Taming the complexity of biological pathways through parallel computing
Biological systems are characterised by a large number of interacting entities whose dynamics is described by a number of reaction equations. Mathematical methods for modelling biological systems are mostly based on a centralised solution approach: the modelled system is described as a whole and the...
Uložené v:
| Vydané v: | Briefings in bioinformatics Ročník 10; číslo 3; s. 278 - 288 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Oxford University Press
01.05.2009
Oxford Publishing Limited (England) |
| Predmet: | |
| ISSN: | 1467-5463, 1477-4054, 1477-4054 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Biological systems are characterised by a large number of interacting entities whose dynamics is described by a number of reaction equations. Mathematical methods for modelling biological systems are mostly based on a centralised solution approach: the modelled system is described as a whole and the solution technique, normally the integration of a system of ordinary differential equations (ODEs) or the simulation of a stochastic model, is commonly computed in a centralised fashion. In recent times, research efforts moved towards the definition of parallel/distributed algorithms as a means to tackle the complexity of biological models analysis. In this article, we present a survey on the progresses of such parallelisation efforts describing the most promising results so far obtained. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1467-5463 1477-4054 1477-4054 |
| DOI: | 10.1093/bib/bbp020 |