VoxRec: Hybrid Convolutional Neural Network for Active 3D Object Recognition

Deep Neural Network methods have been used to a variety of challenges in automatic 3D recognition. Although discovered techniques provide many advantages in comparison with conventional methods, they still suffer from different drawbacks, e.g., a large number of pre-processing stages and time-consum...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 8; s. 1
Hlavní autoři: Karambakhsh, Ahmad, Sheng, Bin, Li, Ping, Yang, Po, Jung, Younhyun, Feng, David Dagan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep Neural Network methods have been used to a variety of challenges in automatic 3D recognition. Although discovered techniques provide many advantages in comparison with conventional methods, they still suffer from different drawbacks, e.g., a large number of pre-processing stages and time-consuming training. In this paper, an innovative approach has been suggested for recognizing 3D models. It contains encoding 3D point clouds, surface normal, and surface curvature, merge them to provide more effective input data, and train it via a deep convolutional neural network on Shapenetcore dataset. We also proposed a similar method for 3D segmentation using Octree coding method. Finally, comparing the accuracy with some of the state-of-the-art demonstrates the effectiveness of our proposed method.
AbstractList Deep Neural Network methods have been used to a variety of challenges in automatic 3D recognition. Although discovered techniques provide many advantages in comparison with conventional methods, they still suffer from different drawbacks, e.g., a large number of pre-processing stages and time-consuming training. In this paper, an innovative approach has been suggested for recognizing 3D models. It contains encoding 3D point clouds, surface normal, and surface curvature, merge them to provide more effective input data, and train it via a deep convolutional neural network on Shapenetcore dataset. We also proposed a similar method for 3D segmentation using Octree coding method. Finally, comparing the accuracy with some of the state-of-the-art demonstrates the effectiveness of our proposed method.
Author Feng, David Dagan
Karambakhsh, Ahmad
Sheng, Bin
Li, Ping
Jung, Younhyun
Yang, Po
Author_xml – sequence: 1
  givenname: Ahmad
  surname: Karambakhsh
  fullname: Karambakhsh, Ahmad
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 2
  givenname: Bin
  surname: Sheng
  fullname: Sheng, Bin
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. (e-mail: shengbin@sjtu.edu.cn)
– sequence: 3
  givenname: Ping
  surname: Li
  fullname: Li, Ping
  organization: Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 4
  givenname: Po
  surname: Yang
  fullname: Yang, Po
  organization: Department of Computer Science, University of Sheffield, Sheffield S1 4DP, U.K
– sequence: 5
  givenname: Younhyun
  surname: Jung
  fullname: Jung, Younhyun
  organization: Department of Software, Gachon University, Seongnam, Republic of Korea, and The University of Sydney, Sydney NSW 2006, Australia
– sequence: 6
  givenname: David Dagan
  surname: Feng
  fullname: Feng, David Dagan
  organization: Biomedical and Multimedia Information Technology Research Group, School of Information Technologies, The University of Sydney, Sydney NSW 2006, Australia
BookMark eNqFkVtL7DAQx4MoeP0EvhR83j25tE3Ht6XqUVgUvL2GJJ1I1tpomvXy7W2tiJyXMwzMMMzvPyT_XbLZhQ4JOWR0zhiFP4u6Pr25mXPK6ZxDJZmUG2SHsxJmohDl5q9-mxz0_YoOUQ2jQu6Q5X14v0Z7nJ1_mOibrA7da2jXyYdOt9klruNXSW8hPmYuxGxhk3_FTJxkV2aFNmUDHR46PxL7ZMvptseD77pH7s5Ob-vz2fLq70W9WM5sTqs0MxpF4ViDFS0lNCAZaNto1KaAsnQGTOUcFNxSbXLkKKUuHddoQZjcOib2yMWk2wS9Us_RP-n4oYL26msQ4oPSMXnbogJbSems1AJpngtjQPICsERuEWwDg9bRpPUcw8sa-6RWYR2Hx_eK54WQdMhxS0xbNoa-j-h-rjKqRhfU5IIaXVDfLgwU_ENZn_T4Uylq3_6HPZxYj4g_14CWIi-Y-AR7m5eg
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s00371_024_03764_x
crossref_primary_10_1109_ACCESS_2022_3156108
crossref_primary_10_1007_s00371_024_03754_z
crossref_primary_10_1049_ipr2_70149
Cites_doi 10.1109/IROS.2015.7353481
10.1109/TNNLS.2018.2876865
10.1109/CVPR.2018.00472
10.1145/2835487
10.1007/978-3-319-10599-4_30
10.1023/A:1025584807625
10.1109/CVPR.2016.609
10.1109/CVPR.2017.16
10.1109/TCYB.2016.2633318
10.1109/TNNLS.2019.2919608
10.1109/YAC.2017.7967493
10.1109/TCYB.2016.2625419
10.1145/1778765.1778839
10.1109/CVPR.2017.697
10.1109/TCYB.2016.2638924
10.1109/3DV.2017.00070
10.1109/CVPR.2017.702
10.1109/CVPR.2015.7298872
10.1515/fcds-2017-0011
10.1109/TCYB.2016.2516239
10.1109/CVPR.2017.701
10.1016/j.cag.2017.10.007
10.1109/TCYB.2015.2414920
10.1109/CVPR.2011.5995477
10.1109/TCYB.2015.2457234
10.1145/2980179.2980238
10.1109/CVPR.2015.7298676
10.1109/ICCV.2015.114
10.1016/j.ijinfomgt.2018.03.004
10.1016/j.cag.2013.03.005
10.1109/TCSVT.2018.2864148
10.1109/ICIST.2014.6920502
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2987177
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (LUT & LAB)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_9c877fc7a3e0443bb97259e6e2ce9cd9
10_1109_ACCESS_2020_2987177
9063451
Genre orig-research
GrantInformation_xml – fundername: Hong Kong Polytechnic University
  grantid: P0030419; P0030929
  funderid: 10.13039/501100004377
– fundername: National Natural Science Foundation of China
  grantid: 61572316; 61872241
  funderid: 10.13039/501100001809
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-bae35f1de80679d9719acdaeab5966fb9b8ff952c0ab4e2e77a6f2aec93b4cf13
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530809000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:34 EDT 2025
Mon Jun 30 04:38:42 EDT 2025
Tue Nov 18 22:19:02 EST 2025
Sat Nov 29 02:42:15 EST 2025
Wed Aug 27 02:35:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-bae35f1de80679d9719acdaeab5966fb9b8ff952c0ab4e2e77a6f2aec93b4cf13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0552-2281
0000-0002-8553-7127
0000-0002-1503-0240
0000-0002-9612-1717
0000-0001-8510-2556
0000-0002-3381-214X
OpenAccessLink https://doaj.org/article/9c877fc7a3e0443bb97259e6e2ce9cd9
PQID 2453703709
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_2453703709
crossref_citationtrail_10_1109_ACCESS_2020_2987177
crossref_primary_10_1109_ACCESS_2020_2987177
ieee_primary_9063451
doaj_primary_oai_doaj_org_article_9c877fc7a3e0443bb97259e6e2ce9cd9
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref30
ref33
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
simonyan (ref9) 2014; abs 1409 1556
wang (ref31) 2018; abs 1801 7829
ref24
ref26
ref25
ref22
ref21
socher (ref4) 2012
ref28
ref27
ref29
wu (ref20) 2016
ref8
qi (ref23) 2017; abs 1706 2413
ref3
ref6
ref5
hegde (ref11) 2016; abs 1607 5695
wu (ref7) 2015
References_xml – ident: ref6
  doi: 10.1109/IROS.2015.7353481
– ident: ref2
  doi: 10.1109/TNNLS.2018.2876865
– volume: abs 1706 2413
  start-page: 1
  year: 2017
  ident: ref23
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: CoRR
– ident: ref18
  doi: 10.1109/CVPR.2018.00472
– ident: ref39
  doi: 10.1145/2835487
– ident: ref25
  doi: 10.1007/978-3-319-10599-4_30
– ident: ref34
  doi: 10.1023/A:1025584807625
– ident: ref10
  doi: 10.1109/CVPR.2016.609
– ident: ref22
  doi: 10.1109/CVPR.2017.16
– ident: ref28
  doi: 10.1109/TCYB.2016.2633318
– ident: ref33
  doi: 10.1109/TNNLS.2019.2919608
– ident: ref24
  doi: 10.1109/YAC.2017.7967493
– start-page: 82
  year: 2016
  ident: ref20
  article-title: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref30
  doi: 10.1109/TCYB.2016.2625419
– ident: ref38
  doi: 10.1145/1778765.1778839
– ident: ref17
  doi: 10.1109/CVPR.2017.697
– ident: ref32
  doi: 10.1109/TCYB.2016.2638924
– volume: abs 1801 7829
  start-page: 1
  year: 2018
  ident: ref31
  article-title: Dynamic graph CNN for learning on point clouds
  publication-title: CoRR
– ident: ref36
  doi: 10.1109/3DV.2017.00070
– start-page: 1912
  year: 2015
  ident: ref7
  article-title: 3D ShapeNets: A deep representation for volumetric shapes
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref37
  doi: 10.1109/CVPR.2017.702
– ident: ref14
  doi: 10.1109/CVPR.2015.7298872
– ident: ref3
  doi: 10.1515/fcds-2017-0011
– ident: ref29
  doi: 10.1109/TCYB.2016.2516239
– ident: ref1
  doi: 10.1109/CVPR.2017.701
– ident: ref19
  doi: 10.1016/j.cag.2017.10.007
– ident: ref27
  doi: 10.1109/TCYB.2015.2414920
– start-page: 656
  year: 2012
  ident: ref4
  article-title: Convolutional-recursive deep learning for 3D object classification
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref13
  doi: 10.1109/CVPR.2011.5995477
– volume: abs 1607 5695
  start-page: 1
  year: 2016
  ident: ref11
  article-title: FusionNet: 3D object classification using multiple data representations
  publication-title: CoRR
– volume: abs 1409 1556
  start-page: 1
  year: 2014
  ident: ref9
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: CoRR
– ident: ref26
  doi: 10.1109/TCYB.2015.2457234
– ident: ref16
  doi: 10.1145/2980179.2980238
– ident: ref15
  doi: 10.1109/CVPR.2015.7298676
– ident: ref8
  doi: 10.1109/ICCV.2015.114
– ident: ref35
  doi: 10.1016/j.ijinfomgt.2018.03.004
– ident: ref5
  doi: 10.1016/j.cag.2013.03.005
– ident: ref12
  doi: 10.1109/TCSVT.2018.2864148
– ident: ref21
  doi: 10.1109/ICIST.2014.6920502
SSID ssj0000816957
Score 2.2217596
Snippet Deep Neural Network methods have been used to a variety of challenges in automatic 3D recognition. Although discovered techniques provide many advantages in...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Convolutional neural networks
Feature extraction
multi-layer neural network
Neural networks
Object recognition
Octree coding
Octrees
recurrent neural networks
Segmentation
Shape
Solid modeling
Three dimensional models
Three-dimensional displays
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKxQEOvApioSAfODatYztrm9uyUPVQFYSg6s2yJ2MJCSWo3Vbw7xk73ggEQuKUKLEjJ9_Y84jnG8ZeGZNUagEbWIJtdHSmiaQVmp7UA0iRrCzs_Oen5uzMXly4DzvsYM6FQcSy-QwP82n5l9-PcJ1DZUeO9KnO-dK3jFlOuVpzPCUXkHCdqcRCrXBHq_Wa3oFcQCkOJbnWrTG_KZ_C0V-LqvyxEhf1cnz__wb2gN2rZiRfTbg_ZDs4PGJ3fyEX3GOn5-N3Mgpf85MfOSuLr8fhpsoZ9cykHOVQdoFzMl35qix9XL3l72OOzvCP281F4_CYfT5-92l90tTaCQ1oYTdNDKi61PZoc6Sod6Z1AfqAIXbk4KTook3JdRJEiBolGhOWSQYEp6KG1KonbHcYB3zKuE2kygA6aSFoEem-6k0iRy5KMi-iWzC5_ageKrF4rm_x1RcHQzg_IeEzEr4isWAHc6dvE6_Gv5u_yWjNTTMpdrlAMPg6x7wDS6IHJigUWqtIgkfOHS5RAjroaaB7Gbr5IRW1BdvfYu_rBL7yUneKFkMj3LO_93rO7uQBTtGYfba7ubzGF-w23Gy-XF2-LLL5Ew254gU
  priority: 102
  providerName: IEEE
Title VoxRec: Hybrid Convolutional Neural Network for Active 3D Object Recognition
URI https://ieeexplore.ieee.org/document/9063451
https://www.proquest.com/docview/2453703709
https://doaj.org/article/9c877fc7a3e0443bb97259e6e2ce9cd9
Volume 8
WOSCitedRecordID wos000530809000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA9FPNSDaK249YMceuxoJslsEm_rqniwtogVbyF5k4Ags6Jb0Yt_uy-Z7LJSaC-9zMBMPiYvb94Xeb9HyFeloog1hAqGoCvpjao8aoWqRfUAnEXNMzr_9bm6uNA3N-bnQqmvdCashwfuCXdgQON4oJwITErhcTS02MMwcAgG2py6x5RZcKayDNb10DSqwAzVzByMxmNcETqEnO1zdLRrpd6poozYX0qs_CGXs7I5XSOrxUqko_7r1smH0H0iKwvYgRvk_HryjDbfIT17SUlXdDzpngobYc-EuZFv-ZA3RcuUjrJko-KY_vAp-EIvZ2eHJt1n8uv05Gp8VpXSCBVIpqeVd0E0sW6DToGg1qjaOGhdcL5B_yV643WMpuHAnJeBB6XcMHIXwAgvIdZikyx1ky5sEaojaiqAhmtwknl8L1oV0U_zHK0HbwaEz6hkoeCGp_IVdzb7D8zYnrQ2kdYW0g7It3mn-x424-_NjxL5500T5nV-gJxgCyfYf3HCgGykzZsPYtD6kk09IDuzzbTl_3y0XDYCZZ1i5sv_mHqbfEzL6UMzO2Rp-vA77JJleJrePj7sZdbE6_fXk72cYPgG5gfn3Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqggQceBXUpQV84Ni0ju2s7d6WhWoRy4JQqXqz7IktIVUJarcV_HvGjjcCgZA4JUrsyMk39jzi-YaQV0pFEWsIFUxBV9IbVXnUClWL6gE4i5pndv6zpVqt9Pm5-bRFDsZcmBBC3nwWDtNp_pff9nCdQmVHBvWpTPnStxopORuytcaISiohYRpVqIVqZo5m8zm-BTqBnB1ydK5rpX5TP5mlv5RV-WMtzgrm5MH_De0huV8MSTobkH9EtkL3mNz7hV5whyzP-u9oFh7TxY-Ul0XnfXdTJA17JlqOfMj7wCkar3SWFz8q3tCPPsVn6OfN9qK-e0K-nLw9nS-qUj2hAsn0uvIuiCbWbdApVtQaVRsHrQvON-jiRG-8jtE0HJjzMvCglJtG7gIY4SXEWjwl213fhV1CdURlBtBwDU4yj_dFqyK6cp6jgeHNhPDNR7VQqMVThYsLm10MZuyAhE1I2ILEhByMnb4NzBr_bv46oTU2TbTY-QLCYMssswY0Ch8oJwKTUngUPXTvwjRwCAZaHOhOgm58SEFtQvY32Nsyha8sl43A5VAx8-zvvV6SO4vTD0u7fLd6v0fupsEOsZl9sr2-vA7PyW24WX-9unyR5fQn847lTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VoxRec%3A+Hybrid+Convolutional+Neural+Network+for+Active+3D+Object+Recognition&rft.jtitle=IEEE+access&rft.au=Karambakhsh%2C+Ahmad&rft.au=Sheng%2C+Bin&rft.au=Li%2C+Ping&rft.au=Yang%2C+Po&rft.date=2020-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=8&rft.spage=70969&rft_id=info:doi/10.1109%2FACCESS.2020.2987177&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon