed the root microbiome - are diverse and have been shown to play an important role in conferring abiotic stress tolerance to their plant hosts. In light of growing concerns over the threat of water and nutrient stress facing terrestrial ecosystems, especially those used for agricultural production, increased emphasis has been placed on understanding how abiotic stress conditions influence the composition and functioning of the root microbiome and the ultimate consequences for plant health. However, the composition of the root microbiome under abiotic stress conditions will not only reflect shifts in the greater bulk soil microbial community from which plants recruit their root microbiome but also plant responses to abiotic stress, which include changes in root exudate profiles and morphology. Exploring the relative contributions of these direct and plant-mediated effects on the root microbiome has been the focus of many studies in recent years. Here, we review the impacts of abiotic stress affecting terrestrial ecosystems, specifically flooding, drought, and changes in nitrogen and phosphorus availability, on bulk soil microbial communities and plants that interact to ultimately shape the root microbiome. We conclude with a perspective outlining possible directions for future research needed to advance our understanding of the complex molecular and biochemical interactions between soil, plants, and microbes that ultimately determine the composition of the root microbiome under abiotic stress.
Author Hartman, Kyle
Tringe, Susannah G
Author_xml – sequence: 1
  givenname: Kyle
  surname: Hartman
  fullname: Hartman, Kyle
  organization: U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, U.S.A
– sequence: 2
  givenname: Susannah G
  surname: Tringe
  fullname: Tringe, Susannah G
  organization: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31654057$$D View this record in MEDLINE/PubMed
BookMark eNpNUEtLxDAYDLLiPvTkXXL0Uk3apEmPWnysLHhxzyVJv7qRNqlJivjvLbiCp5mBmWGYNVo47wChS0puKGH57X39khMqSUn5CVpRJkgmRS4X__gSrWP8IIQywsgZWha05IxwsUL7rUsQlEnWu4g1pC8Ah8deuRSxci2O3vY4HtRo3TtOB8DB-4QHa4LX1g-AJ9dCwGoWyRocU4AYz9Fpp_oIF0fcoP3jw1v9nO1en7b13S4zjMiUaVBtVxojleailF0htdDaFFTmlWgZZUaBYEVnNDcSmOalnoMgua6g4q3ON-j6t3cM_nOCmJrBRgP9PB_8FJu8IBUnhajYbL06Wic9QNuMwQ4qfDd_V-Q_U5xjRg
CitedBy_id crossref_primary_10_3389_fagro_2022_896307
crossref_primary_10_1128_mSystems_01106_21
crossref_primary_10_1007_s10725_024_01243_w
crossref_primary_10_1016_j_rhisph_2025_101120
crossref_primary_10_3389_fpls_2023_1074279
crossref_primary_10_1007_s00374_024_01882_1
crossref_primary_10_1016_j_tplants_2024_07_017
crossref_primary_10_1111_jam_15050
crossref_primary_10_1093_lambio_ovac067
crossref_primary_10_3389_fevo_2020_00167
crossref_primary_10_3390_su14042253
crossref_primary_10_7717_peerj_14933
crossref_primary_10_1016_j_apsoil_2024_105379
crossref_primary_10_1002_ajb2_16459
crossref_primary_10_1016_j_micres_2025_128178
crossref_primary_10_1016_j_plaphy_2025_110263
crossref_primary_10_1038_s41522_020_00164_6
crossref_primary_10_1016_j_soilbio_2020_107715
crossref_primary_10_3390_d15020175
crossref_primary_10_3390_plants13030384
crossref_primary_10_1007_s11104_023_06348_1
crossref_primary_10_3390_microorganisms13010041
crossref_primary_10_1016_j_jclepro_2021_130228
crossref_primary_10_1093_ismejo_wrad012
crossref_primary_10_3389_fmicb_2020_00390
crossref_primary_10_3389_fbrio_2025_1572294
crossref_primary_10_1038_s41598_022_16852_6
crossref_primary_10_1186_s12284_021_00522_8
crossref_primary_10_3390_ijms22169036
crossref_primary_10_3390_ijms252413330
crossref_primary_10_1094_MPMI_12_21_0294_FI
crossref_primary_10_3389_fmicb_2022_1052567
crossref_primary_10_1007_s11816_024_00954_w
crossref_primary_10_1016_j_funeco_2023_101225
crossref_primary_10_1016_j_csag_2025_100056
crossref_primary_10_3390_f15060897
crossref_primary_10_1007_s12237_025_01549_6
crossref_primary_10_1093_icb_icaf091
crossref_primary_10_1016_j_copbio_2020_12_021
crossref_primary_10_1080_07352689_2021_1959137
crossref_primary_10_3390_su12145835
crossref_primary_10_1016_j_plaphy_2023_108080
crossref_primary_10_1093_biolinnean_blac021
crossref_primary_10_1016_j_fcr_2025_109854
crossref_primary_10_1002_sae2_12018
crossref_primary_10_1007_s11157_022_09633_0
crossref_primary_10_3390_agronomy12092069
crossref_primary_10_3390_plants12061209
crossref_primary_10_1093_plcell_koae038
crossref_primary_10_1093_femsec_fiaa146
crossref_primary_10_3389_fenvs_2022_835194
crossref_primary_10_1038_s41598_025_94982_3
crossref_primary_10_1128_spectrum_00225_22
crossref_primary_10_1016_j_jenvman_2024_121180
crossref_primary_10_3390_plants13162176
crossref_primary_10_1007_s11356_021_14595_x
crossref_primary_10_1016_j_micres_2023_127315
crossref_primary_10_3389_fpls_2022_1028153
crossref_primary_10_1016_j_envexpbot_2023_105486
crossref_primary_10_1016_j_plaphy_2025_109646
crossref_primary_10_3390_plants10040780
crossref_primary_10_1007_s11676_022_01517_x
crossref_primary_10_1016_j_scitotenv_2020_143839
crossref_primary_10_3390_agriculture13030605
crossref_primary_10_3390_agronomy10111788
crossref_primary_10_1016_j_jaridenv_2025_105489
crossref_primary_10_3389_fmicb_2025_1565940
crossref_primary_10_3390_ijms231912035
crossref_primary_10_1128_spectrum_00068_23
crossref_primary_10_3389_fpls_2024_1396754
crossref_primary_10_3389_fsufs_2021_606454
crossref_primary_10_3390_plants12233931
crossref_primary_10_1111_pce_14403
crossref_primary_10_1007_s11104_023_05965_0
crossref_primary_10_1111_gcb_70165
crossref_primary_10_1016_j_ecoenv_2023_115172
crossref_primary_10_3390_horticulturae7050100
crossref_primary_10_1080_13102818_2022_2071634
crossref_primary_10_3389_fmicb_2023_1171104
crossref_primary_10_3390_plants13020221
crossref_primary_10_1007_s00344_023_11061_5
crossref_primary_10_1111_php_13572
crossref_primary_10_3390_microorganisms13051046
crossref_primary_10_1016_j_rhisph_2021_100362
crossref_primary_10_1016_j_heliyon_2025_e43499
crossref_primary_10_1016_j_rhisph_2025_101024
crossref_primary_10_3389_fpls_2024_1344205
crossref_primary_10_3390_microorganisms10091739
crossref_primary_10_1042_BCJ20210793
crossref_primary_10_3389_fagro_2023_1134514
crossref_primary_10_1111_nph_16957
crossref_primary_10_1186_s12866_022_02633_8
crossref_primary_10_1016_j_dib_2023_109827
crossref_primary_10_3390_f13071001
crossref_primary_10_1016_j_scitotenv_2022_154674
crossref_primary_10_1128_aem_00960_23
crossref_primary_10_1038_s41477_021_00920_2
crossref_primary_10_1016_j_envres_2022_113915
crossref_primary_10_1093_femsec_fiad070
crossref_primary_10_3389_fsufs_2020_618230
crossref_primary_10_1016_j_micres_2021_126771
crossref_primary_10_1002_ppj2_20028
crossref_primary_10_1016_j_soilbio_2023_109139
crossref_primary_10_3390_plants11091164
crossref_primary_10_3389_fpls_2025_1540659
crossref_primary_10_3389_fmicb_2022_824437
crossref_primary_10_1016_j_envexpbot_2023_105479
crossref_primary_10_1016_j_ecoenv_2023_115263
crossref_primary_10_1016_j_scitotenv_2024_177946
crossref_primary_10_1007_s10343_025_01128_6
crossref_primary_10_1111_1365_2745_13505
crossref_primary_10_3389_fmicb_2022_912701
crossref_primary_10_1007_s10811_021_02387_2
crossref_primary_10_1007_s13593_021_00748_2
crossref_primary_10_3390_soilsystems9020061
crossref_primary_10_3389_fmicb_2022_924137
crossref_primary_10_1016_j_rhisph_2023_100677
crossref_primary_10_1007_s00284_021_02618_2
crossref_primary_10_1016_j_ecolind_2023_111207
crossref_primary_10_1002_2688_8319_12027
crossref_primary_10_3389_fmicb_2021_773116
crossref_primary_10_3390_plants10091873
crossref_primary_10_3389_fbioe_2023_1191240
crossref_primary_10_1186_s12862_022_02082_x
crossref_primary_10_1111_ejss_70096
crossref_primary_10_1038_s41598_024_64138_w
crossref_primary_10_3389_fsufs_2023_1253735
crossref_primary_10_1016_j_chemosphere_2023_140715
crossref_primary_10_1016_j_envexpbot_2024_106006
crossref_primary_10_3390_agronomy11050977
crossref_primary_10_3389_fmicb_2020_00682
crossref_primary_10_1111_1462_2920_15433
crossref_primary_10_3389_fpls_2022_875774
crossref_primary_10_1016_j_apsoil_2023_104811
crossref_primary_10_1128_MRA_00736_20
crossref_primary_10_3390_f14040685
crossref_primary_10_3390_d17010021
crossref_primary_10_3897_BDJ_9_e60245
crossref_primary_10_1002_ece3_6798
crossref_primary_10_1016_j_envpol_2025_126895
crossref_primary_10_1016_j_ejsobi_2024_103690
crossref_primary_10_1111_ppl_13338
crossref_primary_10_1007_s00374_021_01611_y
crossref_primary_10_1016_j_plantsci_2023_111694
crossref_primary_10_3390_plants12020400
crossref_primary_10_1002_pld3_518
crossref_primary_10_1093_femsec_fiae096
crossref_primary_10_1016_j_hazadv_2025_100895
crossref_primary_10_1111_wre_12619
crossref_primary_10_1016_j_scitotenv_2024_171278
crossref_primary_10_1016_j_apsoil_2025_106106
crossref_primary_10_1002_pca_2954
crossref_primary_10_1039_D2EN00403H
crossref_primary_10_3390_f16040637
crossref_primary_10_3390_biology10010044
crossref_primary_10_1093_jpe_rtaf044
crossref_primary_10_1007_s44372_025_00249_6
crossref_primary_10_1007_s13199_023_00969_x
crossref_primary_10_1016_j_catena_2023_106914
crossref_primary_10_3390_cells10061551
crossref_primary_10_1007_s11104_023_05908_9
crossref_primary_10_3390_microorganisms13061384
crossref_primary_10_1016_j_indcrop_2022_115434
crossref_primary_10_1016_j_stress_2024_100632
crossref_primary_10_3390_microorganisms9051036
crossref_primary_10_1016_j_jhazmat_2024_134587
crossref_primary_10_1007_s11104_025_07762_3
crossref_primary_10_1007_s10343_023_00923_3
crossref_primary_10_1016_j_tplants_2024_10_009
crossref_primary_10_1016_j_stress_2025_100915
crossref_primary_10_1111_1365_2664_14641
crossref_primary_10_3390_agriculture11100987
crossref_primary_10_3390_f16091404
crossref_primary_10_1093_plphys_kiae432
crossref_primary_10_3390_jof10100679
crossref_primary_10_53941_plantecophys_2025_100006
crossref_primary_10_1016_j_scitotenv_2024_174001
crossref_primary_10_1002_sae2_70038
crossref_primary_10_1371_journal_pone_0248030
crossref_primary_10_1186_s13007_021_00742_5
crossref_primary_10_3390_microorganisms10030540
crossref_primary_10_3390_life13051102
crossref_primary_10_1016_j_stress_2025_100907
crossref_primary_10_3390_f13030421
crossref_primary_10_3390_d13080366
crossref_primary_10_1093_plphys_kiab392
crossref_primary_10_1007_s11869_024_01601_7
crossref_primary_10_1186_s40793_023_00512_x
crossref_primary_10_3389_fmicb_2022_1031064
crossref_primary_10_1007_s00248_023_02190_1
crossref_primary_10_1016_j_pedsph_2025_06_008
crossref_primary_10_3390_microorganisms12040692
crossref_primary_10_1016_j_rhisph_2024_100974
crossref_primary_10_1111_jam_15552
crossref_primary_10_3390_foods13233970
crossref_primary_10_1016_j_apsoil_2021_104241
crossref_primary_10_48130_mpb_0024_0023
crossref_primary_10_3389_fpls_2024_1484251
crossref_primary_10_1016_j_soilbio_2020_107819
crossref_primary_10_1007_s11104_024_06484_2
crossref_primary_10_1016_j_heliyon_2024_e40517
crossref_primary_10_1016_j_scitotenv_2024_173494
crossref_primary_10_3389_fagro_2024_1465165
crossref_primary_10_1016_j_tree_2025_05_001
crossref_primary_10_1002_sae2_12057
crossref_primary_10_3389_fpls_2022_1003868
crossref_primary_10_1111_jipb_13226
crossref_primary_10_1007_s12033_025_01425_5
crossref_primary_10_1016_j_jare_2025_03_008
crossref_primary_10_1016_j_envexpbot_2023_105633
crossref_primary_10_1093_ismejo_wrae006
crossref_primary_10_1093_aob_mcaf033
crossref_primary_10_1128_msystems_00224_22
ContentType Journal Article
Copyright 2019 The Author(s).
Copyright_xml – notice: 2019 The Author(s).
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1042/BCJ20180615
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1470-8728
ExternalDocumentID 31654057
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Review
GroupedDBID ---
-DZ
-~X
0R~
23N
2WC
4.4
53G
5GY
5RE
6J9
79B
A8Z
AABGO
AAHRG
ABJNI
ABPPZ
ABRJW
ACGFO
ACGFS
ACNCT
ADBBV
AEGXH
AENEX
AIAGR
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CGR
CS3
CUY
CVF
DU5
E3Z
EBD
EBS
ECM
EIF
EJD
EMOBN
F5P
H13
HH6
HZ~
K-O
L7B
ML-
MV1
N9A
NPM
NTEUP
O9-
OK1
P2P
RHI
RNS
RPM
RPO
SV3
TR2
TWZ
WH7
XSW
Y6R
YNY
~02
~KM
7X8
ESTFP
ID FETCH-LOGICAL-c408t-beadf6cc8ab5768f38b7bbc318297d414cae743fcb5c8e4b56bc40e85b9e95db2
IEDL.DBID 7X8
ISICitedReferencesCount 231
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489732900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1470-8728
IngestDate Sun Sep 28 10:03:44 EDT 2025
Wed Feb 19 02:13:26 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords root microbiome
host–microbe interactions
abiotic stress
Language English
License 2019 The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-beadf6cc8ab5768f38b7bbc318297d414cae743fcb5c8e4b56bc40e85b9e95db2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6792034
PMID 31654057
PQID 2309503794
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2309503794
pubmed_primary_31654057
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biochemical journal
PublicationTitleAlternate Biochem J
PublicationYear 2019
SSID ssj0014040
Score 2.6634338
SecondaryResourceType review_article
Snippet Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2705
SubjectTerms Climatic Processes
Microbiota - physiology
Nitrogen - metabolism
Phosphorus - metabolism
Plant Roots - microbiology
Plants - microbiology
Soil - chemistry
Soil Microbiology
Stress, Physiological - physiology
Title Interactions between plants and soil shaping the root microbiome under abiotic stress
URI https://www.ncbi.nlm.nih.gov/pubmed/31654057
https://www.proquest.com/docview/2309503794
Volume 476
WOSCitedRecordID wos000489732900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_qBH3xY_NjfhFBfCtrm6RJnkSHQ0THHhzsrfTSFAdbN9cp-N97aTv2JAi-FPoQ0ubukl_u7ndHyE0GYaRDUJ6xznUTgPES8MFLUh8Q3nLNbSnpF9nvq9FID2qHW1GnVa72xHKjTmfG-cg7CJW18Bmqz938w3Ndo1x0tW6hsUkaDKGM02o5WkcRuF8RIrn00epDVfPzUE87D93n0NWuigLxO7Ysz5je_n-_7oDs1eiS3lfqcEg2bN4krfscb9bTb3pLy3zP0pHeJDvdVa-3FhmWjsGK41DQOneLzicuSYYmeUqL2XhCi_fEsasoYkaKgHtJp-OqjNPUUsdFW9AEX3BqWjFQjsiw9_jWffLqhgue4b5aeoBqlUXGqMTJSWVMgQQwaPahlikPuEksIo7MgDDKchAR4ECrBGirRQrhMdnKZ7k9JdQoCUoIpoFF3IcMAsPwphNKmTGTar9NrlcLGeO_uihFktvZZxGvl7JNTippxPOq8kbMHPcKEebZH0afk12UsHbnTCAuSCNDc7aXZNt8LcfF4qrUFHz2B68_UErKnA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactions+between+plants+and+soil+shaping+the+root+microbiome+under+abiotic+stress&rft.jtitle=Biochemical+journal&rft.au=Hartman%2C+Kyle&rft.au=Tringe%2C+Susannah+G&rft.date=2019-10-15&rft.issn=1470-8728&rft.eissn=1470-8728&rft.volume=476&rft.issue=19&rft.spage=2705&rft_id=info:doi/10.1042%2FBCJ20180615&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8728&client=summon