Deep clustering analysis via variational autoencoder with Gamma mixture latent embeddings

This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks Jg. 183; S. 106979
Hauptverfasser: Guo, Jiaxun, Fan, Wentao, Amayri, Manar, Bouguila, Nizar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.03.2025
Schlagworte:
ISSN:0893-6080, 1879-2782, 1879-2782
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a prior on the latent space. We employ a more flexible asymmetric Gamma mixture model to achieve higher quality embeddings of the data latent space. Second, since the Gamma is defined for strictly positive variables, in order to exploit the reparameterization trick of VAE, we propose a transformation method from Gaussian distribution to Gamma distribution. This method can also be considered a Gamma distribution reparameterization trick, allows gradients to be backpropagated through the sampling process in the VAE. Finally, we derive the evidence lower bound (ELBO) based on the Gamma mixture model in an effective way for the stochastic gradient variational Bayesian (SGVB) estimator to optimize the proposed model. ELBO, a variational inference objective, ensures the maximization of the approximation of the posterior distribution, while SGVB is a method used to perform efficient inference and learning in VAEs. We validate the effectiveness of our model through quantitative comparisons with other state-of-the-art deep clustering models on six benchmark datasets. Moreover, due to the generative nature of VAEs, the proposed model can generate highly realistic samples of specific classes without supervised information.
AbstractList This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a prior on the latent space. We employ a more flexible asymmetric Gamma mixture model to achieve higher quality embeddings of the data latent space. Second, since the Gamma is defined for strictly positive variables, in order to exploit the reparameterization trick of VAE, we propose a transformation method from Gaussian distribution to Gamma distribution. This method can also be considered a Gamma distribution reparameterization trick, allows gradients to be backpropagated through the sampling process in the VAE. Finally, we derive the evidence lower bound (ELBO) based on the Gamma mixture model in an effective way for the stochastic gradient variational Bayesian (SGVB) estimator to optimize the proposed model. ELBO, a variational inference objective, ensures the maximization of the approximation of the posterior distribution, while SGVB is a method used to perform efficient inference and learning in VAEs. We validate the effectiveness of our model through quantitative comparisons with other state-of-the-art deep clustering models on six benchmark datasets. Moreover, due to the generative nature of VAEs, the proposed model can generate highly realistic samples of specific classes without supervised information.This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a prior on the latent space. We employ a more flexible asymmetric Gamma mixture model to achieve higher quality embeddings of the data latent space. Second, since the Gamma is defined for strictly positive variables, in order to exploit the reparameterization trick of VAE, we propose a transformation method from Gaussian distribution to Gamma distribution. This method can also be considered a Gamma distribution reparameterization trick, allows gradients to be backpropagated through the sampling process in the VAE. Finally, we derive the evidence lower bound (ELBO) based on the Gamma mixture model in an effective way for the stochastic gradient variational Bayesian (SGVB) estimator to optimize the proposed model. ELBO, a variational inference objective, ensures the maximization of the approximation of the posterior distribution, while SGVB is a method used to perform efficient inference and learning in VAEs. We validate the effectiveness of our model through quantitative comparisons with other state-of-the-art deep clustering models on six benchmark datasets. Moreover, due to the generative nature of VAEs, the proposed model can generate highly realistic samples of specific classes without supervised information.
This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a prior on the latent space. We employ a more flexible asymmetric Gamma mixture model to achieve higher quality embeddings of the data latent space. Second, since the Gamma is defined for strictly positive variables, in order to exploit the reparameterization trick of VAE, we propose a transformation method from Gaussian distribution to Gamma distribution. This method can also be considered a Gamma distribution reparameterization trick, allows gradients to be backpropagated through the sampling process in the VAE. Finally, we derive the evidence lower bound (ELBO) based on the Gamma mixture model in an effective way for the stochastic gradient variational Bayesian (SGVB) estimator to optimize the proposed model. ELBO, a variational inference objective, ensures the maximization of the approximation of the posterior distribution, while SGVB is a method used to perform efficient inference and learning in VAEs. We validate the effectiveness of our model through quantitative comparisons with other state-of-the-art deep clustering models on six benchmark datasets. Moreover, due to the generative nature of VAEs, the proposed model can generate highly realistic samples of specific classes without supervised information.
ArticleNumber 106979
Author Fan, Wentao
Bouguila, Nizar
Guo, Jiaxun
Amayri, Manar
Author_xml – sequence: 1
  givenname: Jiaxun
  orcidid: 0000-0002-6110-4562
  surname: Guo
  fullname: Guo, Jiaxun
  email: g_jiax@encs.concordia.ca
  organization: CIISE, Concordia University, Montreal, H3G 1T7, QC, Canada
– sequence: 2
  givenname: Wentao
  orcidid: 0000-0001-6694-7289
  surname: Fan
  fullname: Fan, Wentao
  email: wentaofan@uic.edu.cn
  organization: Guangdong Provincial Key Laboratory IRADS and Department of Computer Science, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
– sequence: 3
  givenname: Manar
  surname: Amayri
  fullname: Amayri, Manar
  email: manar.amayri@concordia.ca
  organization: CIISE, Concordia University, Montreal, H3G 1T7, QC, Canada
– sequence: 4
  givenname: Nizar
  orcidid: 0000-0001-7224-7940
  surname: Bouguila
  fullname: Bouguila, Nizar
  email: nizar.bouguila@concordia.ca
  organization: CIISE, Concordia University, Montreal, H3G 1T7, QC, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39662201$$D View this record in MEDLINE/PubMed
BookMark eNqFkEFvFSEUhYlpY1-r_8AYlm7mCQwwjAsTU7WaNOmmLlwRBi7KywzzBOa1_ffSTnXhwq5ucvKdk9zvFB3FOQJCryjZUkLl2902whKhbBlhvEay7_pnaENV1zesU-wIbYjq20YSRU7Qac47QohUvH2OTtpeSsYI3aDvHwH22I5LLpBC_IFNNONdDhkfgsEHk4IpYa4ZNkuZIdrZQcI3ofzEF2aaDJ7CbVkS4NEUiAXDNIBzdSi_QMfejBlePt4z9O3zp-vzL83l1cXX8w-XjeVElWbgAB0bBHcEBkWJGIRqAVriKeu4t97JVgjmpRD1G67Y4DvwVhAPg3Udb8_Qm3V3n-ZfC-Sip5AtjKOJMC9Zt5RLKWgnVUVfP6LLMIHT-xQmk-70Hx0V4Ctg05xzAv8XoUTfW9c7vVrX99b1ar3W3v1Ts6E8eCvJhPGp8vu1DFXSIUDS2YYqGlxIYIt2c_j_wG_i6KFV
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3600986
crossref_primary_10_1016_j_oceaneng_2025_121691
crossref_primary_10_1016_j_eswa_2025_128578
Cites_doi 10.1109/TPAMI.2007.1095
10.1016/j.neunet.2022.05.014
10.1146/annurev-statistics-031017-100325
10.1109/TMI.2011.2165342
10.1038/323533a0
10.1109/TNNLS.2021.3135460
10.1016/j.patcog.2012.09.024
10.1016/j.neunet.2022.08.016
10.1109/TPAMI.2013.50
10.1109/TNNLS.2018.2872986
10.1109/TCYB.2013.2273714
10.1145/331499.331504
10.1109/TPAMI.2011.63
10.1198/000313008X270448
10.24963/ijcai.2017/243
10.1109/TNNLS.2012.2190298
10.1016/j.patcog.2020.107514
10.1109/3468.594918
10.1016/j.eswa.2011.12.038
10.1016/j.patcog.2014.04.002
10.1145/3422622
10.1109/TWC.2014.2331691
10.1016/j.patcog.2023.110037
10.1109/34.990138
10.1016/j.neunet.2023.12.030
10.24963/ijcai.2017/273
10.1109/TNNLS.2020.3027761
10.1109/TIP.2004.834664
10.1109/TNNLS.2021.3084957
10.1016/j.eswa.2023.121780
10.1109/TIT.1982.1056489
10.1145/2809695.2809718
10.1109/CVPR.2019.00419
10.1109/TPAMI.2021.3128271
10.1109/TNNLS.2022.3208202
10.1109/5.726791
10.1038/nature14539
10.1016/j.neunet.2024.106120
10.1109/TNNLS.2021.3063516
10.1109/TKDE.2024.3361474
10.1109/TNN.2005.845141
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2024.106979
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 39662201
10_1016_j_neunet_2024_106979
S0893608024009080
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6I.
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADRHT
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c408t-b4ee72b54d0eb8105b583ee30f1274fcfd63552f655893482bf7efc50febcd743
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001383683500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Sun Sep 28 02:12:39 EDT 2025
Mon Jul 21 05:56:16 EDT 2025
Sat Nov 29 05:33:11 EST 2025
Tue Nov 18 22:35:00 EST 2025
Sat Jan 25 15:59:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Gamma mixture models
Data augmentation
VAE
Variational inference
Clustering
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-b4ee72b54d0eb8105b583ee30f1274fcfd63552f655893482bf7efc50febcd743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6694-7289
0000-0002-6110-4562
0000-0001-7224-7940
OpenAccessLink https://dx.doi.org/10.1016/j.neunet.2024.106979
PMID 39662201
PQID 3146651768
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3146651768
pubmed_primary_39662201
crossref_primary_10_1016_j_neunet_2024_106979
crossref_citationtrail_10_1016_j_neunet_2024_106979
elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106979
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Larsen, Sønderby, Larochelle, Winther (b29) 2016
(pp. 1753–1759).
Yang, Fan, Bouguila (b56) 2023; 34
Yang, X., Deng, C., Zheng, F., Yan, J., & Liu, W. (2019). Deep spectral clustering using dual autoencoder network. In
Bouguila, Ziou, Vaillancourt (b6) 2004; 13
Yu, Lei, Ng, Cheung, Shen, Wang (b58) 2021; 33
Bishop, Nasrabadi (b3) 2006
LeCun, Bengio, Hinton (b30) 2015; 521
Diao, Zhang, Sun, Xing, Zhang, Bruzzone (b10) 2022
Li, Yao, Wei, Niu, Zeng, Li (b34) 2022
Ma, Rana, Taghia, Flierl, Leijon (b38) 2014; 47
Bouguila, Ziou (b5) 2007; 29
Ma, Leijon (b37) 2011; 33
Nguyen, Wu (b43) 2013; 44
Figueiredo, Jain (b17) 2002; 24
Jaiswal, Wu, Abd-Almageed, Natarajan (b22) 2018; 31
Kingma, Welling (b28) 2013
Mukherjee, Asnani, Lin, Kannan (b40) 2019; vol. 33
Fan, Bouguila, Ziou (b14) 2012; 23
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair (b19) 2020; 63
Jiao, Guo, Jing, He, Wu, Pan (b25) 2021; 33
Guo, X., Gao, L., Liu, X., & Yin, J. (2017). Improved deep embedded clustering with local structure preservation. In
Rumelhart, Hinton, Williams (b46) 1986; 323
Joo, Lee, Park, Moon (b26) 2020; 107
Bengio, Courville, Vincent (b1) 2013; 35
Eklund, Martin (b12) 1998
Goodfellow, Bengio, Courville (b18) 2016
Yang, Fan, Bouguila (b55) 2022; 33
Daneshfar, Soleymanbaigi, Nafisi, Yamini (b9) 2024; 238
Luo, He, Chen, Qing, Zhang (b36) 2022; 155
Bouguila, Almakadmeh, Boutemedjet (b4) 2012; 39
Fan, Bouguila, Du, Liu (b13) 2018; 30
(pp. 1965–1972).
LeCun, Bottou, Bengio, Haffner (b31) 1998; 86
Tian, Gong, Tang, Su, Liu, Zhang (b49) 2022; 152
McLachlan, Lee, Rathnayake (b39) 2019; 6
Leemis, McQueston (b32) 2008; 62
(pp. 4066–4075).
Xu, Wunsch (b53) 2005; 16
Jain, Murty, Flynn (b21) 1999; 31
Fan, Yang, Bouguila (b16) 2024; 35
Oikonomou (b44) 1997; 27
Chen, Duan, Houthooft, Schulman, Sutskever, Abbeel (b8) 2016; vol. 29
Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjæ rgaard, M. B., Dey, A., et al. (2015). Smart devices are different: Assessing and mitigatingmobile sensing heterogeneities for activity recognition. In
Jiang, Z., Zheng, Y., Tan, H., Tang, B., & Zhou, H. (2017). Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering. In
Naesseth, Ruiz, Linderman, Blei (b41) 2017
Bi, Li, Tian (b2) 2024; 171
Xie, Girshick, Farhadi (b52) 2016
Dilokthanakul, Mediano, Garnelo, Lee, Salimbeni, Arulkumaran (b11) 2016
Sadok, Leglaive, Girin, Alameda-Pineda, Séguier (b47) 2024; 172
Lloyd (b35) 1982; 28
Ojo, Bouguila (b45) 2024; 146
Jung, Lee, Park, Lee, Lee (b27) 2014; 13
Cao, Tan, Gao, Xu, Chen, Heng (b7) 2024
Lewis, Yang, Russell-Rose, Li (b33) 2004; 5
Jiang, Zheng, Tan, Tang, Zhou (b23) 2016
(pp. 127–140).
Xiao, Rasul, Vollgraf (b51) 2017
Nguyen, Wu (b42) 2011; 31
Fan, Yang, Bouguila (b15) 2022; 44
Yang, Han, Wang, Tao, Tai (b57) 2013; 46
Van der Maaten, Hinton (b50) 2008; 9
Bengio (10.1016/j.neunet.2024.106979_b1) 2013; 35
Fan (10.1016/j.neunet.2024.106979_b14) 2012; 23
Luo (10.1016/j.neunet.2024.106979_b36) 2022; 155
Fan (10.1016/j.neunet.2024.106979_b15) 2022; 44
Yang (10.1016/j.neunet.2024.106979_b55) 2022; 33
LeCun (10.1016/j.neunet.2024.106979_b30) 2015; 521
10.1016/j.neunet.2024.106979_b54
LeCun (10.1016/j.neunet.2024.106979_b31) 1998; 86
Chen (10.1016/j.neunet.2024.106979_b8) 2016; vol. 29
Xu (10.1016/j.neunet.2024.106979_b53) 2005; 16
Fan (10.1016/j.neunet.2024.106979_b13) 2018; 30
Jiao (10.1016/j.neunet.2024.106979_b25) 2021; 33
Diao (10.1016/j.neunet.2024.106979_b10) 2022
Bouguila (10.1016/j.neunet.2024.106979_b6) 2004; 13
Van der Maaten (10.1016/j.neunet.2024.106979_b50) 2008; 9
Kingma (10.1016/j.neunet.2024.106979_b28) 2013
Mukherjee (10.1016/j.neunet.2024.106979_b40) 2019; vol. 33
Figueiredo (10.1016/j.neunet.2024.106979_b17) 2002; 24
Jain (10.1016/j.neunet.2024.106979_b21) 1999; 31
Cao (10.1016/j.neunet.2024.106979_b7) 2024
Sadok (10.1016/j.neunet.2024.106979_b47) 2024; 172
Bishop (10.1016/j.neunet.2024.106979_b3) 2006
10.1016/j.neunet.2024.106979_b48
Yang (10.1016/j.neunet.2024.106979_b57) 2013; 46
Ma (10.1016/j.neunet.2024.106979_b38) 2014; 47
Larsen (10.1016/j.neunet.2024.106979_b29) 2016
McLachlan (10.1016/j.neunet.2024.106979_b39) 2019; 6
Dilokthanakul (10.1016/j.neunet.2024.106979_b11) 2016
Nguyen (10.1016/j.neunet.2024.106979_b42) 2011; 31
Rumelhart (10.1016/j.neunet.2024.106979_b46) 1986; 323
Yang (10.1016/j.neunet.2024.106979_b56) 2023; 34
Naesseth (10.1016/j.neunet.2024.106979_b41) 2017
Ma (10.1016/j.neunet.2024.106979_b37) 2011; 33
Joo (10.1016/j.neunet.2024.106979_b26) 2020; 107
Oikonomou (10.1016/j.neunet.2024.106979_b44) 1997; 27
Xiao (10.1016/j.neunet.2024.106979_b51) 2017
Lewis (10.1016/j.neunet.2024.106979_b33) 2004; 5
Yu (10.1016/j.neunet.2024.106979_b58) 2021; 33
Daneshfar (10.1016/j.neunet.2024.106979_b9) 2024; 238
Ojo (10.1016/j.neunet.2024.106979_b45) 2024; 146
Tian (10.1016/j.neunet.2024.106979_b49) 2022; 152
Li (10.1016/j.neunet.2024.106979_b34) 2022
Xie (10.1016/j.neunet.2024.106979_b52) 2016
Nguyen (10.1016/j.neunet.2024.106979_b43) 2013; 44
Leemis (10.1016/j.neunet.2024.106979_b32) 2008; 62
Jaiswal (10.1016/j.neunet.2024.106979_b22) 2018; 31
Fan (10.1016/j.neunet.2024.106979_b16) 2024; 35
Jung (10.1016/j.neunet.2024.106979_b27) 2014; 13
Bi (10.1016/j.neunet.2024.106979_b2) 2024; 171
10.1016/j.neunet.2024.106979_b24
10.1016/j.neunet.2024.106979_b20
Eklund (10.1016/j.neunet.2024.106979_b12) 1998
Jiang (10.1016/j.neunet.2024.106979_b23) 2016
Lloyd (10.1016/j.neunet.2024.106979_b35) 1982; 28
Goodfellow (10.1016/j.neunet.2024.106979_b18) 2016
Bouguila (10.1016/j.neunet.2024.106979_b4) 2012; 39
Goodfellow (10.1016/j.neunet.2024.106979_b19) 2020; 63
Bouguila (10.1016/j.neunet.2024.106979_b5) 2007; 29
References_xml – volume: 9
  year: 2008
  ident: b50
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– reference: (pp. 1965–1972).
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: b53
  article-title: Survey of clustering algorithms
  publication-title: IEEE Transactions on Neural Networks
– start-page: 478
  year: 2016
  end-page: 487
  ident: b52
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: International conference on machine learning
– volume: 238
  year: 2024
  ident: b9
  article-title: Elastic deep autoencoder for text embedding clustering by an improved graph regularization
  publication-title: Expert Systems with Applications
– volume: 33
  start-page: 7400
  year: 2021
  end-page: 7413
  ident: b25
  article-title: Temporal network embedding for link prediction via vae joint attention mechanism
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 27
  start-page: 529
  year: 1997
  end-page: 542
  ident: b44
  article-title: Prediction with the dynamic Bayesian gamma mixture model
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
– reference: (pp. 127–140).
– reference: (pp. 1753–1759).
– year: 2016
  ident: b18
  article-title: Deep learning
– volume: 33
  start-page: 2160
  year: 2011
  end-page: 2173
  ident: b37
  article-title: Bayesian estimation of beta mixture models with variational inference
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 31
  start-page: 103
  year: 2011
  end-page: 116
  ident: b42
  article-title: Robust student’s-t mixture model with spatial constraints and its application in medical image segmentation
  publication-title: IEEE Transactions on Medical Imaging
– year: 2016
  ident: b11
  article-title: Deep unsupervised clustering with gaussian mixture variational autoencoders
– volume: 39
  start-page: 6641
  year: 2012
  end-page: 6656
  ident: b4
  article-title: A finite mixture model for simultaneous high-dimensional clustering, localized feature selection and outlier rejection
  publication-title: Expert Systems with Applications
– volume: vol. 33
  start-page: 4610
  year: 2019
  end-page: 4617
  ident: b40
  article-title: Clustergan: Latent space clustering in generative adversarial networks
  publication-title: Proceedings of the AAAI conference on artificial intelligence
– start-page: 489
  year: 2017
  end-page: 498
  ident: b41
  article-title: Reparameterization gradients through acceptance-rejection sampling algorithms
  publication-title: Artificial intelligence and statistics
– volume: 155
  start-page: 155
  year: 2022
  end-page: 167
  ident: b36
  article-title: DualG-GAN, a dual-channel generator based generative adversarial network for text-to-face synthesis
  publication-title: Neural Networks
– volume: 33
  start-page: 4945
  year: 2021
  end-page: 4959
  ident: b58
  article-title: Tensorizing GAN with high-order pooling for Alzheimer’s disease assessment
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: Jiang, Z., Zheng, Y., Tan, H., Tang, B., & Zhou, H. (2017). Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering. In
– volume: 5
  start-page: 361
  year: 2004
  end-page: 397
  ident: b33
  article-title: Rcv1: A new benchmark collection for text categorization research
  publication-title: Journal of Machine Learning Research
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: b1
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b30
  article-title: Deep learning
  publication-title: nature
– volume: 46
  start-page: 1101
  year: 2013
  end-page: 1124
  ident: b57
  article-title: Multilayer graph cuts based unsupervised color–texture image segmentation using multivariate mixed student’s t-distribution and regional credibility merging
  publication-title: Pattern Recognition
– start-page: 217
  year: 1998
  end-page: 221
  ident: b12
  article-title: WWW indexation and document navigation using conceptual structures
  publication-title: 2nd IEEE conference on intelligent information processing systems
– volume: 29
  start-page: 1716
  year: 2007
  end-page: 1731
  ident: b5
  article-title: High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjæ rgaard, M. B., Dey, A., et al. (2015). Smart devices are different: Assessing and mitigatingmobile sensing heterogeneities for activity recognition. In
– volume: 33
  start-page: 340
  year: 2022
  end-page: 350
  ident: b55
  article-title: Clustering analysis via deep generative models with mixture models
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 13
  start-page: 1533
  year: 2004
  end-page: 1543
  ident: b6
  article-title: Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application
  publication-title: IEEE Transactions on Image Processing
– volume: 172
  year: 2024
  ident: b47
  article-title: A multimodal dynamical variational autoencoder for audiovisual speech representation learning
  publication-title: Neural Networks
– volume: 30
  start-page: 1683
  year: 2018
  end-page: 1694
  ident: b13
  article-title: Axially symmetric data clustering through Dirichlet process mixture models of Watson distributions
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 35
  start-page: 5566
  year: 2024
  end-page: 5576
  ident: b16
  article-title: Grouped spherical data modeling through hierarchical nonparametric bayesian models and its application to fMRI data analysis
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 28
  start-page: 129
  year: 1982
  end-page: 137
  ident: b35
  article-title: Least squares quantization in PCM
  publication-title: IEEE Transactions on Information Theory
– reference: Guo, X., Gao, L., Liu, X., & Yin, J. (2017). Improved deep embedded clustering with local structure preservation. In
– volume: 23
  start-page: 762
  year: 2012
  end-page: 774
  ident: b14
  article-title: Variational learning for finite Dirichlet mixture models and applications
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 171
  start-page: 440
  year: 2024
  end-page: 456
  ident: b2
  article-title: Top-down generation of low-resolution representations improves visual perception and imagination
  publication-title: Neural Networks
– year: 2022
  ident: b10
  article-title: ZeRGAN: Zero-reference GAN for fusion of multispectral and panchromatic images
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2024
  ident: b7
  article-title: A survey on generative diffusion models
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 6
  start-page: 355
  year: 2019
  end-page: 378
  ident: b39
  article-title: Finite mixture models
  publication-title: Annual Review of Statistics and Its Application
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b46
  article-title: Learning representations by back-propagating errors
  publication-title: nature
– year: 2016
  ident: b23
  article-title: Variational deep embedding: An unsupervised and generative approach to clustering
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b31
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– year: 2017
  ident: b51
  article-title: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms
– volume: 24
  start-page: 381
  year: 2002
  end-page: 396
  ident: b17
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2006
  ident: b3
  publication-title: Pattern recognition and machine learning
– year: 2022
  ident: b34
  article-title: Geometry-based molecular generation with deep constrained variational autoencoder
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 31
  year: 2018
  ident: b22
  article-title: Unsupervised adversarial invariance
  publication-title: Advances in Neural Information Processing Systems
– volume: 44
  start-page: 857
  year: 2013
  end-page: 869
  ident: b43
  article-title: Bounded asymmetrical student’s-t mixture model
  publication-title: IEEE Transactions on Cybernetics
– reference: Yang, X., Deng, C., Zheng, F., Yan, J., & Liu, W. (2019). Deep spectral clustering using dual autoencoder network. In
– volume: vol. 29
  year: 2016
  ident: b8
  article-title: Infogan: Interpretable representation learning by information maximizing generative adversarial nets
  publication-title: Advances in neural information processing systems
– volume: 107
  year: 2020
  ident: b26
  article-title: Dirichlet variational autoencoder
  publication-title: Pattern Recognition
– volume: 152
  start-page: 487
  year: 2022
  end-page: 498
  ident: b49
  article-title: GIU-GANs: Global information utilization for generative adversarial networks
  publication-title: Neural Networks
– volume: 44
  start-page: 9654
  year: 2022
  end-page: 9668
  ident: b15
  article-title: Unsupervised grouped axial data modeling via hierarchical Bayesian nonparametric models with Watson distributions
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 146
  year: 2024
  ident: b45
  article-title: A topic modeling and image classification framework: The generalized Dirichlet variational autoencoder
  publication-title: Pattern Recognition
– volume: 63
  start-page: 139
  year: 2020
  end-page: 144
  ident: b19
  article-title: Generative adversarial networks
  publication-title: Communications of the ACM
– reference: (pp. 4066–4075).
– volume: 34
  start-page: 6303
  year: 2023
  end-page: 6312
  ident: b56
  article-title: Deep clustering analysis via dual variational autoencoder with spherical latent embeddings
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2013
  ident: b28
  article-title: Auto-encoding variational bayes
– volume: 62
  start-page: 45
  year: 2008
  end-page: 53
  ident: b32
  article-title: Univariate distribution relationships
  publication-title: The American Statistician
– start-page: 1558
  year: 2016
  end-page: 1566
  ident: b29
  article-title: Autoencoding beyond pixels using a learned similarity metric
  publication-title: International conference on machine learning
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: b21
  article-title: Data clustering: a review
  publication-title: ACM Computing Surveys (CSUR)
– volume: 13
  start-page: 4721
  year: 2014
  end-page: 4730
  ident: b27
  article-title: Capacity and error probability analysis of diversity reception schemes over generalized-
  publication-title: IEEE Transactions on Wireless Communication
– volume: 47
  start-page: 3143
  year: 2014
  end-page: 3157
  ident: b38
  article-title: Bayesian estimation of Dirichlet mixture model with variational inference
  publication-title: Pattern Recognition
– volume: 29
  start-page: 1716
  issue: 10
  year: 2007
  ident: 10.1016/j.neunet.2024.106979_b5
  article-title: High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.1095
– year: 2022
  ident: 10.1016/j.neunet.2024.106979_b10
  article-title: ZeRGAN: Zero-reference GAN for fusion of multispectral and panchromatic images
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 152
  start-page: 487
  year: 2022
  ident: 10.1016/j.neunet.2024.106979_b49
  article-title: GIU-GANs: Global information utilization for generative adversarial networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2022.05.014
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.neunet.2024.106979_b50
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 6
  start-page: 355
  year: 2019
  ident: 10.1016/j.neunet.2024.106979_b39
  article-title: Finite mixture models
  publication-title: Annual Review of Statistics and Its Application
  doi: 10.1146/annurev-statistics-031017-100325
– volume: 31
  start-page: 103
  issue: 1
  year: 2011
  ident: 10.1016/j.neunet.2024.106979_b42
  article-title: Robust student’s-t mixture model with spatial constraints and its application in medical image segmentation
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2011.2165342
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.neunet.2024.106979_b46
  article-title: Learning representations by back-propagating errors
  publication-title: nature
  doi: 10.1038/323533a0
– volume: 34
  start-page: 6303
  issue: 9
  year: 2023
  ident: 10.1016/j.neunet.2024.106979_b56
  article-title: Deep clustering analysis via dual variational autoencoder with spherical latent embeddings
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3135460
– volume: 46
  start-page: 1101
  issue: 4
  year: 2013
  ident: 10.1016/j.neunet.2024.106979_b57
  article-title: Multilayer graph cuts based unsupervised color–texture image segmentation using multivariate mixed student’s t-distribution and regional credibility merging
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.09.024
– year: 2013
  ident: 10.1016/j.neunet.2024.106979_b28
– volume: 155
  start-page: 155
  year: 2022
  ident: 10.1016/j.neunet.2024.106979_b36
  article-title: DualG-GAN, a dual-channel generator based generative adversarial network for text-to-face synthesis
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2022.08.016
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.neunet.2024.106979_b1
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.50
– volume: vol. 29
  year: 2016
  ident: 10.1016/j.neunet.2024.106979_b8
  article-title: Infogan: Interpretable representation learning by information maximizing generative adversarial nets
– volume: 30
  start-page: 1683
  issue: 6
  year: 2018
  ident: 10.1016/j.neunet.2024.106979_b13
  article-title: Axially symmetric data clustering through Dirichlet process mixture models of Watson distributions
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2872986
– volume: 44
  start-page: 857
  issue: 6
  year: 2013
  ident: 10.1016/j.neunet.2024.106979_b43
  article-title: Bounded asymmetrical student’s-t mixture model
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2013.2273714
– start-page: 1558
  year: 2016
  ident: 10.1016/j.neunet.2024.106979_b29
  article-title: Autoencoding beyond pixels using a learned similarity metric
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.neunet.2024.106979_b21
  article-title: Data clustering: a review
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/331499.331504
– volume: 33
  start-page: 2160
  issue: 11
  year: 2011
  ident: 10.1016/j.neunet.2024.106979_b37
  article-title: Bayesian estimation of beta mixture models with variational inference
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2011.63
– volume: 62
  start-page: 45
  issue: 1
  year: 2008
  ident: 10.1016/j.neunet.2024.106979_b32
  article-title: Univariate distribution relationships
  publication-title: The American Statistician
  doi: 10.1198/000313008X270448
– ident: 10.1016/j.neunet.2024.106979_b20
  doi: 10.24963/ijcai.2017/243
– volume: 23
  start-page: 762
  issue: 5
  year: 2012
  ident: 10.1016/j.neunet.2024.106979_b14
  article-title: Variational learning for finite Dirichlet mixture models and applications
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2012.2190298
– volume: 107
  year: 2020
  ident: 10.1016/j.neunet.2024.106979_b26
  article-title: Dirichlet variational autoencoder
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107514
– year: 2016
  ident: 10.1016/j.neunet.2024.106979_b18
– volume: 27
  start-page: 529
  issue: 4
  year: 1997
  ident: 10.1016/j.neunet.2024.106979_b44
  article-title: Prediction with the dynamic Bayesian gamma mixture model
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
  doi: 10.1109/3468.594918
– year: 2022
  ident: 10.1016/j.neunet.2024.106979_b34
  article-title: Geometry-based molecular generation with deep constrained variational autoencoder
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 39
  start-page: 6641
  issue: 7
  year: 2012
  ident: 10.1016/j.neunet.2024.106979_b4
  article-title: A finite mixture model for simultaneous high-dimensional clustering, localized feature selection and outlier rejection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.12.038
– volume: 47
  start-page: 3143
  issue: 9
  year: 2014
  ident: 10.1016/j.neunet.2024.106979_b38
  article-title: Bayesian estimation of Dirichlet mixture model with variational inference
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2014.04.002
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: 10.1016/j.neunet.2024.106979_b19
  article-title: Generative adversarial networks
  publication-title: Communications of the ACM
  doi: 10.1145/3422622
– volume: 13
  start-page: 4721
  issue: 9
  year: 2014
  ident: 10.1016/j.neunet.2024.106979_b27
  article-title: Capacity and error probability analysis of diversity reception schemes over generalized-K fading channels using a mixture gamma distribution
  publication-title: IEEE Transactions on Wireless Communication
  doi: 10.1109/TWC.2014.2331691
– volume: 146
  year: 2024
  ident: 10.1016/j.neunet.2024.106979_b45
  article-title: A topic modeling and image classification framework: The generalized Dirichlet variational autoencoder
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2023.110037
– year: 2016
  ident: 10.1016/j.neunet.2024.106979_b11
– volume: 24
  start-page: 381
  issue: 3
  year: 2002
  ident: 10.1016/j.neunet.2024.106979_b17
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.990138
– year: 2017
  ident: 10.1016/j.neunet.2024.106979_b51
– volume: 171
  start-page: 440
  year: 2024
  ident: 10.1016/j.neunet.2024.106979_b2
  article-title: Top-down generation of low-resolution representations improves visual perception and imagination
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.12.030
– ident: 10.1016/j.neunet.2024.106979_b24
  doi: 10.24963/ijcai.2017/273
– volume: 33
  start-page: 340
  issue: 1
  year: 2022
  ident: 10.1016/j.neunet.2024.106979_b55
  article-title: Clustering analysis via deep generative models with mixture models
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2020.3027761
– start-page: 489
  year: 2017
  ident: 10.1016/j.neunet.2024.106979_b41
  article-title: Reparameterization gradients through acceptance-rejection sampling algorithms
– volume: 5
  start-page: 361
  issue: Apr
  year: 2004
  ident: 10.1016/j.neunet.2024.106979_b33
  article-title: Rcv1: A new benchmark collection for text categorization research
  publication-title: Journal of Machine Learning Research
– volume: 13
  start-page: 1533
  issue: 11
  year: 2004
  ident: 10.1016/j.neunet.2024.106979_b6
  article-title: Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2004.834664
– volume: 31
  year: 2018
  ident: 10.1016/j.neunet.2024.106979_b22
  article-title: Unsupervised adversarial invariance
  publication-title: Advances in Neural Information Processing Systems
– volume: 33
  start-page: 7400
  issue: 12
  year: 2021
  ident: 10.1016/j.neunet.2024.106979_b25
  article-title: Temporal network embedding for link prediction via vae joint attention mechanism
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3084957
– start-page: 478
  year: 2016
  ident: 10.1016/j.neunet.2024.106979_b52
  article-title: Unsupervised deep embedding for clustering analysis
– volume: 238
  year: 2024
  ident: 10.1016/j.neunet.2024.106979_b9
  article-title: Elastic deep autoencoder for text embedding clustering by an improved graph regularization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121780
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 10.1016/j.neunet.2024.106979_b35
  article-title: Least squares quantization in PCM
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1982.1056489
– ident: 10.1016/j.neunet.2024.106979_b48
  doi: 10.1145/2809695.2809718
– ident: 10.1016/j.neunet.2024.106979_b54
  doi: 10.1109/CVPR.2019.00419
– start-page: 217
  year: 1998
  ident: 10.1016/j.neunet.2024.106979_b12
  article-title: WWW indexation and document navigation using conceptual structures
– volume: 44
  start-page: 9654
  issue: 12
  year: 2022
  ident: 10.1016/j.neunet.2024.106979_b15
  article-title: Unsupervised grouped axial data modeling via hierarchical Bayesian nonparametric models with Watson distributions
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2021.3128271
– year: 2006
  ident: 10.1016/j.neunet.2024.106979_b3
– volume: 35
  start-page: 5566
  issue: 4
  year: 2024
  ident: 10.1016/j.neunet.2024.106979_b16
  article-title: Grouped spherical data modeling through hierarchical nonparametric bayesian models and its application to fMRI data analysis
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2022.3208202
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.neunet.2024.106979_b31
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– volume: vol. 33
  start-page: 4610
  year: 2019
  ident: 10.1016/j.neunet.2024.106979_b40
  article-title: Clustergan: Latent space clustering in generative adversarial networks
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.neunet.2024.106979_b30
  article-title: Deep learning
  publication-title: nature
  doi: 10.1038/nature14539
– volume: 172
  year: 2024
  ident: 10.1016/j.neunet.2024.106979_b47
  article-title: A multimodal dynamical variational autoencoder for audiovisual speech representation learning
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2024.106120
– volume: 33
  start-page: 4945
  issue: 9
  year: 2021
  ident: 10.1016/j.neunet.2024.106979_b58
  article-title: Tensorizing GAN with high-order pooling for Alzheimer’s disease assessment
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3063516
– year: 2016
  ident: 10.1016/j.neunet.2024.106979_b23
– year: 2024
  ident: 10.1016/j.neunet.2024.106979_b7
  article-title: A survey on generative diffusion models
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2024.3361474
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 10.1016/j.neunet.2024.106979_b53
  article-title: Survey of clustering algorithms
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2005.845141
SSID ssj0006843
Score 2.4731646
Snippet This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106979
SubjectTerms Algorithms
Autoencoder
Bayes Theorem
Cluster Analysis
Clustering
Data augmentation
Deep Learning
Gamma mixture models
Humans
Neural Networks, Computer
Normal Distribution
VAE
Variational inference
Title Deep clustering analysis via variational autoencoder with Gamma mixture latent embeddings
URI https://dx.doi.org/10.1016/j.neunet.2024.106979
https://www.ncbi.nlm.nih.gov/pubmed/39662201
https://www.proquest.com/docview/3146651768
Volume 183
WOSCitedRecordID wos001383683500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbYxoEL4zcdMBkJcalSZY4TO8cB7QBNhUMnyslyHFtK1aZlbarCX89z7KRFY9o4cIlaJ24Tv88v33t-fg-hN5GEdxAxNDBE0oAymFIyiUL4qhSXiTKhccUm2HDIx-P0q1-KWdblBFhZ8s0mXfxXUUMbCNtunf0Hcbc_Cg3wGYQORxA7HG8l-A9aL7pqWtkMCG4Hok87si5kdw2mceP-k9VqbtNY2mwStTv2TM5msjsrNvWqwhRYaLnq6lmm87z1p0-abE91uo7SBZG3vPyscgs5hdxULeoGzsf6zUapz1uAzeRPt8ndBuC0EcLvgM9XxVQ6kP7yJ7xXgsTbsCyvSDlLA8JcYaGe_ktbq32jHf0JBmrqistcUe3OyzDplbqChwPLntDe9vI_M2kPv4jBxfm5GPXHo7eLH4EtMmYX433FlT10QFicgh4_OP3UH39uX90Jdzsymhtt9lrWAYFX__g6LnOdrVJzltEDdN8bG_jUgeQhuqPLR-iwKeSBvV5_jL5bzOAtZnCDGQyYwTuYwTuYwRYzuMYM9pjBDjN4i5kn6GLQH73_GPiaG4GiIV8FGdWakSymeagzDuQ7i3mkdQRTljBqlMktQyUmiWNgupSTzDBtVBwanakc6OhTtF_OS_0cYaNVwvVJEmppbJ2DLM8pjVPKTJwpEukOiprRE8onpLd1UaaiiTycCDfmwo65cGPeQUHba-ESstxwPWsEIzypdGRRALBu6Pm6kaMAnWsX0mSp59VSREAvkvgELPUOeuYE3N5LlCYJAVZ9dIveL9C97dx5ifZXl5V-he6q9apYXh6jPTbmxx6ivwFGTbDb
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+clustering+analysis+via+variational+autoencoder+with+Gamma+mixture+latent+embeddings&rft.jtitle=Neural+networks&rft.au=Guo%2C+Jiaxun&rft.au=Fan%2C+Wentao&rft.au=Amayri%2C+Manar&rft.au=Bouguila%2C+Nizar&rft.date=2025-03-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=183&rft.spage=106979&rft_id=info:doi/10.1016%2Fj.neunet.2024.106979&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon