Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System

For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 10; pp. 57555 - 57564
Main Authors: Jhang, Yu-Syuan, Wang, Szu-Ting, Sheu, Ming-Hwa, Wang, Szu-Hong, Lai, Shin-Chi
Format: Journal Article
Language:English
Published: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are converted from a front-end circuit, which contains several amplifiers and filters in the acquisition system. Thereafter, a zero padding scheme is applied for each 10-bits data to separate them into two-bytes data for BLE transmission. Xavier Edge AI platform receives these transmitted data and removes the electrode motion (EM) noise using the proposed low memory shortcut connection-based denoised autoencoder (LMSC-DAE). The simulation results demonstrate that the proposed algorithm significantly improves the signal-to-noise ratio (SNR) by 5.41 dB under the condition of SNR in = 12 dB, compared with convolutional denoising autoencoder with long short-term memory (CNN-LSTM-DAE) method. For practical test, an Arduino DUE platform is employed to generate noise interference by controlling a commercial digital-to-analog convertor. By combining the proposed ECG acquisition device with a non-inverting weighted summer, it can be applied to verify the reproducibility of measurement for the proposed method. The measurement results clearly indicate that the proposed LMSC-DAE has a higher improvement of SNR and lower percentage root-mean-square difference than the state-of-the-art Fully Convolutional Denoising Autoencoder (FCN-DAE).
AbstractList For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are converted from a front-end circuit, which contains several amplifiers and filters in the acquisition system. Thereafter, a zero padding scheme is applied for each 10-bits data to separate them into two-bytes data for BLE transmission. Xavier Edge AI platform receives these transmitted data and removes the electrode motion (EM) noise using the proposed low memory shortcut connection-based denoised autoencoder (LMSC-DAE). The simulation results demonstrate that the proposed algorithm significantly improves the signal-to-noise ratio (SNR) by 5.41 dB under the condition of SNRin = 12 dB, compared with convolutional denoising autoencoder with long short-term memory (CNN-LSTM-DAE) method. For practical test, an Arduino DUE platform is employed to generate noise interference by controlling a commercial digital-to-analog convertor. By combining the proposed ECG acquisition device with a non-inverting weighted summer, it can be applied to verify the reproducibility of measurement for the proposed method. The measurement results clearly indicate that the proposed LMSC-DAE has a higher improvement of SNR and lower percentage root-mean-square difference than the state-of-the-art Fully Convolutional Denoising Autoencoder (FCN-DAE).
For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed and integrated with a Nvidia Jetson Xavier NX for realizing the electrode motion artifact removal technique. The digitalized ECG codes are converted from a front-end circuit, which contains several amplifiers and filters in the acquisition system. Thereafter, a zero padding scheme is applied for each 10-bits data to separate them into two-bytes data for BLE transmission. Xavier Edge AI platform receives these transmitted data and removes the electrode motion (EM) noise using the proposed low memory shortcut connection-based denoised autoencoder (LMSC-DAE). The simulation results demonstrate that the proposed algorithm significantly improves the signal-to-noise ratio (SNR) by 5.41 dB under the condition of SNR in = 12 dB, compared with convolutional denoising autoencoder with long short-term memory (CNN-LSTM-DAE) method. For practical test, an Arduino DUE platform is employed to generate noise interference by controlling a commercial digital-to-analog convertor. By combining the proposed ECG acquisition device with a non-inverting weighted summer, it can be applied to verify the reproducibility of measurement for the proposed method. The measurement results clearly indicate that the proposed LMSC-DAE has a higher improvement of SNR and lower percentage root-mean-square difference than the state-of-the-art Fully Convolutional Denoising Autoencoder (FCN-DAE).
Author Sheu, Ming-Hwa
Wang, Szu-Ting
Jhang, Yu-Syuan
Lai, Shin-Chi
Wang, Szu-Hong
Author_xml – sequence: 1
  givenname: Yu-Syuan
  surname: Jhang
  fullname: Jhang, Yu-Syuan
  organization: Department of Electronics Engineering, National Yunlin University of Science and Technology, Douliu, Taiwan
– sequence: 2
  givenname: Szu-Ting
  surname: Wang
  fullname: Wang, Szu-Ting
  organization: Doctor's Program of Smart Industry Technology Research and Design, National Formosa University, Huwei, Taiwan
– sequence: 3
  givenname: Ming-Hwa
  surname: Sheu
  fullname: Sheu, Ming-Hwa
  organization: Department of Electronics Engineering, National Yunlin University of Science and Technology, Douliu, Taiwan
– sequence: 4
  givenname: Szu-Hong
  orcidid: 0000-0002-3889-1764
  surname: Wang
  fullname: Wang, Szu-Hong
  organization: Department of Electronics Engineering, National Yunlin University of Science and Technology, Douliu, Taiwan
– sequence: 5
  givenname: Shin-Chi
  orcidid: 0000-0003-0011-3649
  surname: Lai
  fullname: Lai, Shin-Chi
  email: shivan0111@nfu.edu.tw
  organization: Department of Automation Engineering, National Formosa University, Huwei, Taiwan
BookMark eNqFkc1uEzEUhUeoSJTSJ-jGEusJ_hmP7WUY0hIpCERALC2PfSc4moxT20HqC_DcuJmqQmzwxtbxd861fF5XF1OYoKpuCF4QgtW7ZdetttsFxZQuGBFSNuJFdUlJq2rGWXvx1_lVdZ3SHpcli8TFZfV7PWXYRZN9mNAHSH43oTCgLyFm04-AVt0d2hbRjGhp708--TP5w-efBYdjvQETJz_t0HuTwKHVCDbH4AB9CmdyGbMfjM3oKxzCrxJTNDOh1aEH54ph-5AyHN5ULwczJrh-2q-q77erb93HevP5bt0tN7VtsMx13_OWGUYG7oSTlFrC-KDcgB0oZgl1SlnbskEagwltbDNwKXhDDHPcupazq2o957pg9voY_cHEBx2M12chxJ025cF2BA2OiRZzappWNgyUtLSXQHsMzJi2FSXr7Zx1jOH-BCnrfTjF8lNJ01Y0WHDesEKxmbIxpBRheJ5KsH7sT8_96cf-9FN_xaX-cVmfzyXlaPz4H-_N7PUA8DxNCdmocvsHMnWqtA
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TCSI_2025_3533544
crossref_primary_10_1007_s00034_024_02658_6
crossref_primary_10_1016_j_autcon_2024_105537
crossref_primary_10_1016_j_measurement_2025_117067
Cites_doi 10.1109/HealthCom.2014.7001883
10.1016/j.measurement.2013.07.009
10.1109/ACCESS.2019.2912036
10.1166/jmihi.2015.1649
10.1109/JSEN.2011.2111453
10.1161/CIRCULATIONAHA.106.180200
10.1016/j.dsp.2005.12.003
10.1155/2021/5574376
10.1109/CNSC.2014.6906684
10.1016/j.irbm.2014.10.004
10.3390/info10020035
10.1016/j.neunet.2014.09.003
10.1155/2018/1868519
10.3390/s20061796
10.1109/IEMBS.2006.260464
10.1109/NFSI-ICFBI.2007.4387719
10.1016/j.bspc.2020.102225
10.1109/MECBME.2014.6783250
10.1109/IMCEC.2016.7867525
10.4028/www.scientific.net/AMM.357-360.2267
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3178847
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 57564
ExternalDocumentID oai_doaj_org_article_ed376052a46843e98c2b8e2b0e3aa667
10_1109_ACCESS_2022_3178847
9784947
Genre orig-research
GrantInformation_xml – fundername: Ministry of Education (MOE) Female Researching Talent Cultivation Project for Science, Technology, Engineering, and Mathematics (STEM) field
– fundername: Smart Machinery and Intelligent Manufacturing Research Center
  funderid: 10.13039/501100013304
– fundername: Higher Education SPROUT Project, National Formosa University
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 110-2622-E-224-006; 110-2221-E-150-045; 109-2221-E-150-043
  funderid: 10.13039/501100004663
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-bb563a31f5d7d822c135f9df0de93c12d99cc63f8aa0124c4f587541a3d5cd653
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808034000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:51 EDT 2025
Mon Jun 30 07:21:04 EDT 2025
Sat Nov 29 06:32:09 EST 2025
Tue Nov 18 20:53:17 EST 2025
Wed Aug 27 02:24:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-bb563a31f5d7d822c135f9df0de93c12d99cc63f8aa0124c4f587541a3d5cd653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0011-3649
0000-0002-3889-1764
OpenAccessLink https://ieeexplore.ieee.org/document/9784947
PQID 2674075543
PQPubID 4845423
PageCount 10
ParticipantIDs ieee_primary_9784947
crossref_primary_10_1109_ACCESS_2022_3178847
doaj_primary_oai_doaj_org_article_ed376052a46843e98c2b8e2b0e3aa667
crossref_citationtrail_10_1109_ACCESS_2022_3178847
proquest_journals_2674075543
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
kligfield (ref23) 2007; 115
ref2
vincent (ref18) 2010; 11
ref1
ref17
haykin (ref10) 2005
ref16
ref19
apandi (ref5) 2020; 7
moody (ref29) 2022
galeotti (ref30) 2013
moody (ref24) 2022
maas (ref27) 2013
lin (ref26) 2021
chua (ref4) 2020; 36
ref25
ref20
ref22
ref21
ref28
ref8
ref7
ref9
ref3
ref6
References_xml – ident: ref2
  doi: 10.1109/HealthCom.2014.7001883
– ident: ref9
  doi: 10.1016/j.measurement.2013.07.009
– ident: ref21
  doi: 10.1109/ACCESS.2019.2912036
– volume: 36
  start-page: 251
  year: 2020
  ident: ref4
  article-title: Comparison of arrhythmia detection by 24-hour Holter and 14-day continuous electrocardiography patch monitoring
  publication-title: Acta Cardiol Sin
– ident: ref20
  doi: 10.1166/jmihi.2015.1649
– ident: ref8
  doi: 10.1109/JSEN.2011.2111453
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref18
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– start-page: 511
  year: 2013
  ident: ref30
  article-title: Measurement of noise in ECG signals to improve automatic delineation
  publication-title: Proc Comput Cardiol
– start-page: 3
  year: 2013
  ident: ref27
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc ICML Workshop Deep Learn Audio Speech Lang Process
– year: 2022
  ident: ref24
  publication-title: MIT-BIH Noise Stress Test Database V1 0 0
– volume: 7
  start-page: 1
  year: 2020
  ident: ref5
  article-title: An analysis of the effects of noisy electrocardiogram signal on heartbeat detection performance
  publication-title: Bioengineering
– volume: 115
  start-page: 1306
  year: 2007
  ident: ref23
  article-title: Recommendations for the standardization and interpretation of the electrocardiogram: Part I: The electrocardiogram and its technology: A scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.180200
– ident: ref17
  doi: 10.1016/j.dsp.2005.12.003
– ident: ref1
  doi: 10.1155/2021/5574376
– ident: ref13
  doi: 10.1109/CNSC.2014.6906684
– ident: ref14
  doi: 10.1016/j.irbm.2014.10.004
– ident: ref6
  doi: 10.3390/info10020035
– ident: ref19
  doi: 10.1016/j.neunet.2014.09.003
– year: 2021
  ident: ref26
  article-title: MCUNetV2: Memory-efficient patch-based inference for tiny deep learning
  publication-title: arXiv 2110 15352
– year: 2022
  ident: ref29
  publication-title: MIT-BIH Arrhythmia Database v1 0 0
– ident: ref28
  doi: 10.1155/2018/1868519
– ident: ref3
  doi: 10.3390/s20061796
– ident: ref7
  doi: 10.1109/IEMBS.2006.260464
– ident: ref11
  doi: 10.1109/NFSI-ICFBI.2007.4387719
– year: 2005
  ident: ref10
  publication-title: Least-Mean-Square Adaptive Filters
– ident: ref22
  doi: 10.1016/j.bspc.2020.102225
– ident: ref12
  doi: 10.1109/MECBME.2014.6783250
– ident: ref15
  doi: 10.1109/IMCEC.2016.7867525
– ident: ref16
  doi: 10.4028/www.scientific.net/AMM.357-360.2267
– ident: ref25
  doi: 10.1109/CVPR.2016.90
SSID ssj0000816957
Score 2.287835
Snippet For long-term electrocardiogram (ECG) signal monitoring, a portable and small size acquisition device with Bluetooth low energy (BLE) communication is designed...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57555
SubjectTerms Adaptive filters
Algorithms
Artificial intelligence
Bluetooth
Circuits
Convolution
Deep learning
denoising autoencoder (DAE)
ECG signal enhancement
Electrocardiogram (ECG)
Electrocardiography
Electrodes
embedded system
Embedded systems
Machine learning
Noise
Noise generation
Noise measurement
Noise reduction
Portable equipment
Signal monitoring
Signal to noise ratio
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMcEG1BLC2VDxyJmvgV-9gu24cEFeLZm-WMbVip3e1j25_A7-740dVKleDC1XLGiWfi8ZeMv4-Qd5i2IYBiDVfaNOlPU-NA8sZFMC6d3OWZeP7Hx_70VJ-dmc8rUl-pJqzQA5eJ2ws-lW1I5oTSggejgQ06sKEN3Dml8jnytjcrYCqvwbpTRvaVZqhrzd7-eIxPhICQMcSpCPySoMpKKsqM_VVi5dG6nJPN4QvyvO4S6X65uw3yJMw2ybMV7sAt8uekEj3gxNIPuQ6DziPNlaHDeaCT8RH9io3JDFzdTkttFv05XfzG7uGyqcyqv-gBJjJPJ0UPxwf6KQv75MHTsQf6JVzMMR4ptrkZnVwMARcrTwvX-Uvy_XDybXzcVFGFBkSrF80wSMUd76L0vcfdAXRcRuNj64Ph0DFvDIDiUTuHuUuAiBIhjegc9xK8kvwVWZvNZ-E1oeCYCW2UvXFceCWcV6qFQSk0FKPmI8Ie5tdCZRxPwhfnNiOP1tjiFJucYqtTRuT98qLLQrjx9-4HyXHLroktOzdgDNkaQ_ZfMTQiW8ntSyOIrIVJtncewsDWN_vGMtUjBsZNGH_zP4beJk_T45SPOjtkbXF9G96SdbhbTG-ud3NQ3wP7Affb
  priority: 102
  providerName: Directory of Open Access Journals
Title Integration Design of Portable ECG Signal Acquisition With Deep-Learning Based Electrode Motion Artifact Removal on an Embedded System
URI https://ieeexplore.ieee.org/document/9784947
https://www.proquest.com/docview/2674075543
https://doaj.org/article/ed376052a46843e98c2b8e2b0e3aa667
Volume 10
WOSCitedRecordID wos000808034000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaigMcoFAQC23lA8cGEr8SH9ttCki0Qjx7i5zxGFZqd0u7y5Ejv5ux40aVipC4RJFlO04-O-MZz3zD2AsS24BgRCFNY4t40lQ40LJwAayLkbsyEc9_eVefnDSnp_b9GtsbY2EQMTmf4ct4m87y_QJW0VQW2WCVVfU6W69rM8RqjfaUmEDC6joTC1WlfbU_ndI7kAooBGmmpOrFFCo3hE_i6M9JVW79iZN4OXrwfwPbZPfzNpLvD7g_ZGs4f8Tu3SAX3GK_32YmCPry_DA5avBF4Ml1tD9D3k5f849UGLuBH6vZ4LzFv86W36k6XhSZevUbPyBJ53k7JMzxyI9T5p_08BgXwT_g-YImLKcyN-fteY_0N_N8IEN_zD4ftZ-mb4qcdaEAVTbLou-1kU5WQfva0_YBKqmD9aH0aCVUwlsLYGRonCPhpkAFTTqPqpz0GrzR8gnbmC_m-JRxcMJiGXRtnVTeKOeNKaE3hjoKoZETJq7h6CBTksfMGGddUk1K2w0YdhHDLmM4YXtjo4uBkePf1Q8izmPVSKedCgjALq_ODn30DdLCKdMoibYB0Tco-hKlc8ZQJ1sR9LGTjPeEbV_Pmi4v_atOmJqUZNqlyWd_b_Wc3Y0DHOw422xjebnCHXYHfi5nV5e7yShA1-Nf7W6a4X8Awk_3hw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEG8QTZQHv8B4gtoHH1nd7dduH-E8hHhcjKLy1nTbqV4Cdwh3_An-3Uy7ZUMCMfFt07Sz3f21nU478xtC3qHaduAUK7hqdBFvmgrrJC9scNrGyF2eiOd_jOvJpDk-1l9WyHYfCwMAyfkM3sfHdJfv524Zj8oiG6zQor5H7kshWNlFa_UnKjGFhJZ1phaqSv1hZzjEr0AjkDG0TdHYi0lUbqifxNKf06rcWouTgtl78n9de0oe540k3emQf0ZWYPacrN2gF1wnfw8yFwT-e_oxuWrQeaDJebQ9AToafqLfsDCKcX-W0859i_6cLn5jdTgrMvnqL7qLus7TUZcyxwM9TLl_0stjZAT9CqdzHLIUy-yMjk5bwPXM044OfYN83xsdDfeLnHehcKJsFkXbSsUtr4L0tccNhKu4DNqH0oPmrmJea-cUD421qN6EE0Gi1SMqy710Xkn-gqzO5jN4SaizTEMZZK0tF14J65UqXasUCgqh4QPCruEwLpOSx9wYJyYZJ6U2HYYmYmgyhgOy3Tc66zg5_l19N-LcV42E2qkAATR5fhrw0TtIMitUIzjoxrG2AdaWwK1VCoWsR9B7IRnvAdm6HjUmT_4Lw1SNZjLu0_iru1u9JQ_3jw7HZnww-bxJHsXOdqc6W2R1cb6E1-SBu1xML87fpBF-BRe4-Kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+Design+of+Portable+ECG+Signal+Acquisition+With+Deep-Learning+Based+Electrode+Motion+Artifact+Removal+on+an+Embedded+System&rft.jtitle=IEEE+access&rft.au=Jhang%2C+Yu-Syuan&rft.au=Wang%2C+Szu-Ting&rft.au=Sheu%2C+Ming-Hwa&rft.au=Wang%2C+Szu-Hong&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=57555&rft.epage=57564&rft_id=info:doi/10.1109%2FACCESS.2022.3178847&rft.externalDocID=9784947
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon