FISTA is an automatic geometrically optimized algorithm for strongly convex functions
In this work, we are interested in the famous FISTA algorithm. We show that FISTA is an automatic geometrically optimized algorithm for functions satisfying a quadratic growth assumption. This explains why FISTA works better than the standard Forward-Backward algorithm (FB) in such a case, although...
Gespeichert in:
| Veröffentlicht in: | Mathematical programming Jg. 204; H. 1-2; S. 449 - 491 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2024
Springer |
| Schlagworte: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this work, we are interested in the famous FISTA algorithm. We show that FISTA is an automatic geometrically optimized algorithm for functions satisfying a quadratic growth assumption. This explains why FISTA works better than the standard Forward-Backward algorithm (FB) in such a case, although FISTA is known to have a polynomial asymptotic convergence rate while FB is exponential. We provide a simple rule to tune the
α
parameter within the FISTA algorithm to reach an
ε
-solution with an optimal number of iterations. These new results highlight the efficiency of FISTA algorithms, and they rely on new non asymptotic bounds for FISTA. |
|---|---|
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-023-01960-6 |