FISTA is an automatic geometrically optimized algorithm for strongly convex functions

In this work, we are interested in the famous FISTA algorithm. We show that FISTA is an automatic geometrically optimized algorithm for functions satisfying a quadratic growth assumption. This explains why FISTA works better than the standard Forward-Backward algorithm (FB) in such a case, although...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 204; číslo 1-2; s. 449 - 491
Hlavní autoři: Aujol, J.-F., Dossal, Ch, Rondepierre, A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Springer
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work, we are interested in the famous FISTA algorithm. We show that FISTA is an automatic geometrically optimized algorithm for functions satisfying a quadratic growth assumption. This explains why FISTA works better than the standard Forward-Backward algorithm (FB) in such a case, although FISTA is known to have a polynomial asymptotic convergence rate while FB is exponential. We provide a simple rule to tune the α parameter within the FISTA algorithm to reach an ε -solution with an optimal number of iterations. These new results highlight the efficiency of FISTA algorithms, and they rely on new non asymptotic bounds for FISTA.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-023-01960-6