Load-frequency control in an islanded microgrid PV/WT/FC/ESS using an optimal self-tuning fractional-order fuzzy controller

Due to the increased complexity and nonlinear nature of microgrid systems such as photovoltaic, wind-turbine fuel cell, and energy storage systems (PV/WT/FC/ESSs), load-frequency control has been a challenge. This paper employs a self-tuning controller based on the fuzzy logic to overcome parameter...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental science and pollution research international Ročník 30; číslo 28; s. 71677 - 71688
Hlavní autoři: Naderipour, Amirreza, Abdul-Malek, Zulkurnain, Davoodkhani, Iraj Faraji, Kamyab, Hesam, Ali, Roshafima Rasit
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Témata:
ISSN:1614-7499, 0944-1344, 1614-7499
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Due to the increased complexity and nonlinear nature of microgrid systems such as photovoltaic, wind-turbine fuel cell, and energy storage systems (PV/WT/FC/ESSs), load-frequency control has been a challenge. This paper employs a self-tuning controller based on the fuzzy logic to overcome parameter uncertainties of classic controllers, such as operation conditions, the change in the operating point of the microgrid, and the uncertainty of microgrid modeling. Furthermore, a combined fuzzy logic and fractional-order controller is used for load-frequency control of the off-grid microgrid with the influence of renewable resources because the latter controller benefits robust performance and enjoys a flexible structure. To reach a better operation for the proposed controller, a novel meta-heuristic whale algorithm has been used to optimally determine the input and output scale coefficients of the fuzzy controller and fractional orders of the fractional-order controller. The suggested approach is applied to a microgrid with a diesel generator, wind turbine, photovoltaic systems, and energy storage devices. The comparison made between the results of the proposed controller and those of the classic PID controller proves the superiority of the optimized fractional-order self-tuning fuzzy controller in terms of operation characteristics, response speed, and the reduction in frequency deviations against load variations. Graphical abstract
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-021-14799-1