Autism spectrum disorder diagnosis based on deep unrolling-based spatial constraint representation

Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to constr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Medical & biological engineering & computing Ročník 61; číslo 11; s. 2829 - 2842
Hlavní autoři: Lei, Dajiang, Zhang, Tao, Wu, Yue, Li, Weisheng, Li, Xinwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer Nature B.V
Témata:
ISSN:0140-0118, 1741-0444, 1741-0444
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy. Graphical abstract The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease.
AbstractList Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy. Graphical abstract The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease.
Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy. The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease.
Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy. The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease.Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy. The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease.
Author Li, Weisheng
Wu, Yue
Lei, Dajiang
Zhang, Tao
Li, Xinwei
Author_xml – sequence: 1
  givenname: Dajiang
  surname: Lei
  fullname: Lei, Dajiang
  organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications
– sequence: 2
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
  organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications
– sequence: 3
  givenname: Yue
  surname: Wu
  fullname: Wu, Yue
  organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications
– sequence: 4
  givenname: Weisheng
  surname: Li
  fullname: Li, Weisheng
  organization: School of Computer Science and Technology, Chongqing University of Posts and Telecommunications
– sequence: 5
  givenname: Xinwei
  orcidid: 0000-0003-0713-9366
  surname: Li
  fullname: Li, Xinwei
  email: lixinwei@cqupt.edu.cn
  organization: School of Bioinformatics, Chongqing University of Posts and Telecommunications
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37486440$$D View this record in MEDLINE/PubMed
BookMark eNqFkTFv1TAUhS1URF8Lf4ABRWJhCdzr2LEzVlWhlSqxwGw5sfPkKrGDbzLw7_EjrZA6lMGyZX_n6PqcC3YWU_SMvUf4jADqCyFKVDXwpiwtu5q_YgdUAmsQQpyxA6CAGhD1ObsgegDgKLl4w84bJXQrBBxYf7WtgeaKFj-seZsrFyhl53M52GNMFKjqLXlXpVg575dqizlNU4jHer-nxa7BTtWQIq3ZhrhW2S_Zk49reUnxLXs92on8u8f9kv38evPj-ra-__7t7vrqvh4E6LW4Yd_1jcZWt07YroduBA5O6VZLGLF32rUKGjhhvht7C1ZwKJxVIC00l-zT7rvk9GvztJo50OCnyUafNjINykZKpaT8L8q1KNFJFFjQj8_Qh7TlWD5SKFWmRS5Ohh8eqa2fvTNLDrPNv81T0AXQOzDkRJT9aIawx3PKbDII5tSp2Ts1pVPzt1PDi5Q_kz65vyhqdhEVOB59_jf2C6o_ASqzLA
CitedBy_id crossref_primary_10_3390_diagnostics13233552
crossref_primary_10_1007_s11517_023_02987_9
Cites_doi 10.1016/j.patrec.2020.07.005
10.1016/j.neuroimage.2005.12.057
10.3389/fgene.2018.00018
10.1109/TBME.2015.2496233
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2016.07.058
10.1109/TMI.2021.3110829
10.1038/mp.2013.78
10.1177/1362361315607724
10.1371/journal.pone.0253995
10.1016/S0140-6736(18)31129-2
10.1002/hbm.23575
10.1002/hbm.23524
10.1016/j.neuroimage.2009.10.003
10.1109/TMI.2018.2882189
10.1016/j.neuroimage.2011.10.030
10.1016/j.neuroimage.2016.09.046
10.1006/cbmr.1996.0014
10.1109/TMI.2011.2140380
10.1016/0165-0270(94)90191-0
10.1016/j.tics.2013.09.016
10.1016/j.neuroimage.2016.10.045
10.1016/j.neuroimage.2017.12.052
10.1016/j.media.2018.06.001
10.1002/hbm.23769
10.1093/scan/nsw027
10.1109/MSP.2020.3016905
10.1016/j.nicl.2017.08.017
10.1006/nimg.2001.0978
10.1109/TMI.2020.2976825
10.1109/TCBB.2017.2776910
10.1109/TCBB.2020.2989315
10.1016/j.ridd.2010.11.003
10.3389/fninf.2017.00061
10.1016/j.compbiomed.2021.104963
10.1109/ICCV.2017.74
10.1002/hbm.24979
10.1016/j.biopsych.2022.04.008
10.1109/CVPR.2018.00366
10.1109/BIA48344.2019.8967453
10.1109/BIBM52615.2021.9669849
10.1007/978-3-030-32254-0_54
10.1109/IJCNN52387.2021.9534169
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. International Federation for Medical and Biological Engineering.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. International Federation for Medical and Biological Engineering.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7S9
L.6
DOI 10.1007/s11517-023-02859-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
ProQuest Business Collection (Alumni Edition)
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 2842
ExternalDocumentID 37486440
10_1007_s11517_023_02859_2
Genre Journal Article
GrantInformation_xml – fundername: Key Cooperation Projects of Chongqing Municipal Education Commission
  grantid: HZ2021008; 62027827
– fundername: National Natural Science Foundation of China
  grantid: 62106032
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2022MD713691
– fundername: Natural Science Foundation of Chongqing
  grantid: cstc2020jcyjzdxmX0025; cstc2019jcyj-cxttX0002
– fundername: National Key Research and Development Program of China
  grantid: 2021YFF0704100
– fundername: Chongqing Postdoctoral Science Special Foundation
  grantid: 2021XM3028
  funderid: http://dx.doi.org/10.13039/501100009976
– fundername: Key Cooperation Projects of Chongqing Municipal Education Commission
  grantid: HZ2021008
– fundername: National Natural Science Foundation of China
  grantid: 62106032
– fundername: Key Cooperation Projects of Chongqing Municipal Education Commission
  grantid: 62027827
– fundername: Chongqing Postdoctoral Science Special Foundation
  grantid: 2021XM3028
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c408t-ba1b9b381686d4a9b09f020d786850f1bd8d670301b9be9fba0a4209b0a705a03
IEDL.DBID 7X7
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001034502000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0140-0118
1741-0444
IngestDate Thu Oct 02 07:08:05 EDT 2025
Fri Sep 05 10:57:10 EDT 2025
Wed Nov 05 04:11:30 EST 2025
Mon Jul 21 06:01:03 EDT 2025
Sat Nov 29 04:15:30 EST 2025
Tue Nov 18 21:21:11 EST 2025
Fri Feb 21 02:40:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Deep unrolling
Functional brain networks
Autism spectrum disorder
Diagnosis-oriented
Classification
Language English
License 2023. International Federation for Medical and Biological Engineering.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-ba1b9b381686d4a9b09f020d786850f1bd8d670301b9be9fba0a4209b0a705a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0713-9366
PMID 37486440
PQID 2878161245
PQPubID 54161
PageCount 14
ParticipantIDs proquest_miscellaneous_3153557755
proquest_miscellaneous_2841405141
proquest_journals_2878161245
pubmed_primary_37486440
crossref_citationtrail_10_1007_s11517_023_02859_2
crossref_primary_10_1007_s11517_023_02859_2
springer_journals_10_1007_s11517_023_02859_2
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
2023-Nov
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (CR35) 2002; 15
Lee, Lee, Kang, Kim, Chung (CR17) 2011; 30
Li, Zhou, Dvornek, Zhang, Gao, Zhuang, Scheinost, Staib, Ventola, Duncan (CR20) 2021; 74
Meszlényi, Buza, Vidnyánszky (CR27) 2017; 11
Li, Liu, Jiang, Liu, Lei (CR21) 2021; 41
Qiao, Zhang, Kim, Teng, Zhang, Shen (CR31) 2016; 141
Jenkinson, Beckmann, Behrens, Woolrich, Smith (CR11) 2012; 62
Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto (CR8) 2014; 19
CR33
CR10
Ju, Hu, Li (CR13) 2017; 16
Bi, Wang, Shu, Sun, Xu (CR3) 2018; 9
Alaerts, Swinnen, Wenderoth (CR2) 2016; 11
Wang, Wang, Peng, Nie, Zhao, Kim, Zhang, Wee, Wang, Shen (CR36) 2017; 38
Heinsfeld, Franco, Craddock, Buchweitz, Meneguzzi (CR9) 2018; 17
Li, Yang, Lei, Liu, Wee (CR18) 2018; 38
Monga, Li, Eldar (CR28) 2021; 38
Rubinov, Sporns (CR32) 2010; 52
Cox (CR6) 1996; 29
Blumberg, Zablotsky, Avila, Colpe, Pringle, Kogan (CR4) 2016; 20
Parisot, Ktena, Ferrante, Lee, Guerrero, Glocker, Rueckert (CR30) 2018; 48
Wiggins, Bedoyan, Peltier, Ashinoff, Carrasco, Weng, Welsh, Martin, Monk (CR37) 2012; 59
Ktena, Parisot, Ferrante, Rajchl, Lee, Glocker, Rueckert (CR16) 2018; 169
CR5
CR29
Kawahara, Brown, Miller, Booth, Chau, Grunau, Zwicker, Hamarneh (CR15) 2017; 146
Kam, Suk, Lee (CR14) 2017; 38
Marrelec, Krainik, Duffau, Pélégrini-Issac, Lehéricy, Doyon, Benali (CR26) 2006; 32
Li, Liu, Tang, Lei (CR19) 2020; 39
Ji, Yao (CR12) 2020; 18
CR22
Liu, Sheng, Lan, Guo, Wang, Wang (CR24) 2020; 138
Lord, Elsabbagh, Baird, Veenstra-Vanderweele (CR25) 2018; 392
Yu, Zhang, An, Chen, Wei, Shen (CR43) 2017; 38
CR44
DeYoe, Bandettini, Neitz, Miller, Winans (CR7) 1994; 54
CR42
Yang, Wang, Tan, Liu, Li (CR41) 2021; 139
CR40
Xue, Zhang, Qiao, Shen (CR39) 2021; 16
Smith, Vidaurre, Beckmann, Glasser, Jenkinson, Miller, Nichols, Robinson, Salimi-Khorshidi, Woolrich (CR34) 2013; 17
Liu, Zhang, Adeli, Shen (CR23) 2015; 63
Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (CR1) 2017; 147
Wing, Gould, Gillberg (CR38) 2011; 32
2859_CR29
J Kawahara (2859_CR15) 2017; 146
S Parisot (2859_CR30) 2018; 48
SM Smith (2859_CR34) 2013; 17
2859_CR40
2859_CR5
2859_CR42
X Bi (2859_CR3) 2018; 9
2859_CR22
2859_CR44
Y Li (2859_CR19) 2020; 39
M Liu (2859_CR23) 2015; 63
V Monga (2859_CR28) 2021; 38
C Lord (2859_CR25) 2018; 392
AS Heinsfeld (2859_CR9) 2018; 17
C Yang (2859_CR41) 2021; 139
L Wing (2859_CR38) 2011; 32
TE Kam (2859_CR14) 2017; 38
Y Xue (2859_CR39) 2021; 16
J Ji (2859_CR12) 2020; 18
R Ju (2859_CR13) 2017; 16
J Liu (2859_CR24) 2020; 138
Y Li (2859_CR21) 2021; 41
H Lee (2859_CR17) 2011; 30
M Jenkinson (2859_CR11) 2012; 62
RW Cox (2859_CR6) 1996; 29
R Yu (2859_CR43) 2017; 38
M Rubinov (2859_CR32) 2010; 52
2859_CR10
2859_CR33
Y Li (2859_CR18) 2018; 38
L Qiao (2859_CR31) 2016; 141
X Li (2859_CR20) 2021; 74
J Wang (2859_CR36) 2017; 38
A Abraham (2859_CR1) 2017; 147
SI Ktena (2859_CR16) 2018; 169
EA DeYoe (2859_CR7) 1994; 54
A Di Martino (2859_CR8) 2014; 19
K Alaerts (2859_CR2) 2016; 11
JL Wiggins (2859_CR37) 2012; 59
SJ Blumberg (2859_CR4) 2016; 20
N Tzourio-Mazoyer (2859_CR35) 2002; 15
G Marrelec (2859_CR26) 2006; 32
RJ Meszlényi (2859_CR27) 2017; 11
References_xml – volume: 138
  start-page: 82
  year: 2020
  end-page: 87
  ident: CR24
  article-title: Improved ASD classification using dynamic functional connectivity and multi-task feature selection
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2020.07.005
– ident: CR22
– volume: 32
  start-page: 228
  issue: 1
  year: 2006
  end-page: 237
  ident: CR26
  article-title: Partial correlation for functional brain interactivity investigation in functional MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.057
– volume: 9
  start-page: 18
  year: 2018
  ident: CR3
  article-title: Classification of autism spectrum disorder using random support vector machine cluster
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00018
– volume: 63
  start-page: 1473
  issue: 7
  year: 2015
  end-page: 1482
  ident: CR23
  article-title: Inherent structure-based multiview learning with multitemplate feature representation for Alzheimer’s disease diagnosis
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2496233
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  end-page: 790
  ident: CR11
  publication-title: FSL. Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 141
  start-page: 399
  year: 2016
  end-page: 407
  ident: CR31
  article-title: Estimating functional brain networks by incorporating a modularity prior
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.07.058
– volume: 41
  start-page: 237
  issue: 1
  year: 2021
  end-page: 251
  ident: CR21
  article-title: Virtual adversarial training-based deep feature aggregation network from dynamic effective connectivity for MCI identification
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3110829
– ident: CR10
– volume: 19
  start-page: 659
  issue: 6
  year: 2014
  end-page: 667
  ident: CR8
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2013.78
– ident: CR33
– volume: 20
  start-page: 783
  issue: 7
  year: 2016
  end-page: 795
  ident: CR4
  article-title: Diagnosis lost: differences between children who had and who currently have an autism spectrum disorder diagnosis
  publication-title: Autism
  doi: 10.1177/1362361315607724
– volume: 16
  issue: 6
  year: 2021
  ident: CR39
  article-title: Correction: Estimating sparse functional brain networks with spatial constraints for MCI identification
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0253995
– ident: CR29
– volume: 392
  start-page: 508
  issue: 10146
  year: 2018
  end-page: 520
  ident: CR25
  article-title: Autism spectrum disorder
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31129-2
– volume: 38
  start-page: 3081
  issue: 6
  year: 2017
  end-page: 3097
  ident: CR36
  article-title: Multi-task diagnosis for autism spectrum disorders using multi-modality features: a multi-center study
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23575
– volume: 38
  start-page: 2370
  issue: 5
  year: 2017
  end-page: 2383
  ident: CR43
  article-title: Connectivity strength-weighted sparse group representation-based brain network construction for MCI classification
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23524
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  end-page: 1069
  ident: CR32
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 38
  start-page: 1227
  issue: 5
  year: 2018
  end-page: 1239
  ident: CR18
  article-title: Novel effective connectivity inference using ultra-group constrained orthogonal forward regression and elastic multilayer perceptron classifier for MCI identification
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2882189
– ident: CR40
– volume: 59
  start-page: 2760
  issue: 3
  year: 2012
  end-page: 2770
  ident: CR37
  article-title: The impact of serotonin transporter (5-HTTLPR) genotype on the development of resting-state functional connectivity in children and adolescents: a preliminary report
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.030
– volume: 146
  start-page: 1038
  year: 2017
  end-page: 1049
  ident: CR15
  article-title: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.09.046
– volume: 29
  start-page: 162
  issue: 3
  year: 1996
  end-page: 173
  ident: CR6
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput Biomed Res
  doi: 10.1006/cbmr.1996.0014
– volume: 30
  start-page: 1154
  issue: 5
  year: 2011
  end-page: 1165
  ident: CR17
  article-title: Sparse brain network recovery under compressed sensing
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2011.2140380
– ident: CR42
– volume: 54
  start-page: 171
  issue: 2
  year: 1994
  end-page: 187
  ident: CR7
  article-title: Functional magnetic resonance imaging (fMRI) of the human brain
  publication-title: J Neurosci Methods
  doi: 10.1016/0165-0270(94)90191-0
– volume: 17
  start-page: 666
  issue: 12
  year: 2013
  end-page: 682
  ident: CR34
  article-title: Functional connectomics from resting-state fMRI
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2013.09.016
– volume: 147
  start-page: 736
  year: 2017
  end-page: 745
  ident: CR1
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.045
– volume: 169
  start-page: 431
  year: 2018
  end-page: 442
  ident: CR16
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.12.052
– volume: 48
  start-page: 117
  year: 2018
  end-page: 130
  ident: CR30
  article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.06.001
– volume: 38
  start-page: 5804
  issue: 11
  year: 2017
  end-page: 5821
  ident: CR14
  article-title: Multiple functional networks modeling for autism spectrum disorder diagnosis
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23769
– volume: 11
  start-page: 1002
  issue: 6
  year: 2016
  end-page: 1016
  ident: CR2
  article-title: Sex differences in autism: a resting-state fMRI investigation of functional brain connectivity in males and females
  publication-title: Soc Cogn Affect Neurosci
  doi: 10.1093/scan/nsw027
– ident: CR44
– volume: 38
  start-page: 18
  issue: 2
  year: 2021
  end-page: 44
  ident: CR28
  article-title: Algorithm unrolling: interpretable, efficient deep learning for signal and image processing
  publication-title: IEEE Signal Proc Mag
  doi: 10.1109/MSP.2020.3016905
– volume: 17
  start-page: 16
  year: 2018
  end-page: 23
  ident: CR9
  article-title: Identification of autism spectrum disorder using deep learning and the abide dataset
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2017.08.017
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  end-page: 289
  ident: CR35
  article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 39
  start-page: 2818
  issue: 9
  year: 2020
  end-page: 2830
  ident: CR19
  article-title: Deep spatial-temporal feature fusion from adaptive dynamic functional connectivity for MCI identification
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2976825
– volume: 16
  start-page: 244
  issue: 1
  year: 2017
  end-page: 257
  ident: CR13
  article-title: Early diagnosis of Alzheimer’s disease based on resting-state brain networks and deep learning
  publication-title: IEEE/ACM Trans Comput Biol Bioinforma
  doi: 10.1109/TCBB.2017.2776910
– ident: CR5
– volume: 18
  start-page: 2327
  issue: 6
  year: 2020
  end-page: 2338
  ident: CR12
  article-title: Convolutional neural network with graphical lasso to extract sparse topological features for brain disease classification
  publication-title: IEEE/ACM Trans Comput Biol Bioinforma
  doi: 10.1109/TCBB.2020.2989315
– volume: 32
  start-page: 768
  issue: 2
  year: 2011
  end-page: 773
  ident: CR38
  article-title: Autism spectrum disorders in the DSM-V: better or worse than the DSM-IV?
  publication-title: Res Dev Disabil
  doi: 10.1016/j.ridd.2010.11.003
– volume: 11
  start-page: 61
  year: 2017
  ident: CR27
  article-title: Resting state fMRI functional connectivity-based classification using a convolutional neural network architecture
  publication-title: Front Neuroinformatics
  doi: 10.3389/fninf.2017.00061
– volume: 74
  start-page: 233
  issue: 102
  year: 2021
  ident: CR20
  article-title: BrainGNN: interpretable brain graph neural network for fMRI analysis
  publication-title: Med Image Anal
– volume: 139
  start-page: 104963
  year: 2021
  ident: CR41
  article-title: Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104963
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: 2859_CR32
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 54
  start-page: 171
  issue: 2
  year: 1994
  ident: 2859_CR7
  publication-title: J Neurosci Methods
  doi: 10.1016/0165-0270(94)90191-0
– volume: 18
  start-page: 2327
  issue: 6
  year: 2020
  ident: 2859_CR12
  publication-title: IEEE/ACM Trans Comput Biol Bioinforma
  doi: 10.1109/TCBB.2020.2989315
– volume: 9
  start-page: 18
  year: 2018
  ident: 2859_CR3
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00018
– ident: 2859_CR33
  doi: 10.1109/ICCV.2017.74
– volume: 141
  start-page: 399
  year: 2016
  ident: 2859_CR31
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.07.058
– volume: 139
  start-page: 104963
  year: 2021
  ident: 2859_CR41
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104963
– volume: 63
  start-page: 1473
  issue: 7
  year: 2015
  ident: 2859_CR23
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2496233
– volume: 32
  start-page: 228
  issue: 1
  year: 2006
  ident: 2859_CR26
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.057
– volume: 48
  start-page: 117
  year: 2018
  ident: 2859_CR30
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.06.001
– volume: 38
  start-page: 3081
  issue: 6
  year: 2017
  ident: 2859_CR36
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23575
– volume: 41
  start-page: 237
  issue: 1
  year: 2021
  ident: 2859_CR21
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3110829
– volume: 20
  start-page: 783
  issue: 7
  year: 2016
  ident: 2859_CR4
  publication-title: Autism
  doi: 10.1177/1362361315607724
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 2859_CR35
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 32
  start-page: 768
  issue: 2
  year: 2011
  ident: 2859_CR38
  publication-title: Res Dev Disabil
  doi: 10.1016/j.ridd.2010.11.003
– volume: 392
  start-page: 508
  issue: 10146
  year: 2018
  ident: 2859_CR25
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31129-2
– volume: 147
  start-page: 736
  year: 2017
  ident: 2859_CR1
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.045
– volume: 74
  start-page: 233
  issue: 102
  year: 2021
  ident: 2859_CR20
  publication-title: Med Image Anal
– volume: 169
  start-page: 431
  year: 2018
  ident: 2859_CR16
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.12.052
– ident: 2859_CR44
  doi: 10.1002/hbm.24979
– volume: 11
  start-page: 1002
  issue: 6
  year: 2016
  ident: 2859_CR2
  publication-title: Soc Cogn Affect Neurosci
  doi: 10.1093/scan/nsw027
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 2859_CR11
  publication-title: FSL. Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 11
  start-page: 61
  year: 2017
  ident: 2859_CR27
  publication-title: Front Neuroinformatics
  doi: 10.3389/fninf.2017.00061
– ident: 2859_CR10
  doi: 10.1016/j.biopsych.2022.04.008
– ident: 2859_CR40
  doi: 10.1109/CVPR.2018.00366
– volume: 16
  start-page: 244
  issue: 1
  year: 2017
  ident: 2859_CR13
  publication-title: IEEE/ACM Trans Comput Biol Bioinforma
  doi: 10.1109/TCBB.2017.2776910
– volume: 17
  start-page: 16
  year: 2018
  ident: 2859_CR9
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2017.08.017
– ident: 2859_CR5
  doi: 10.1109/BIA48344.2019.8967453
– ident: 2859_CR42
  doi: 10.1109/BIBM52615.2021.9669849
– volume: 39
  start-page: 2818
  issue: 9
  year: 2020
  ident: 2859_CR19
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2976825
– volume: 138
  start-page: 82
  year: 2020
  ident: 2859_CR24
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2020.07.005
– volume: 30
  start-page: 1154
  issue: 5
  year: 2011
  ident: 2859_CR17
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2011.2140380
– ident: 2859_CR22
  doi: 10.1007/978-3-030-32254-0_54
– volume: 38
  start-page: 2370
  issue: 5
  year: 2017
  ident: 2859_CR43
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23524
– volume: 59
  start-page: 2760
  issue: 3
  year: 2012
  ident: 2859_CR37
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.030
– volume: 146
  start-page: 1038
  year: 2017
  ident: 2859_CR15
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.09.046
– volume: 19
  start-page: 659
  issue: 6
  year: 2014
  ident: 2859_CR8
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2013.78
– volume: 38
  start-page: 1227
  issue: 5
  year: 2018
  ident: 2859_CR18
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2882189
– volume: 17
  start-page: 666
  issue: 12
  year: 2013
  ident: 2859_CR34
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2013.09.016
– volume: 16
  issue: 6
  year: 2021
  ident: 2859_CR39
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0253995
– volume: 38
  start-page: 5804
  issue: 11
  year: 2017
  ident: 2859_CR14
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23769
– ident: 2859_CR29
  doi: 10.1109/IJCNN52387.2021.9534169
– volume: 29
  start-page: 162
  issue: 3
  year: 1996
  ident: 2859_CR6
  publication-title: Comput Biomed Res
  doi: 10.1006/cbmr.1996.0014
– volume: 38
  start-page: 18
  issue: 2
  year: 2021
  ident: 2859_CR28
  publication-title: IEEE Signal Proc Mag
  doi: 10.1109/MSP.2020.3016905
SSID ssj0021524
Score 2.3917994
Snippet Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2829
SubjectTerms Algorithms
Autism
Autism Spectrum Disorder - diagnostic imaging
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Brain
Brain - diagnostic imaging
Brain mapping
Classification
Classifiers
Computer Applications
Constraint modelling
Construction
data collection
Deep learning
Diagnosis
Functional magnetic resonance imaging
Human Physiology
Humans
Image processing
Imaging
Machine learning
Magnetic Resonance Imaging
magnetism
Medical diagnosis
model validation
Networks
Neuroimaging
Original Article
patients
prognosis
Prototypes
Radiology
Representations
Time Factors
time series analysis
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yRXzx-2M6JYJvGki7tmkfhyg-6BDUsbeS5gME14118-_3Lv0YMifoQ6G0l_ZyueQu3N0vhFxFwgbWVxGLM-GzQErDEsEVs77sqsxGcehqqwaPot-Ph8PkuSoKK-ps9zok6VbqRbEbGCfBwMbAFYcJg4V3PUS0GdyjvwyabRZYpKBJXAT_uSqV-fkb383Rko-5FB91Zud-538M75Ltys2kvVIv9siayffJ5lMVSD8gWQ8UrhhRV2g5nY-orlA44cbl3r0XFA2cpuOcamMmFLMGHX43K58XmIoNv1DoYOI5EzPqADLrYqb8kLzd373ePrDquAWmAh7PoLWXJRkGEuNIBzLJeGLBmdQihhHj1st0rCNcIJDMJDaTXAY-BzopeCh594i08nFuTghFHMJIeUr7SgQR19IasJae72ltQyFUm3i11FNVYZEjqx_pAkUZhZeC8FInvNRvk-umzaRE4viVulMPZlrNyiKF3SH0DjyasE0um9cwnzBIInMzniNNAIoDbqS3mqYLZiKEfoTwneNSURqWEM4HfEzeJje1ViwYWM3v6d_Iz8gWnntfFkV2SAs0xZyTDfUJujO9cPPhC9bAA1Y
  priority: 102
  providerName: Springer Nature
Title Autism spectrum disorder diagnosis based on deep unrolling-based spatial constraint representation
URI https://link.springer.com/article/10.1007/s11517-023-02859-2
https://www.ncbi.nlm.nih.gov/pubmed/37486440
https://www.proquest.com/docview/2878161245
https://www.proquest.com/docview/2841405141
https://www.proquest.com/docview/3153557755
Volume 61
WOSCitedRecordID wos001034502000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: 7RV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BixAX3oVAiYzEDVasN2vv-oRK1QoJGkUBQuBirfchIVEn1C2_n5n1OhGq2guHjPIYx5PMtztjzwvgVamCDMKWTDdKMGmMZ5XilgVhJrYJpS5ibdXik5pO9XJZzdINty6lVQ57Ytyo3crSPfK36Nlr9E6ELN6tfzOaGkXR1TRC4ybs0thswrlabi-40DbJTQojMqSimb50Dk2dYmix8KGLiol_DdMlb_NSpDQaoON7_yv6fbibXM_soMfKA7jh24dw-yQF1x9Bc4Ag7E6zWHx5dnGaudSZE5_EfLyfXUZGz2WrNnPerzPKJIw9vVn_fkfp2XgKS04nzZ44z2LTzKHAqX0MX4-Pvhx-YGkEA7OS63M8Om-qhoKLunTSVA2vAjqYTmnUIg9547QradMgNl-FxnAjBUc-o3hh-GQPdtpV659CRr0JS5tbJ6ySJXcmeLSgucidC4VSdgT58P_XNvUnJ1F_1dvOyqSzGnVWR53VYgSvN8es--4c13LvD_qp00rt6q1yRvBy8zGuMQqcmNavLohHIoTQtcyv5pmg6SjwdxT4PU96yGxEohY_6HfyEbwZMLQV4Gp5n10v73O4Iwi_sTByH3YQGf4F3LJ_ECtnY1wJ8wXRb9_HcVVEqsew-_5oOpvjq4-KIT3hh0TFjKgiOit-IJ1_XvwFtxgXgg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigX3oWFAkaCE1g4XidODghVQNWq21UPBfWWOn5ISDS7NC1V_1R_Y2ecxwpV7a0HDpGiZOJM4m88X-KZMcC7TAcVpM14XmnJlTGeF1pYHqQZ2ypkeRpzq35O9HSa7-8Xu0tw3ufCUFhlPybGgdrNLP0j_4TMPkd2IlX6Zf6H06pRNLvaL6HRwmLbn53iJ1vzeesb9u97KTe-733d5N2qAtwqkR_zyiRVUdF8WZ45ZYpKFAE5k9M5KiZCUrncZWQHJOaLUBlhlBQoZ7RIjRhju7fgNtIIKWKo4O7wgYe-UA0hk8jcuySdNlUPXavm6CFxy9OCy38d4SV2e2lmNjq8jQf_26t6CPc7as3WW1t4BEu-fgx3d7rggSdQraORNYcsJpcenRwy11UexZ0Yb_irYeTUHZvVzHk_ZxQpGWuW8_Z4Q-HneAtLpJrW1jhmsShon8BVP4UfN_KEq7Bcz2r_HBjVXsxsYp20WmXCmeCRISQycS6kWtsRJH1_l7arv06q_i4XlaMJIyVipIwYKeUIPgzXzNvqI9dKr_V4KLuRqCkXYBjB2-E0jiE0MWRqPzshGYWQReqcXC0zRteY4nOk2M6zFqKDSlTCCHm1GMHHHrMLBa7W98X1-r6Blc29nUk52Zpuv4R7kmwnJoGuwTKixL-CO_Yv4ubodbRCBgc3jeULYQRpEQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLaq48H4sFDASnMCq403i5IBQoV1RtaxWCFBvwU8JiWaXpgXx1_h1zDiPFaraWw8cIkXJJBkn33g-xzNjgOe5CmmQNueFUZKnWnteKmF5kHpiTciLLOZWfTlQs1lxeFjO1-BPnwtDYZV9nxg7arew9I98C5l9gexEptlW6MIi5jvTN8sfnFaQopnWfjmNFiL7_vcvHL41r_d28Fu_kHK6--nde96tMMBtKooTbnRiSkNzZ0XuUl0aUQbkT04VqKQIiXGFy8kmSMyXwWihUylQTiuRaTHB-16BdTXBQc8I1t_uzuYfh-EeesZ0CKBEHt-l7LSJe-hoFUd_iVuRlVz-6xbPcN0z87TR_U1v_M8v7iZc70g3226t5Bas-fo2bHzowgrugNlG82uOWEw7PT49Yq6rSYo7MRLxW8PI3Tu2qJnzfskohjJWM-ft8YYC0_ERlug2rbpxwmK50D61q74Lny-lhfdgVC9q_wAYVWXMbWKdtCrNhdPBI3dIZOJcyJSyY0j6b1_ZrjI7qfq9WtWUJrxUiJcq4qWSY3g5XLNs65JcKL3ZY6Pq-qimWgFjDM-G09i70JSRrv3ilGRShC-S6uR8mQk6zQzbkeF97rdwHVSi4kbIuMUYXvX4XSlwvr4PL9b3KWwghKuDvdn-I7gmyYxidugmjBAk_jFctT8RNsdPOpNk8PWywfwXe9VzKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autism+spectrum+disorder+diagnosis+based+on+deep+unrolling-based+spatial+constraint+representation&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Lei%2C+Dajiang&rft.au=Zhang%2C+Tao&rft.au=Wu%2C+Yue&rft.au=Li%2C+Weisheng&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=61&rft.issue=11&rft.spage=2829&rft.epage=2842&rft_id=info:doi/10.1007%2Fs11517-023-02859-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon