Adaptive Signal Processing Algorithms Based on EMD and ITD
In the last two decades, both Empirical Mode Decomposition (EMD) and Intrinsic Time-Scale Decomposition (ITD) algorithms deserved a variety of applications in various fields of science and engineering due to their obvious advantages compared to conventional (e.g. correlation- or spectral-based analy...
Uložené v:
| Vydané v: | IEEE access Ročník 7; s. 171313 - 171321 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the last two decades, both Empirical Mode Decomposition (EMD) and Intrinsic Time-Scale Decomposition (ITD) algorithms deserved a variety of applications in various fields of science and engineering due to their obvious advantages compared to conventional (e.g. correlation- or spectral-based analysis) approaches like the ability of their direct application to non-stationary signal analysis. However, high computational complexity remains a common drawback of these otherwise universal and powerful algorithms. Here we compare similarly designed signal analysis algorithms utilizing either EMD or ITD as their core functions. Based on extensive computer simulations, we show explicitly that the replacement of EMD by ITD in several otherwise similar signal analysis scenarios leads to the increased noise robustness with simultaneous considerable reduction of the processing time. We also demonstrate that the proposed algorithms modifications could be successfully utilized in a series of emerging applications for processing of non-stationary signals. |
|---|---|
| AbstractList | In the last two decades, both Empirical Mode Decomposition (EMD) and Intrinsic Time-Scale Decomposition (ITD) algorithms deserved a variety of applications in various fields of science and engineering due to their obvious advantages compared to conventional (e.g. correlation- or spectral-based analysis) approaches like the ability of their direct application to non-stationary signal analysis. However, high computational complexity remains a common drawback of these otherwise universal and powerful algorithms. Here we compare similarly designed signal analysis algorithms utilizing either EMD or ITD as their core functions. Based on extensive computer simulations, we show explicitly that the replacement of EMD by ITD in several otherwise similar signal analysis scenarios leads to the increased noise robustness with simultaneous considerable reduction of the processing time. We also demonstrate that the proposed algorithms modifications could be successfully utilized in a series of emerging applications for processing of non-stationary signals. |
| Author | Voznesensky, Alexander Kaplun, Dmitrii |
| Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0002-0667-7851 surname: Voznesensky fullname: Voznesensky, Alexander email: a-voznesensky@yandex.ru organization: Department of Automation and Control Processes, Saint Petersburg Electrotechnical University "LETI", Saint Petersburg, Russia – sequence: 2 givenname: Dmitrii orcidid: 0000-0003-2765-4509 surname: Kaplun fullname: Kaplun, Dmitrii organization: Department of Automation and Control Processes, Saint Petersburg Electrotechnical University "LETI", Saint Petersburg, Russia |
| BookMark | eNp9kE1LHEEQhpugEKP-Ai8Dnnft74_c1nVNFgwRVs9NTU_Nppdxeu0ehfz7jBkj4iF1qeKlnpeq9ws56FOPhJwxOmeMuovFcrnabOacMjfnTmlqzCdyxJl2M6GEPng3fyanpezoWHaUlDkiXxcN7If4jNUmbnvoqtucApYS-2216LYpx-HXQ6kuoWBTpb5a_biqoG-q9d3VCTlsoSt4-tqPyf316m75fXbz89t6ubiZBUntMKsDY1KohtaulRpao3VttQRKEV0ALrHhQfGm1dbJutGoZA2oHRhgQWIrjsl68m0S7Pw-xwfIv32C6P8KKW895CGGDr3QhgZnbC1aLq01ruUolbQqgESQZvQ6n7z2OT0-YRn8Lj3l8e_iuVRKMyO4G7fctBVyKiVj60McYIipHzLEzjPqX5L3U_L-JXn_mvzIig_sv4v_T51NVETEN8I6JhTV4g8E647j |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_met15050504 crossref_primary_10_1109_ACCESS_2020_3043803 crossref_primary_10_1109_ACCESS_2022_3218052 crossref_primary_10_3390_s22041310 crossref_primary_10_1142_S179354582530006X crossref_primary_10_3390_app10093097 crossref_primary_10_1109_ACCESS_2020_3021018 crossref_primary_10_3390_s22134961 crossref_primary_10_1016_j_dsp_2021_103216 crossref_primary_10_3389_fnhum_2024_1362135 crossref_primary_10_1016_j_compbiomed_2021_104926 crossref_primary_10_1177_01423312241267046 crossref_primary_10_1109_ACCESS_2021_3085704 crossref_primary_10_3233_JIFS_201191 crossref_primary_10_1016_j_bspc_2022_104512 crossref_primary_10_1177_10775463241262117 crossref_primary_10_3390_s23031301 crossref_primary_10_1016_j_sigpro_2023_109220 crossref_primary_10_1049_cth2_12771 crossref_primary_10_1016_j_epsr_2024_110938 crossref_primary_10_3390_s21051825 crossref_primary_10_1109_ACCESS_2021_3070447 |
| Cites_doi | 10.3390/e21020202 10.1109/78.258082 10.1098/rspa.1998.0193 10.1109/EIConRus.2019.8657203 10.1109/ElConRusNW.2014.6839211 10.21595/jve.2017.19239 10.15406/jabb.2017.02.00024 10.1134/S1054661818010091 10.1098/rspa.2006.1761 10.3390/e21090843 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2019.2956077 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 171321 |
| ExternalDocumentID | oai_doaj_org_article_3670c978b3f248879f2e45485ca4ea47 10_1109_ACCESS_2019_2956077 8913506 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Russian Science Foundation grantid: 17-71-20077 funderid: 10.13039/501100006769 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c408t-bc11435d0b9f46af766b864a00ee9ca24ed2c52df6894bd6e54bae69a7a1c4ef3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509358000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Tue Oct 14 18:45:57 EDT 2025 Mon Jun 30 03:32:46 EDT 2025 Tue Nov 18 21:00:23 EST 2025 Sat Nov 29 02:41:34 EST 2025 Wed Aug 27 02:40:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-bc11435d0b9f46af766b864a00ee9ca24ed2c52df6894bd6e54bae69a7a1c4ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2765-4509 0000-0002-0667-7851 |
| OpenAccessLink | https://doaj.org/article/3670c978b3f248879f2e45485ca4ea47 |
| PQID | 2455617329 |
| PQPubID | 4845423 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3670c978b3f248879f2e45485ca4ea47 crossref_primary_10_1109_ACCESS_2019_2956077 ieee_primary_8913506 proquest_journals_2455617329 crossref_citationtrail_10_1109_ACCESS_2019_2956077 |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | huang (ref6) 2005 ref12 ref15 ifeachor (ref1) 2002 goodfellow (ref14) 2016 ref11 ref10 mallat (ref2) 2008 piotrowski (ref8) 2006 ref17 crochiere (ref9) 1983 kopsinis (ref16) 2008 ref18 ref7 ref4 (ref13) 2019 ref3 ref5 |
| References_xml | – ident: ref18 doi: 10.3390/e21020202 – ident: ref3 doi: 10.1109/78.258082 – ident: ref5 doi: 10.1098/rspa.1998.0193 – start-page: 411 year: 1983 ident: ref9 publication-title: Multirate Digital Signal Processing – ident: ref17 doi: 10.1109/EIConRus.2019.8657203 – ident: ref10 doi: 10.1109/ElConRusNW.2014.6839211 – year: 2008 ident: ref2 publication-title: A Wavelet Tour of Signal Processing – ident: ref12 doi: 10.21595/jve.2017.19239 – start-page: 350 year: 2005 ident: ref6 publication-title: Hilbert-Huang Transform and Its Applications – year: 2019 ident: ref13 publication-title: Documentation – ident: ref15 doi: 10.15406/jabb.2017.02.00024 – year: 2016 ident: ref14 publication-title: Deep Learning – ident: ref11 doi: 10.1134/S1054661818010091 – start-page: 389 year: 2006 ident: ref8 article-title: Digital filter banks: Analysis, synthesis and implementation for multimedia systems publication-title: Bialystok Wydawnictwo Politechniki Bialostockiej – ident: ref7 doi: 10.1098/rspa.2006.1761 – start-page: 42 year: 2008 ident: ref16 article-title: Empirical mode decomposition based denoising techniques publication-title: Proc 1st IAPR Workshop Cogn Inf Process (CIP) – ident: ref4 doi: 10.3390/e21090843 – start-page: 933 year: 2002 ident: ref1 publication-title: Digital Signal Processing A Practical Approach |
| SSID | ssj0000816957 |
| Score | 2.2646372 |
| Snippet | In the last two decades, both Empirical Mode Decomposition (EMD) and Intrinsic Time-Scale Decomposition (ITD) algorithms deserved a variety of applications in... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 171313 |
| SubjectTerms | Adaptive algorithms Adaptive filter bank Adaptive filters Algorithms Approximation algorithms Chirp modulation Correlation analysis denoising algorithms Empirical analysis empirical mode decomposition Fourier transform Frequency modulation Hilbert-Huang transform internal oscillations intrinsic time-scale decomposition Signal analysis Signal processing Signal processing algorithms spectral analysis Time-frequency analysis wavelet transform |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9wwDI4A7WE8bGxs2jGY8sAjhV6SJs3ejgO0SQNNgk28RYnjspNYD90d_P7FbaiGNk2a1IeqdSLXbhLbiT8ztg9KopYQC5BRJAelEUWohSww2fYxXRi7WgTfv5iLi_r62n5dYwdDLgwidofP8JBuu738OId7CpUd0ZZaRfja68boPldriKdQAQlbmQwsNC7t0WQ6Td9Ap7fsoSA3wJgni0-H0Z-LqvwxE3fLy9nL_2Nsi73IZiSf9Hp_xdawfc02fwMX3GYfJ9Hf0WTGL2c3RJxzAtJLPrm9mS9mqx8_l_w4LWORz1t-en7CfRv556uTN-zb2enV9FORKyUUoMp6VQQYk90Ty2AbpX1jtA61Vr4sES14oZLIoRKx0bVVIWqsVPCorTd-DAob-ZZttPMW3zEeawHJ6wMbtFQh-TMEimWwlAaSaQtxxMSjCB1kGHGqZnHrOneitK6XuyO5uyz3ETsYGt31KBr_Jj8m3QykBIHdPUhCd3lEOUKeg8RckI1Is5CxjUCV-K3AK_QqdbJNiho6yToasd1HTbs8XJdOKKoSaqSwO39v9Z49Jwb72Msu21gt7nGPPYOH1Wy5-ND9ib8AslfZpw priority: 102 providerName: IEEE |
| Title | Adaptive Signal Processing Algorithms Based on EMD and ITD |
| URI | https://ieeexplore.ieee.org/document/8913506 https://www.proquest.com/docview/2455617329 https://doaj.org/article/3670c978b3f248879f2e45485ca4ea47 |
| Volume | 7 |
| WOSCitedRecordID | wos000509358000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iHvQg6hSnU3LwaDVL0qTxts2JghuCP_AW8qsqaCduevRvN0mzMRH0IpQe2rRpvpfmva9NvgfAgaHEMWJsZojFnqCUONMFJpnzsb31m7MxF8HdJR8Oi_t7cTWX6ivMCavlgWvgjoPAmPFUR5MS-87GRYkd9WF2bhR1isZ15IiLOTIVx-CizUTOk8xQG4njTq_nWxTmcokjHEgB599cUVTsTylWfozL0dmcrYHVFCXCTv1062DBVRtgZU47sAFOOla9hrEKXj89hMJpyr8_CTvPDyNP-h9fxrDrvZSFowr2B6dQVRZe3Jxugtuz_k3vPEuJEDJDUTHJtGmHsMYiLUrKVMkZ0wWjCiHnhFGYekRNjm3JCkG1ZS6nWjkmFFdtQ11JtsBiNarcNoC2wMaTOiM0I1R7HIPmFXeIcOMjV2ObAE8xkSaphIdkFc8ysgUkZA2kDEDKBGQTHM4ueq1FMn4v3g1gz4oGhet4wNtdJrvLv-zeBI1gqtlNwu_WHLEmaE1NJ9PbOJaYhiSgnGCx8x9V74Ll0Jz6Q0wLLE7e3t0eWDIfk6fx237siH4_-Ozvx-WEXyng3fE |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcQIG17ADaG1sHAD3skkNqOHe-tFBCIUk1aN_Fm-ePCKrEUtWV__3yJiYaGJiHlIUrO1uUutu_Ovt8R8tkLDpL7kHkeWHRQKpa5kvEMom0f4gWhqUXwY6TG4_LmRn9dIYddLgwANIfP4Ahvm738MPMPGCo7xi21AvG11wohWN5ma3URFSwhoQuVoIX6uT4eDIfxK_D8lj5i6Ago9WT5aVD6U1mVf-biZoE533wZa1tkIxmSdNBq_i1ZgfodefMXvOA2-TII9h6nM_pteovEKSsgvqSDu9vZfLr8-WtBT-JCFuispmfXp9TWgV5OTt-T7-dnk-FFlmolZF7k5TJzvo-WT8idroS0lZLSlVLYPAfQ3jIRhe4LFipZauGChEI4C1JbZfteQMV3yGo9q-EDoaFkPvp9XjvJhYseDcJiKci58tG49aFH2KMIjU9A4ljP4s40DkWuTSt3g3I3Se49ctg1um9xNP5PfoK66UgRBLt5EIVu0pgyiD3nI3OOVyzOQ0pXDETkt_BWgBWxk21UVNdJ0lGP7D1q2qQBuzBMYJ1QxZn--HyrA_LqYnI9MqPL8dUueY3MtpGYPbK6nD_AJ7Lufy-ni_l-81f-AS2n3O4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Signal+Processing+Algorithms+Based+on+EMD+and+ITD&rft.jtitle=IEEE+access&rft.au=Voznesensky%2C+Alexander&rft.au=Kaplun%2C+Dmitrii&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=171313&rft.epage=171321&rft_id=info:doi/10.1109%2FACCESS.2019.2956077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2956077 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |