VoxRec: Hybrid Convolutional Neural Network for Active 3D Object Recognition

Deep Neural Network methods have been used to a variety of challenges in automatic 3D recognition. Although discovered techniques provide many advantages in comparison with conventional methods, they still suffer from different drawbacks, e.g., a large number of pre-processing stages and time-consum...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 8; p. 1
Main Authors: Karambakhsh, Ahmad, Sheng, Bin, Li, Ping, Yang, Po, Jung, Younhyun, Feng, David Dagan
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deep Neural Network methods have been used to a variety of challenges in automatic 3D recognition. Although discovered techniques provide many advantages in comparison with conventional methods, they still suffer from different drawbacks, e.g., a large number of pre-processing stages and time-consuming training. In this paper, an innovative approach has been suggested for recognizing 3D models. It contains encoding 3D point clouds, surface normal, and surface curvature, merge them to provide more effective input data, and train it via a deep convolutional neural network on Shapenetcore dataset. We also proposed a similar method for 3D segmentation using Octree coding method. Finally, comparing the accuracy with some of the state-of-the-art demonstrates the effectiveness of our proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2987177