Autism spectrum disorder diagnosis based on deep unrolling-based spatial constraint representation
Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to constr...
Uloženo v:
| Vydáno v: | Medical & biological engineering & computing Ročník 61; číslo 11; s. 2829 - 2842 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 0140-0118, 1741-0444, 1741-0444 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy.
Graphical abstract
The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease. |
|---|---|
| AbstractList | Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy.
Graphical abstract
The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease. Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy. The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease. Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy. The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease.Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy. The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease. |
| Author | Li, Weisheng Wu, Yue Lei, Dajiang Zhang, Tao Li, Xinwei |
| Author_xml | – sequence: 1 givenname: Dajiang surname: Lei fullname: Lei, Dajiang organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications – sequence: 2 givenname: Tao surname: Zhang fullname: Zhang, Tao organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications – sequence: 3 givenname: Yue surname: Wu fullname: Wu, Yue organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications – sequence: 4 givenname: Weisheng surname: Li fullname: Li, Weisheng organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications – sequence: 5 givenname: Xinwei orcidid: 0000-0003-0713-9366 surname: Li fullname: Li, Xinwei email: lixinwei@cqupt.edu.cn organization: School of Bioinformatics, Chongqing University of Posts and Telecommunications |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37486440$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkTFv1TAUhS1URF8Lf4ABRWJhCdzr2LEzVlWhlSqxwGw5sfPkKrGDbzLw7_EjrZA6lMGyZX_n6PqcC3YWU_SMvUf4jADqCyFKVDXwpiwtu5q_YgdUAmsQQpyxA6CAGhD1ObsgegDgKLl4w84bJXQrBBxYf7WtgeaKFj-seZsrFyhl53M52GNMFKjqLXlXpVg575dqizlNU4jHer-nxa7BTtWQIq3ZhrhW2S_Zk49reUnxLXs92on8u8f9kv38evPj-ra-__7t7vrqvh4E6LW4Yd_1jcZWt07YroduBA5O6VZLGLF32rUKGjhhvht7C1ZwKJxVIC00l-zT7rvk9GvztJo50OCnyUafNjINykZKpaT8L8q1KNFJFFjQj8_Qh7TlWD5SKFWmRS5Ohh8eqa2fvTNLDrPNv81T0AXQOzDkRJT9aIawx3PKbDII5tSp2Ts1pVPzt1PDi5Q_kz65vyhqdhEVOB59_jf2C6o_ASqzLA |
| CitedBy_id | crossref_primary_10_3390_diagnostics13233552 crossref_primary_10_1007_s11517_023_02987_9 |
| Cites_doi | 10.1016/j.patrec.2020.07.005 10.1016/j.neuroimage.2005.12.057 10.3389/fgene.2018.00018 10.1109/TBME.2015.2496233 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2016.07.058 10.1109/TMI.2021.3110829 10.1038/mp.2013.78 10.1177/1362361315607724 10.1371/journal.pone.0253995 10.1016/S0140-6736(18)31129-2 10.1002/hbm.23575 10.1002/hbm.23524 10.1016/j.neuroimage.2009.10.003 10.1109/TMI.2018.2882189 10.1016/j.neuroimage.2011.10.030 10.1016/j.neuroimage.2016.09.046 10.1006/cbmr.1996.0014 10.1109/TMI.2011.2140380 10.1016/0165-0270(94)90191-0 10.1016/j.tics.2013.09.016 10.1016/j.neuroimage.2016.10.045 10.1016/j.neuroimage.2017.12.052 10.1016/j.media.2018.06.001 10.1002/hbm.23769 10.1093/scan/nsw027 10.1109/MSP.2020.3016905 10.1016/j.nicl.2017.08.017 10.1006/nimg.2001.0978 10.1109/TMI.2020.2976825 10.1109/TCBB.2017.2776910 10.1109/TCBB.2020.2989315 10.1016/j.ridd.2010.11.003 10.3389/fninf.2017.00061 10.1016/j.compbiomed.2021.104963 10.1109/ICCV.2017.74 10.1002/hbm.24979 10.1016/j.biopsych.2022.04.008 10.1109/CVPR.2018.00366 10.1109/BIA48344.2019.8967453 10.1109/BIBM52615.2021.9669849 10.1007/978-3-030-32254-0_54 10.1109/IJCNN52387.2021.9534169 |
| ContentType | Journal Article |
| Copyright | International Federation for Medical and Biological Engineering 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. International Federation for Medical and Biological Engineering. |
| Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. International Federation for Medical and Biological Engineering. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7S9 L.6 |
| DOI | 10.1007/s11517-023-02859-2 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE ProQuest Business Collection (Alumni Edition) AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1741-0444 |
| EndPage | 2842 |
| ExternalDocumentID | 37486440 10_1007_s11517_023_02859_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Key Cooperation Projects of Chongqing Municipal Education Commission grantid: HZ2021008; 62027827 – fundername: National Natural Science Foundation of China grantid: 62106032 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2022MD713691 – fundername: Natural Science Foundation of Chongqing grantid: cstc2020jcyjzdxmX0025; cstc2019jcyj-cxttX0002 – fundername: National Key Research and Development Program of China grantid: 2021YFF0704100 – fundername: Chongqing Postdoctoral Science Special Foundation grantid: 2021XM3028 funderid: http://dx.doi.org/10.13039/501100009976 – fundername: Key Cooperation Projects of Chongqing Municipal Education Commission grantid: HZ2021008 – fundername: National Natural Science Foundation of China grantid: 62106032 – fundername: Key Cooperation Projects of Chongqing Municipal Education Commission grantid: 62027827 – fundername: Chongqing Postdoctoral Science Special Foundation grantid: 2021XM3028 |
| GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7SC 7TB 7TS 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 7S9 L.6 |
| ID | FETCH-LOGICAL-c408t-ba1b9b381686d4a9b09f020d786850f1bd8d670301b9be9fba0a4209b0a705a03 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001034502000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0140-0118 1741-0444 |
| IngestDate | Thu Oct 02 07:08:05 EDT 2025 Fri Sep 05 10:57:10 EDT 2025 Wed Nov 05 04:11:30 EST 2025 Mon Jul 21 06:01:03 EDT 2025 Sat Nov 29 04:15:30 EST 2025 Tue Nov 18 21:21:11 EST 2025 Fri Feb 21 02:40:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Deep unrolling Functional brain networks Autism spectrum disorder Diagnosis-oriented Classification |
| Language | English |
| License | 2023. International Federation for Medical and Biological Engineering. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-ba1b9b381686d4a9b09f020d786850f1bd8d670301b9be9fba0a4209b0a705a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0713-9366 |
| PMID | 37486440 |
| PQID | 2878161245 |
| PQPubID | 54161 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_3153557755 proquest_miscellaneous_2841405141 proquest_journals_2878161245 pubmed_primary_37486440 crossref_citationtrail_10_1007_s11517_023_02859_2 crossref_primary_10_1007_s11517_023_02859_2 springer_journals_10_1007_s11517_023_02859_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20231100 2023-11-00 2023-Nov 20231101 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
| PublicationTitle | Medical & biological engineering & computing |
| PublicationTitleAbbrev | Med Biol Eng Comput |
| PublicationTitleAlternate | Med Biol Eng Comput |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (CR35) 2002; 15 Lee, Lee, Kang, Kim, Chung (CR17) 2011; 30 Li, Zhou, Dvornek, Zhang, Gao, Zhuang, Scheinost, Staib, Ventola, Duncan (CR20) 2021; 74 Meszlényi, Buza, Vidnyánszky (CR27) 2017; 11 Li, Liu, Jiang, Liu, Lei (CR21) 2021; 41 Qiao, Zhang, Kim, Teng, Zhang, Shen (CR31) 2016; 141 Jenkinson, Beckmann, Behrens, Woolrich, Smith (CR11) 2012; 62 Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto (CR8) 2014; 19 CR33 CR10 Ju, Hu, Li (CR13) 2017; 16 Bi, Wang, Shu, Sun, Xu (CR3) 2018; 9 Alaerts, Swinnen, Wenderoth (CR2) 2016; 11 Wang, Wang, Peng, Nie, Zhao, Kim, Zhang, Wee, Wang, Shen (CR36) 2017; 38 Heinsfeld, Franco, Craddock, Buchweitz, Meneguzzi (CR9) 2018; 17 Li, Yang, Lei, Liu, Wee (CR18) 2018; 38 Monga, Li, Eldar (CR28) 2021; 38 Rubinov, Sporns (CR32) 2010; 52 Cox (CR6) 1996; 29 Blumberg, Zablotsky, Avila, Colpe, Pringle, Kogan (CR4) 2016; 20 Parisot, Ktena, Ferrante, Lee, Guerrero, Glocker, Rueckert (CR30) 2018; 48 Wiggins, Bedoyan, Peltier, Ashinoff, Carrasco, Weng, Welsh, Martin, Monk (CR37) 2012; 59 Ktena, Parisot, Ferrante, Rajchl, Lee, Glocker, Rueckert (CR16) 2018; 169 CR5 CR29 Kawahara, Brown, Miller, Booth, Chau, Grunau, Zwicker, Hamarneh (CR15) 2017; 146 Kam, Suk, Lee (CR14) 2017; 38 Marrelec, Krainik, Duffau, Pélégrini-Issac, Lehéricy, Doyon, Benali (CR26) 2006; 32 Li, Liu, Tang, Lei (CR19) 2020; 39 Ji, Yao (CR12) 2020; 18 CR22 Liu, Sheng, Lan, Guo, Wang, Wang (CR24) 2020; 138 Lord, Elsabbagh, Baird, Veenstra-Vanderweele (CR25) 2018; 392 Yu, Zhang, An, Chen, Wei, Shen (CR43) 2017; 38 CR44 DeYoe, Bandettini, Neitz, Miller, Winans (CR7) 1994; 54 CR42 Yang, Wang, Tan, Liu, Li (CR41) 2021; 139 CR40 Xue, Zhang, Qiao, Shen (CR39) 2021; 16 Smith, Vidaurre, Beckmann, Glasser, Jenkinson, Miller, Nichols, Robinson, Salimi-Khorshidi, Woolrich (CR34) 2013; 17 Liu, Zhang, Adeli, Shen (CR23) 2015; 63 Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (CR1) 2017; 147 Wing, Gould, Gillberg (CR38) 2011; 32 2859_CR29 J Kawahara (2859_CR15) 2017; 146 S Parisot (2859_CR30) 2018; 48 SM Smith (2859_CR34) 2013; 17 2859_CR40 2859_CR5 2859_CR42 X Bi (2859_CR3) 2018; 9 2859_CR22 2859_CR44 Y Li (2859_CR19) 2020; 39 M Liu (2859_CR23) 2015; 63 V Monga (2859_CR28) 2021; 38 C Lord (2859_CR25) 2018; 392 AS Heinsfeld (2859_CR9) 2018; 17 C Yang (2859_CR41) 2021; 139 L Wing (2859_CR38) 2011; 32 TE Kam (2859_CR14) 2017; 38 Y Xue (2859_CR39) 2021; 16 J Ji (2859_CR12) 2020; 18 R Ju (2859_CR13) 2017; 16 J Liu (2859_CR24) 2020; 138 Y Li (2859_CR21) 2021; 41 H Lee (2859_CR17) 2011; 30 M Jenkinson (2859_CR11) 2012; 62 RW Cox (2859_CR6) 1996; 29 R Yu (2859_CR43) 2017; 38 M Rubinov (2859_CR32) 2010; 52 2859_CR10 2859_CR33 Y Li (2859_CR18) 2018; 38 L Qiao (2859_CR31) 2016; 141 X Li (2859_CR20) 2021; 74 J Wang (2859_CR36) 2017; 38 A Abraham (2859_CR1) 2017; 147 SI Ktena (2859_CR16) 2018; 169 EA DeYoe (2859_CR7) 1994; 54 A Di Martino (2859_CR8) 2014; 19 K Alaerts (2859_CR2) 2016; 11 JL Wiggins (2859_CR37) 2012; 59 SJ Blumberg (2859_CR4) 2016; 20 N Tzourio-Mazoyer (2859_CR35) 2002; 15 G Marrelec (2859_CR26) 2006; 32 RJ Meszlényi (2859_CR27) 2017; 11 |
| References_xml | – volume: 138 start-page: 82 year: 2020 end-page: 87 ident: CR24 article-title: Improved ASD classification using dynamic functional connectivity and multi-task feature selection publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2020.07.005 – ident: CR22 – volume: 32 start-page: 228 issue: 1 year: 2006 end-page: 237 ident: CR26 article-title: Partial correlation for functional brain interactivity investigation in functional MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.057 – volume: 9 start-page: 18 year: 2018 ident: CR3 article-title: Classification of autism spectrum disorder using random support vector machine cluster publication-title: Front Genet doi: 10.3389/fgene.2018.00018 – volume: 63 start-page: 1473 issue: 7 year: 2015 end-page: 1482 ident: CR23 article-title: Inherent structure-based multiview learning with multitemplate feature representation for Alzheimer’s disease diagnosis publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2496233 – volume: 62 start-page: 782 issue: 2 year: 2012 end-page: 790 ident: CR11 publication-title: FSL. Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 141 start-page: 399 year: 2016 end-page: 407 ident: CR31 article-title: Estimating functional brain networks by incorporating a modularity prior publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.07.058 – volume: 41 start-page: 237 issue: 1 year: 2021 end-page: 251 ident: CR21 article-title: Virtual adversarial training-based deep feature aggregation network from dynamic effective connectivity for MCI identification publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3110829 – ident: CR10 – volume: 19 start-page: 659 issue: 6 year: 2014 end-page: 667 ident: CR8 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol Psychiatry doi: 10.1038/mp.2013.78 – ident: CR33 – volume: 20 start-page: 783 issue: 7 year: 2016 end-page: 795 ident: CR4 article-title: Diagnosis lost: differences between children who had and who currently have an autism spectrum disorder diagnosis publication-title: Autism doi: 10.1177/1362361315607724 – volume: 16 issue: 6 year: 2021 ident: CR39 article-title: Correction: Estimating sparse functional brain networks with spatial constraints for MCI identification publication-title: PLoS ONE doi: 10.1371/journal.pone.0253995 – ident: CR29 – volume: 392 start-page: 508 issue: 10146 year: 2018 end-page: 520 ident: CR25 article-title: Autism spectrum disorder publication-title: Lancet doi: 10.1016/S0140-6736(18)31129-2 – volume: 38 start-page: 3081 issue: 6 year: 2017 end-page: 3097 ident: CR36 article-title: Multi-task diagnosis for autism spectrum disorders using multi-modality features: a multi-center study publication-title: Hum Brain Mapp doi: 10.1002/hbm.23575 – volume: 38 start-page: 2370 issue: 5 year: 2017 end-page: 2383 ident: CR43 article-title: Connectivity strength-weighted sparse group representation-based brain network construction for MCI classification publication-title: Hum Brain Mapp doi: 10.1002/hbm.23524 – volume: 52 start-page: 1059 issue: 3 year: 2010 end-page: 1069 ident: CR32 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 38 start-page: 1227 issue: 5 year: 2018 end-page: 1239 ident: CR18 article-title: Novel effective connectivity inference using ultra-group constrained orthogonal forward regression and elastic multilayer perceptron classifier for MCI identification publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2882189 – ident: CR40 – volume: 59 start-page: 2760 issue: 3 year: 2012 end-page: 2770 ident: CR37 article-title: The impact of serotonin transporter (5-HTTLPR) genotype on the development of resting-state functional connectivity in children and adolescents: a preliminary report publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.030 – volume: 146 start-page: 1038 year: 2017 end-page: 1049 ident: CR15 article-title: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.09.046 – volume: 29 start-page: 162 issue: 3 year: 1996 end-page: 173 ident: CR6 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput Biomed Res doi: 10.1006/cbmr.1996.0014 – volume: 30 start-page: 1154 issue: 5 year: 2011 end-page: 1165 ident: CR17 article-title: Sparse brain network recovery under compressed sensing publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2011.2140380 – ident: CR42 – volume: 54 start-page: 171 issue: 2 year: 1994 end-page: 187 ident: CR7 article-title: Functional magnetic resonance imaging (fMRI) of the human brain publication-title: J Neurosci Methods doi: 10.1016/0165-0270(94)90191-0 – volume: 17 start-page: 666 issue: 12 year: 2013 end-page: 682 ident: CR34 article-title: Functional connectomics from resting-state fMRI publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2013.09.016 – volume: 147 start-page: 736 year: 2017 end-page: 745 ident: CR1 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.045 – volume: 169 start-page: 431 year: 2018 end-page: 442 ident: CR16 article-title: Metric learning with spectral graph convolutions on brain connectivity networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.12.052 – volume: 48 start-page: 117 year: 2018 end-page: 130 ident: CR30 article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease publication-title: Med Image Anal doi: 10.1016/j.media.2018.06.001 – volume: 38 start-page: 5804 issue: 11 year: 2017 end-page: 5821 ident: CR14 article-title: Multiple functional networks modeling for autism spectrum disorder diagnosis publication-title: Hum Brain Mapp doi: 10.1002/hbm.23769 – volume: 11 start-page: 1002 issue: 6 year: 2016 end-page: 1016 ident: CR2 article-title: Sex differences in autism: a resting-state fMRI investigation of functional brain connectivity in males and females publication-title: Soc Cogn Affect Neurosci doi: 10.1093/scan/nsw027 – ident: CR44 – volume: 38 start-page: 18 issue: 2 year: 2021 end-page: 44 ident: CR28 article-title: Algorithm unrolling: interpretable, efficient deep learning for signal and image processing publication-title: IEEE Signal Proc Mag doi: 10.1109/MSP.2020.3016905 – volume: 17 start-page: 16 year: 2018 end-page: 23 ident: CR9 article-title: Identification of autism spectrum disorder using deep learning and the abide dataset publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2017.08.017 – volume: 15 start-page: 273 issue: 1 year: 2002 end-page: 289 ident: CR35 article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 39 start-page: 2818 issue: 9 year: 2020 end-page: 2830 ident: CR19 article-title: Deep spatial-temporal feature fusion from adaptive dynamic functional connectivity for MCI identification publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.2976825 – volume: 16 start-page: 244 issue: 1 year: 2017 end-page: 257 ident: CR13 article-title: Early diagnosis of Alzheimer’s disease based on resting-state brain networks and deep learning publication-title: IEEE/ACM Trans Comput Biol Bioinforma doi: 10.1109/TCBB.2017.2776910 – ident: CR5 – volume: 18 start-page: 2327 issue: 6 year: 2020 end-page: 2338 ident: CR12 article-title: Convolutional neural network with graphical lasso to extract sparse topological features for brain disease classification publication-title: IEEE/ACM Trans Comput Biol Bioinforma doi: 10.1109/TCBB.2020.2989315 – volume: 32 start-page: 768 issue: 2 year: 2011 end-page: 773 ident: CR38 article-title: Autism spectrum disorders in the DSM-V: better or worse than the DSM-IV? publication-title: Res Dev Disabil doi: 10.1016/j.ridd.2010.11.003 – volume: 11 start-page: 61 year: 2017 ident: CR27 article-title: Resting state fMRI functional connectivity-based classification using a convolutional neural network architecture publication-title: Front Neuroinformatics doi: 10.3389/fninf.2017.00061 – volume: 74 start-page: 233 issue: 102 year: 2021 ident: CR20 article-title: BrainGNN: interpretable brain graph neural network for fMRI analysis publication-title: Med Image Anal – volume: 139 start-page: 104963 year: 2021 ident: CR41 article-title: Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104963 – volume: 52 start-page: 1059 issue: 3 year: 2010 ident: 2859_CR32 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 54 start-page: 171 issue: 2 year: 1994 ident: 2859_CR7 publication-title: J Neurosci Methods doi: 10.1016/0165-0270(94)90191-0 – volume: 18 start-page: 2327 issue: 6 year: 2020 ident: 2859_CR12 publication-title: IEEE/ACM Trans Comput Biol Bioinforma doi: 10.1109/TCBB.2020.2989315 – volume: 9 start-page: 18 year: 2018 ident: 2859_CR3 publication-title: Front Genet doi: 10.3389/fgene.2018.00018 – ident: 2859_CR33 doi: 10.1109/ICCV.2017.74 – volume: 141 start-page: 399 year: 2016 ident: 2859_CR31 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.07.058 – volume: 139 start-page: 104963 year: 2021 ident: 2859_CR41 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104963 – volume: 63 start-page: 1473 issue: 7 year: 2015 ident: 2859_CR23 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2496233 – volume: 32 start-page: 228 issue: 1 year: 2006 ident: 2859_CR26 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.057 – volume: 48 start-page: 117 year: 2018 ident: 2859_CR30 publication-title: Med Image Anal doi: 10.1016/j.media.2018.06.001 – volume: 38 start-page: 3081 issue: 6 year: 2017 ident: 2859_CR36 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23575 – volume: 41 start-page: 237 issue: 1 year: 2021 ident: 2859_CR21 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3110829 – volume: 20 start-page: 783 issue: 7 year: 2016 ident: 2859_CR4 publication-title: Autism doi: 10.1177/1362361315607724 – volume: 15 start-page: 273 issue: 1 year: 2002 ident: 2859_CR35 publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 32 start-page: 768 issue: 2 year: 2011 ident: 2859_CR38 publication-title: Res Dev Disabil doi: 10.1016/j.ridd.2010.11.003 – volume: 392 start-page: 508 issue: 10146 year: 2018 ident: 2859_CR25 publication-title: Lancet doi: 10.1016/S0140-6736(18)31129-2 – volume: 147 start-page: 736 year: 2017 ident: 2859_CR1 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.045 – volume: 74 start-page: 233 issue: 102 year: 2021 ident: 2859_CR20 publication-title: Med Image Anal – volume: 169 start-page: 431 year: 2018 ident: 2859_CR16 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.12.052 – ident: 2859_CR44 doi: 10.1002/hbm.24979 – volume: 11 start-page: 1002 issue: 6 year: 2016 ident: 2859_CR2 publication-title: Soc Cogn Affect Neurosci doi: 10.1093/scan/nsw027 – volume: 62 start-page: 782 issue: 2 year: 2012 ident: 2859_CR11 publication-title: FSL. Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 11 start-page: 61 year: 2017 ident: 2859_CR27 publication-title: Front Neuroinformatics doi: 10.3389/fninf.2017.00061 – ident: 2859_CR10 doi: 10.1016/j.biopsych.2022.04.008 – ident: 2859_CR40 doi: 10.1109/CVPR.2018.00366 – volume: 16 start-page: 244 issue: 1 year: 2017 ident: 2859_CR13 publication-title: IEEE/ACM Trans Comput Biol Bioinforma doi: 10.1109/TCBB.2017.2776910 – volume: 17 start-page: 16 year: 2018 ident: 2859_CR9 publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2017.08.017 – ident: 2859_CR5 doi: 10.1109/BIA48344.2019.8967453 – ident: 2859_CR42 doi: 10.1109/BIBM52615.2021.9669849 – volume: 39 start-page: 2818 issue: 9 year: 2020 ident: 2859_CR19 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.2976825 – volume: 138 start-page: 82 year: 2020 ident: 2859_CR24 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2020.07.005 – volume: 30 start-page: 1154 issue: 5 year: 2011 ident: 2859_CR17 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2011.2140380 – ident: 2859_CR22 doi: 10.1007/978-3-030-32254-0_54 – volume: 38 start-page: 2370 issue: 5 year: 2017 ident: 2859_CR43 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23524 – volume: 59 start-page: 2760 issue: 3 year: 2012 ident: 2859_CR37 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.030 – volume: 146 start-page: 1038 year: 2017 ident: 2859_CR15 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.09.046 – volume: 19 start-page: 659 issue: 6 year: 2014 ident: 2859_CR8 publication-title: Mol Psychiatry doi: 10.1038/mp.2013.78 – volume: 38 start-page: 1227 issue: 5 year: 2018 ident: 2859_CR18 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2882189 – volume: 17 start-page: 666 issue: 12 year: 2013 ident: 2859_CR34 publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2013.09.016 – volume: 16 issue: 6 year: 2021 ident: 2859_CR39 publication-title: PLoS ONE doi: 10.1371/journal.pone.0253995 – volume: 38 start-page: 5804 issue: 11 year: 2017 ident: 2859_CR14 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23769 – ident: 2859_CR29 doi: 10.1109/IJCNN52387.2021.9534169 – volume: 29 start-page: 162 issue: 3 year: 1996 ident: 2859_CR6 publication-title: Comput Biomed Res doi: 10.1006/cbmr.1996.0014 – volume: 38 start-page: 18 issue: 2 year: 2021 ident: 2859_CR28 publication-title: IEEE Signal Proc Mag doi: 10.1109/MSP.2020.3016905 |
| SSID | ssj0021524 |
| Score | 2.3917994 |
| Snippet | Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2829 |
| SubjectTerms | Algorithms Autism Autism Spectrum Disorder - diagnostic imaging Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Brain Brain - diagnostic imaging Brain mapping Classification Classifiers Computer Applications Constraint modelling Construction data collection Deep learning Diagnosis Functional magnetic resonance imaging Human Physiology Humans Image processing Imaging Machine learning Magnetic Resonance Imaging magnetism Medical diagnosis model validation Networks Neuroimaging Original Article patients prognosis Prototypes Radiology Representations Time Factors time series analysis |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yRXzx-2M6JYJvGki7tmkfhyg-6BDUsbeS5gME14118-_3Lv0YMifoQ6G0l_ZyueQu3N0vhFxFwgbWVxGLM-GzQErDEsEVs77sqsxGcehqqwaPot-Ph8PkuSoKK-ps9zok6VbqRbEbGCfBwMbAFYcJg4V3PUS0GdyjvwyabRZYpKBJXAT_uSqV-fkb383Rko-5FB91Zud-538M75Ltys2kvVIv9siayffJ5lMVSD8gWQ8UrhhRV2g5nY-orlA44cbl3r0XFA2cpuOcamMmFLMGHX43K58XmIoNv1DoYOI5EzPqADLrYqb8kLzd373ePrDquAWmAh7PoLWXJRkGEuNIBzLJeGLBmdQihhHj1st0rCNcIJDMJDaTXAY-BzopeCh594i08nFuTghFHMJIeUr7SgQR19IasJae72ltQyFUm3i11FNVYZEjqx_pAkUZhZeC8FInvNRvk-umzaRE4viVulMPZlrNyiKF3SH0DjyasE0um9cwnzBIInMzniNNAIoDbqS3mqYLZiKEfoTwneNSURqWEM4HfEzeJje1ViwYWM3v6d_Iz8gWnntfFkV2SAs0xZyTDfUJujO9cPPhC9bAA1Y priority: 102 providerName: Springer Nature |
| Title | Autism spectrum disorder diagnosis based on deep unrolling-based spatial constraint representation |
| URI | https://link.springer.com/article/10.1007/s11517-023-02859-2 https://www.ncbi.nlm.nih.gov/pubmed/37486440 https://www.proquest.com/docview/2878161245 https://www.proquest.com/docview/2841405141 https://www.proquest.com/docview/3153557755 |
| Volume | 61 |
| WOSCitedRecordID | wos001034502000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1741-0444 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: 7RV dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BixAX3oVAiYzEDVasN2vv-oRK1QoJGkUBQuBirfchIVEn1C2_n5n1OhGq2guHjPIYx5PMtztjzwvgVamCDMKWTDdKMGmMZ5XilgVhJrYJpS5ibdXik5pO9XJZzdINty6lVQ57Ytyo3crSPfK36Nlr9E6ELN6tfzOaGkXR1TRC4ybs0thswrlabi-40DbJTQojMqSimb50Dk2dYmix8KGLiol_DdMlb_NSpDQaoON7_yv6fbibXM_soMfKA7jh24dw-yQF1x9Bc4Ag7E6zWHx5dnGaudSZE5_EfLyfXUZGz2WrNnPerzPKJIw9vVn_fkfp2XgKS04nzZ44z2LTzKHAqX0MX4-Pvhx-YGkEA7OS63M8Om-qhoKLunTSVA2vAjqYTmnUIg9547QradMgNl-FxnAjBUc-o3hh-GQPdtpV659CRr0JS5tbJ6ySJXcmeLSgucidC4VSdgT58P_XNvUnJ1F_1dvOyqSzGnVWR53VYgSvN8es--4c13LvD_qp00rt6q1yRvBy8zGuMQqcmNavLohHIoTQtcyv5pmg6SjwdxT4PU96yGxEohY_6HfyEbwZMLQV4Gp5n10v73O4Iwi_sTByH3YQGf4F3LJ_ECtnY1wJ8wXRb9_HcVVEqsew-_5oOpvjq4-KIT3hh0TFjKgiOit-IJ1_XvwFtxgXgg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigX3oWFAkaCE1g4XidODghVQNWq21UPBfWWOn5ISDS7NC1V_1R_Y2ecxwpV7a0HDpGiZOJM4m88X-KZMcC7TAcVpM14XmnJlTGeF1pYHqQZ2ypkeRpzq35O9HSa7-8Xu0tw3ufCUFhlPybGgdrNLP0j_4TMPkd2IlX6Zf6H06pRNLvaL6HRwmLbn53iJ1vzeesb9u97KTe-733d5N2qAtwqkR_zyiRVUdF8WZ45ZYpKFAE5k9M5KiZCUrncZWQHJOaLUBlhlBQoZ7RIjRhju7fgNtIIKWKo4O7wgYe-UA0hk8jcuySdNlUPXavm6CFxy9OCy38d4SV2e2lmNjq8jQf_26t6CPc7as3WW1t4BEu-fgx3d7rggSdQraORNYcsJpcenRwy11UexZ0Yb_irYeTUHZvVzHk_ZxQpGWuW8_Z4Q-HneAtLpJrW1jhmsShon8BVP4UfN_KEq7Bcz2r_HBjVXsxsYp20WmXCmeCRISQycS6kWtsRJH1_l7arv06q_i4XlaMJIyVipIwYKeUIPgzXzNvqI9dKr_V4KLuRqCkXYBjB2-E0jiE0MWRqPzshGYWQReqcXC0zRteY4nOk2M6zFqKDSlTCCHm1GMHHHrMLBa7W98X1-r6Blc29nUk52Zpuv4R7kmwnJoGuwTKixL-CO_Yv4ubodbRCBgc3jeULYQRpEQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLaq48H4sFDASnMCq403i5IBQoV1RtaxWCFBvwU8JiWaXpgXx1_h1zDiPFaraWw8cIkXJJBkn33g-xzNjgOe5CmmQNueFUZKnWnteKmF5kHpiTciLLOZWfTlQs1lxeFjO1-BPnwtDYZV9nxg7arew9I98C5l9gexEptlW6MIi5jvTN8sfnFaQopnWfjmNFiL7_vcvHL41r_d28Fu_kHK6--nde96tMMBtKooTbnRiSkNzZ0XuUl0aUQbkT04VqKQIiXGFy8kmSMyXwWihUylQTiuRaTHB-16BdTXBQc8I1t_uzuYfh-EeesZ0CKBEHt-l7LSJe-hoFUd_iVuRlVz-6xbPcN0z87TR_U1v_M8v7iZc70g3226t5Bas-fo2bHzowgrugNlG82uOWEw7PT49Yq6rSYo7MRLxW8PI3Tu2qJnzfskohjJWM-ft8YYC0_ERlug2rbpxwmK50D61q74Lny-lhfdgVC9q_wAYVWXMbWKdtCrNhdPBI3dIZOJcyJSyY0j6b1_ZrjI7qfq9WtWUJrxUiJcq4qWSY3g5XLNs65JcKL3ZY6Pq-qimWgFjDM-G09i70JSRrv3ilGRShC-S6uR8mQk6zQzbkeF97rdwHVSi4kbIuMUYXvX4XSlwvr4PL9b3KWwghKuDvdn-I7gmyYxidugmjBAk_jFctT8RNsdPOpNk8PWywfwXe9VzKQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autism+spectrum+disorder+diagnosis+based+on+deep+unrolling-based+spatial+constraint+representation&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Lei%2C+Dajiang&rft.au=Zhang%2C+Tao&rft.au=Wu%2C+Yue&rft.au=Li%2C+Weisheng&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=61&rft.issue=11&rft.spage=2829&rft.epage=2842&rft_id=info:doi/10.1007%2Fs11517-023-02859-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |