Deep clustering analysis via variational autoencoder with Gamma mixture latent embeddings
This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a...
Gespeichert in:
| Veröffentlicht in: | Neural networks Jg. 183; S. 106979 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Ltd
01.03.2025
|
| Schlagworte: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a prior on the latent space. We employ a more flexible asymmetric Gamma mixture model to achieve higher quality embeddings of the data latent space. Second, since the Gamma is defined for strictly positive variables, in order to exploit the reparameterization trick of VAE, we propose a transformation method from Gaussian distribution to Gamma distribution. This method can also be considered a Gamma distribution reparameterization trick, allows gradients to be backpropagated through the sampling process in the VAE. Finally, we derive the evidence lower bound (ELBO) based on the Gamma mixture model in an effective way for the stochastic gradient variational Bayesian (SGVB) estimator to optimize the proposed model. ELBO, a variational inference objective, ensures the maximization of the approximation of the posterior distribution, while SGVB is a method used to perform efficient inference and learning in VAEs. We validate the effectiveness of our model through quantitative comparisons with other state-of-the-art deep clustering models on six benchmark datasets. Moreover, due to the generative nature of VAEs, the proposed model can generate highly realistic samples of specific classes without supervised information. |
|---|---|
| AbstractList | This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a prior on the latent space. We employ a more flexible asymmetric Gamma mixture model to achieve higher quality embeddings of the data latent space. Second, since the Gamma is defined for strictly positive variables, in order to exploit the reparameterization trick of VAE, we propose a transformation method from Gaussian distribution to Gamma distribution. This method can also be considered a Gamma distribution reparameterization trick, allows gradients to be backpropagated through the sampling process in the VAE. Finally, we derive the evidence lower bound (ELBO) based on the Gamma mixture model in an effective way for the stochastic gradient variational Bayesian (SGVB) estimator to optimize the proposed model. ELBO, a variational inference objective, ensures the maximization of the approximation of the posterior distribution, while SGVB is a method used to perform efficient inference and learning in VAEs. We validate the effectiveness of our model through quantitative comparisons with other state-of-the-art deep clustering models on six benchmark datasets. Moreover, due to the generative nature of VAEs, the proposed model can generate highly realistic samples of specific classes without supervised information.This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a prior on the latent space. We employ a more flexible asymmetric Gamma mixture model to achieve higher quality embeddings of the data latent space. Second, since the Gamma is defined for strictly positive variables, in order to exploit the reparameterization trick of VAE, we propose a transformation method from Gaussian distribution to Gamma distribution. This method can also be considered a Gamma distribution reparameterization trick, allows gradients to be backpropagated through the sampling process in the VAE. Finally, we derive the evidence lower bound (ELBO) based on the Gamma mixture model in an effective way for the stochastic gradient variational Bayesian (SGVB) estimator to optimize the proposed model. ELBO, a variational inference objective, ensures the maximization of the approximation of the posterior distribution, while SGVB is a method used to perform efficient inference and learning in VAEs. We validate the effectiveness of our model through quantitative comparisons with other state-of-the-art deep clustering models on six benchmark datasets. Moreover, due to the generative nature of VAEs, the proposed model can generate highly realistic samples of specific classes without supervised information. This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a prior on the latent space. We employ a more flexible asymmetric Gamma mixture model to achieve higher quality embeddings of the data latent space. Second, since the Gamma is defined for strictly positive variables, in order to exploit the reparameterization trick of VAE, we propose a transformation method from Gaussian distribution to Gamma distribution. This method can also be considered a Gamma distribution reparameterization trick, allows gradients to be backpropagated through the sampling process in the VAE. Finally, we derive the evidence lower bound (ELBO) based on the Gamma mixture model in an effective way for the stochastic gradient variational Bayesian (SGVB) estimator to optimize the proposed model. ELBO, a variational inference objective, ensures the maximization of the approximation of the posterior distribution, while SGVB is a method used to perform efficient inference and learning in VAEs. We validate the effectiveness of our model through quantitative comparisons with other state-of-the-art deep clustering models on six benchmark datasets. Moreover, due to the generative nature of VAEs, the proposed model can generate highly realistic samples of specific classes without supervised information. |
| ArticleNumber | 106979 |
| Author | Fan, Wentao Bouguila, Nizar Guo, Jiaxun Amayri, Manar |
| Author_xml | – sequence: 1 givenname: Jiaxun orcidid: 0000-0002-6110-4562 surname: Guo fullname: Guo, Jiaxun email: g_jiax@encs.concordia.ca organization: CIISE, Concordia University, Montreal, H3G 1T7, QC, Canada – sequence: 2 givenname: Wentao orcidid: 0000-0001-6694-7289 surname: Fan fullname: Fan, Wentao email: wentaofan@uic.edu.cn organization: Guangdong Provincial Key Laboratory IRADS and Department of Computer Science, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China – sequence: 3 givenname: Manar surname: Amayri fullname: Amayri, Manar email: manar.amayri@concordia.ca organization: CIISE, Concordia University, Montreal, H3G 1T7, QC, Canada – sequence: 4 givenname: Nizar orcidid: 0000-0001-7224-7940 surname: Bouguila fullname: Bouguila, Nizar email: nizar.bouguila@concordia.ca organization: CIISE, Concordia University, Montreal, H3G 1T7, QC, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39662201$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkEFvFSEUhYlpY1-r_8AYlm7mCQwwjAsTU7WaNOmmLlwRBi7KywzzBOa1_ffSTnXhwq5ucvKdk9zvFB3FOQJCryjZUkLl2902whKhbBlhvEay7_pnaENV1zesU-wIbYjq20YSRU7Qac47QohUvH2OTtpeSsYI3aDvHwH22I5LLpBC_IFNNONdDhkfgsEHk4IpYa4ZNkuZIdrZQcI3ofzEF2aaDJ7CbVkS4NEUiAXDNIBzdSi_QMfejBlePt4z9O3zp-vzL83l1cXX8w-XjeVElWbgAB0bBHcEBkWJGIRqAVriKeu4t97JVgjmpRD1G67Y4DvwVhAPg3Udb8_Qm3V3n-ZfC-Sip5AtjKOJMC9Zt5RLKWgnVUVfP6LLMIHT-xQmk-70Hx0V4Ctg05xzAv8XoUTfW9c7vVrX99b1ar3W3v1Ts6E8eCvJhPGp8vu1DFXSIUDS2YYqGlxIYIt2c_j_wG_i6KFV |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3600986 crossref_primary_10_1016_j_oceaneng_2025_121691 crossref_primary_10_1016_j_eswa_2025_128578 |
| Cites_doi | 10.1109/TPAMI.2007.1095 10.1016/j.neunet.2022.05.014 10.1146/annurev-statistics-031017-100325 10.1109/TMI.2011.2165342 10.1038/323533a0 10.1109/TNNLS.2021.3135460 10.1016/j.patcog.2012.09.024 10.1016/j.neunet.2022.08.016 10.1109/TPAMI.2013.50 10.1109/TNNLS.2018.2872986 10.1109/TCYB.2013.2273714 10.1145/331499.331504 10.1109/TPAMI.2011.63 10.1198/000313008X270448 10.24963/ijcai.2017/243 10.1109/TNNLS.2012.2190298 10.1016/j.patcog.2020.107514 10.1109/3468.594918 10.1016/j.eswa.2011.12.038 10.1016/j.patcog.2014.04.002 10.1145/3422622 10.1109/TWC.2014.2331691 10.1016/j.patcog.2023.110037 10.1109/34.990138 10.1016/j.neunet.2023.12.030 10.24963/ijcai.2017/273 10.1109/TNNLS.2020.3027761 10.1109/TIP.2004.834664 10.1109/TNNLS.2021.3084957 10.1016/j.eswa.2023.121780 10.1109/TIT.1982.1056489 10.1145/2809695.2809718 10.1109/CVPR.2019.00419 10.1109/TPAMI.2021.3128271 10.1109/TNNLS.2022.3208202 10.1109/5.726791 10.1038/nature14539 10.1016/j.neunet.2024.106120 10.1109/TNNLS.2021.3063516 10.1109/TKDE.2024.3361474 10.1109/TNN.2005.845141 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neunet.2024.106979 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1879-2782 |
| ExternalDocumentID | 39662201 10_1016_j_neunet_2024_106979 S0893608024009080 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6I. 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABDPE ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADNMO ADRHT AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- 9DU AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c408t-b4ee72b54d0eb8105b583ee30f1274fcfd63552f655893482bf7efc50febcd743 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001383683500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0893-6080 1879-2782 |
| IngestDate | Sun Sep 28 02:12:39 EDT 2025 Mon Jul 21 05:56:16 EDT 2025 Sat Nov 29 05:33:11 EST 2025 Tue Nov 18 22:35:00 EST 2025 Sat Jan 25 15:59:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Gamma mixture models Data augmentation VAE Variational inference Clustering |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c408t-b4ee72b54d0eb8105b583ee30f1274fcfd63552f655893482bf7efc50febcd743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6694-7289 0000-0002-6110-4562 0000-0001-7224-7940 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.neunet.2024.106979 |
| PMID | 39662201 |
| PQID | 3146651768 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3146651768 pubmed_primary_39662201 crossref_primary_10_1016_j_neunet_2024_106979 crossref_citationtrail_10_1016_j_neunet_2024_106979 elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106979 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Larsen, Sønderby, Larochelle, Winther (b29) 2016 (pp. 1753–1759). Yang, Fan, Bouguila (b56) 2023; 34 Yang, X., Deng, C., Zheng, F., Yan, J., & Liu, W. (2019). Deep spectral clustering using dual autoencoder network. In Bouguila, Ziou, Vaillancourt (b6) 2004; 13 Yu, Lei, Ng, Cheung, Shen, Wang (b58) 2021; 33 Bishop, Nasrabadi (b3) 2006 LeCun, Bengio, Hinton (b30) 2015; 521 Diao, Zhang, Sun, Xing, Zhang, Bruzzone (b10) 2022 Li, Yao, Wei, Niu, Zeng, Li (b34) 2022 Ma, Rana, Taghia, Flierl, Leijon (b38) 2014; 47 Bouguila, Ziou (b5) 2007; 29 Ma, Leijon (b37) 2011; 33 Nguyen, Wu (b43) 2013; 44 Figueiredo, Jain (b17) 2002; 24 Jaiswal, Wu, Abd-Almageed, Natarajan (b22) 2018; 31 Kingma, Welling (b28) 2013 Mukherjee, Asnani, Lin, Kannan (b40) 2019; vol. 33 Fan, Bouguila, Ziou (b14) 2012; 23 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair (b19) 2020; 63 Jiao, Guo, Jing, He, Wu, Pan (b25) 2021; 33 Guo, X., Gao, L., Liu, X., & Yin, J. (2017). Improved deep embedded clustering with local structure preservation. In Rumelhart, Hinton, Williams (b46) 1986; 323 Joo, Lee, Park, Moon (b26) 2020; 107 Bengio, Courville, Vincent (b1) 2013; 35 Eklund, Martin (b12) 1998 Goodfellow, Bengio, Courville (b18) 2016 Yang, Fan, Bouguila (b55) 2022; 33 Daneshfar, Soleymanbaigi, Nafisi, Yamini (b9) 2024; 238 Luo, He, Chen, Qing, Zhang (b36) 2022; 155 Bouguila, Almakadmeh, Boutemedjet (b4) 2012; 39 Fan, Bouguila, Du, Liu (b13) 2018; 30 (pp. 1965–1972). LeCun, Bottou, Bengio, Haffner (b31) 1998; 86 Tian, Gong, Tang, Su, Liu, Zhang (b49) 2022; 152 McLachlan, Lee, Rathnayake (b39) 2019; 6 Leemis, McQueston (b32) 2008; 62 (pp. 4066–4075). Xu, Wunsch (b53) 2005; 16 Jain, Murty, Flynn (b21) 1999; 31 Fan, Yang, Bouguila (b16) 2024; 35 Oikonomou (b44) 1997; 27 Chen, Duan, Houthooft, Schulman, Sutskever, Abbeel (b8) 2016; vol. 29 Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjæ rgaard, M. B., Dey, A., et al. (2015). Smart devices are different: Assessing and mitigatingmobile sensing heterogeneities for activity recognition. In Jiang, Z., Zheng, Y., Tan, H., Tang, B., & Zhou, H. (2017). Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering. In Naesseth, Ruiz, Linderman, Blei (b41) 2017 Bi, Li, Tian (b2) 2024; 171 Xie, Girshick, Farhadi (b52) 2016 Dilokthanakul, Mediano, Garnelo, Lee, Salimbeni, Arulkumaran (b11) 2016 Sadok, Leglaive, Girin, Alameda-Pineda, Séguier (b47) 2024; 172 Lloyd (b35) 1982; 28 Ojo, Bouguila (b45) 2024; 146 Jung, Lee, Park, Lee, Lee (b27) 2014; 13 Cao, Tan, Gao, Xu, Chen, Heng (b7) 2024 Lewis, Yang, Russell-Rose, Li (b33) 2004; 5 Jiang, Zheng, Tan, Tang, Zhou (b23) 2016 (pp. 127–140). Xiao, Rasul, Vollgraf (b51) 2017 Nguyen, Wu (b42) 2011; 31 Fan, Yang, Bouguila (b15) 2022; 44 Yang, Han, Wang, Tao, Tai (b57) 2013; 46 Van der Maaten, Hinton (b50) 2008; 9 Bengio (10.1016/j.neunet.2024.106979_b1) 2013; 35 Fan (10.1016/j.neunet.2024.106979_b14) 2012; 23 Luo (10.1016/j.neunet.2024.106979_b36) 2022; 155 Fan (10.1016/j.neunet.2024.106979_b15) 2022; 44 Yang (10.1016/j.neunet.2024.106979_b55) 2022; 33 LeCun (10.1016/j.neunet.2024.106979_b30) 2015; 521 10.1016/j.neunet.2024.106979_b54 LeCun (10.1016/j.neunet.2024.106979_b31) 1998; 86 Chen (10.1016/j.neunet.2024.106979_b8) 2016; vol. 29 Xu (10.1016/j.neunet.2024.106979_b53) 2005; 16 Fan (10.1016/j.neunet.2024.106979_b13) 2018; 30 Jiao (10.1016/j.neunet.2024.106979_b25) 2021; 33 Diao (10.1016/j.neunet.2024.106979_b10) 2022 Bouguila (10.1016/j.neunet.2024.106979_b6) 2004; 13 Van der Maaten (10.1016/j.neunet.2024.106979_b50) 2008; 9 Kingma (10.1016/j.neunet.2024.106979_b28) 2013 Mukherjee (10.1016/j.neunet.2024.106979_b40) 2019; vol. 33 Figueiredo (10.1016/j.neunet.2024.106979_b17) 2002; 24 Jain (10.1016/j.neunet.2024.106979_b21) 1999; 31 Cao (10.1016/j.neunet.2024.106979_b7) 2024 Sadok (10.1016/j.neunet.2024.106979_b47) 2024; 172 Bishop (10.1016/j.neunet.2024.106979_b3) 2006 10.1016/j.neunet.2024.106979_b48 Yang (10.1016/j.neunet.2024.106979_b57) 2013; 46 Ma (10.1016/j.neunet.2024.106979_b38) 2014; 47 Larsen (10.1016/j.neunet.2024.106979_b29) 2016 McLachlan (10.1016/j.neunet.2024.106979_b39) 2019; 6 Dilokthanakul (10.1016/j.neunet.2024.106979_b11) 2016 Nguyen (10.1016/j.neunet.2024.106979_b42) 2011; 31 Rumelhart (10.1016/j.neunet.2024.106979_b46) 1986; 323 Yang (10.1016/j.neunet.2024.106979_b56) 2023; 34 Naesseth (10.1016/j.neunet.2024.106979_b41) 2017 Ma (10.1016/j.neunet.2024.106979_b37) 2011; 33 Joo (10.1016/j.neunet.2024.106979_b26) 2020; 107 Oikonomou (10.1016/j.neunet.2024.106979_b44) 1997; 27 Xiao (10.1016/j.neunet.2024.106979_b51) 2017 Lewis (10.1016/j.neunet.2024.106979_b33) 2004; 5 Yu (10.1016/j.neunet.2024.106979_b58) 2021; 33 Daneshfar (10.1016/j.neunet.2024.106979_b9) 2024; 238 Ojo (10.1016/j.neunet.2024.106979_b45) 2024; 146 Tian (10.1016/j.neunet.2024.106979_b49) 2022; 152 Li (10.1016/j.neunet.2024.106979_b34) 2022 Xie (10.1016/j.neunet.2024.106979_b52) 2016 Nguyen (10.1016/j.neunet.2024.106979_b43) 2013; 44 Leemis (10.1016/j.neunet.2024.106979_b32) 2008; 62 Jaiswal (10.1016/j.neunet.2024.106979_b22) 2018; 31 Fan (10.1016/j.neunet.2024.106979_b16) 2024; 35 Jung (10.1016/j.neunet.2024.106979_b27) 2014; 13 Bi (10.1016/j.neunet.2024.106979_b2) 2024; 171 10.1016/j.neunet.2024.106979_b24 10.1016/j.neunet.2024.106979_b20 Eklund (10.1016/j.neunet.2024.106979_b12) 1998 Jiang (10.1016/j.neunet.2024.106979_b23) 2016 Lloyd (10.1016/j.neunet.2024.106979_b35) 1982; 28 Goodfellow (10.1016/j.neunet.2024.106979_b18) 2016 Bouguila (10.1016/j.neunet.2024.106979_b4) 2012; 39 Goodfellow (10.1016/j.neunet.2024.106979_b19) 2020; 63 Bouguila (10.1016/j.neunet.2024.106979_b5) 2007; 29 |
| References_xml | – volume: 9 year: 2008 ident: b50 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – reference: (pp. 1965–1972). – volume: 16 start-page: 645 year: 2005 end-page: 678 ident: b53 article-title: Survey of clustering algorithms publication-title: IEEE Transactions on Neural Networks – start-page: 478 year: 2016 end-page: 487 ident: b52 article-title: Unsupervised deep embedding for clustering analysis publication-title: International conference on machine learning – volume: 238 year: 2024 ident: b9 article-title: Elastic deep autoencoder for text embedding clustering by an improved graph regularization publication-title: Expert Systems with Applications – volume: 33 start-page: 7400 year: 2021 end-page: 7413 ident: b25 article-title: Temporal network embedding for link prediction via vae joint attention mechanism publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 27 start-page: 529 year: 1997 end-page: 542 ident: b44 article-title: Prediction with the dynamic Bayesian gamma mixture model publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans – reference: (pp. 127–140). – reference: (pp. 1753–1759). – year: 2016 ident: b18 article-title: Deep learning – volume: 33 start-page: 2160 year: 2011 end-page: 2173 ident: b37 article-title: Bayesian estimation of beta mixture models with variational inference publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 31 start-page: 103 year: 2011 end-page: 116 ident: b42 article-title: Robust student’s-t mixture model with spatial constraints and its application in medical image segmentation publication-title: IEEE Transactions on Medical Imaging – year: 2016 ident: b11 article-title: Deep unsupervised clustering with gaussian mixture variational autoencoders – volume: 39 start-page: 6641 year: 2012 end-page: 6656 ident: b4 article-title: A finite mixture model for simultaneous high-dimensional clustering, localized feature selection and outlier rejection publication-title: Expert Systems with Applications – volume: vol. 33 start-page: 4610 year: 2019 end-page: 4617 ident: b40 article-title: Clustergan: Latent space clustering in generative adversarial networks publication-title: Proceedings of the AAAI conference on artificial intelligence – start-page: 489 year: 2017 end-page: 498 ident: b41 article-title: Reparameterization gradients through acceptance-rejection sampling algorithms publication-title: Artificial intelligence and statistics – volume: 155 start-page: 155 year: 2022 end-page: 167 ident: b36 article-title: DualG-GAN, a dual-channel generator based generative adversarial network for text-to-face synthesis publication-title: Neural Networks – volume: 33 start-page: 4945 year: 2021 end-page: 4959 ident: b58 article-title: Tensorizing GAN with high-order pooling for Alzheimer’s disease assessment publication-title: IEEE Transactions on Neural Networks and Learning Systems – reference: Jiang, Z., Zheng, Y., Tan, H., Tang, B., & Zhou, H. (2017). Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering. In – volume: 5 start-page: 361 year: 2004 end-page: 397 ident: b33 article-title: Rcv1: A new benchmark collection for text categorization research publication-title: Journal of Machine Learning Research – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: b1 article-title: Representation learning: A review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b30 article-title: Deep learning publication-title: nature – volume: 46 start-page: 1101 year: 2013 end-page: 1124 ident: b57 article-title: Multilayer graph cuts based unsupervised color–texture image segmentation using multivariate mixed student’s t-distribution and regional credibility merging publication-title: Pattern Recognition – start-page: 217 year: 1998 end-page: 221 ident: b12 article-title: WWW indexation and document navigation using conceptual structures publication-title: 2nd IEEE conference on intelligent information processing systems – volume: 29 start-page: 1716 year: 2007 end-page: 1731 ident: b5 article-title: High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjæ rgaard, M. B., Dey, A., et al. (2015). Smart devices are different: Assessing and mitigatingmobile sensing heterogeneities for activity recognition. In – volume: 33 start-page: 340 year: 2022 end-page: 350 ident: b55 article-title: Clustering analysis via deep generative models with mixture models publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 13 start-page: 1533 year: 2004 end-page: 1543 ident: b6 article-title: Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application publication-title: IEEE Transactions on Image Processing – volume: 172 year: 2024 ident: b47 article-title: A multimodal dynamical variational autoencoder for audiovisual speech representation learning publication-title: Neural Networks – volume: 30 start-page: 1683 year: 2018 end-page: 1694 ident: b13 article-title: Axially symmetric data clustering through Dirichlet process mixture models of Watson distributions publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 35 start-page: 5566 year: 2024 end-page: 5576 ident: b16 article-title: Grouped spherical data modeling through hierarchical nonparametric bayesian models and its application to fMRI data analysis publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 28 start-page: 129 year: 1982 end-page: 137 ident: b35 article-title: Least squares quantization in PCM publication-title: IEEE Transactions on Information Theory – reference: Guo, X., Gao, L., Liu, X., & Yin, J. (2017). Improved deep embedded clustering with local structure preservation. In – volume: 23 start-page: 762 year: 2012 end-page: 774 ident: b14 article-title: Variational learning for finite Dirichlet mixture models and applications publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 171 start-page: 440 year: 2024 end-page: 456 ident: b2 article-title: Top-down generation of low-resolution representations improves visual perception and imagination publication-title: Neural Networks – year: 2022 ident: b10 article-title: ZeRGAN: Zero-reference GAN for fusion of multispectral and panchromatic images publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2024 ident: b7 article-title: A survey on generative diffusion models publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 6 start-page: 355 year: 2019 end-page: 378 ident: b39 article-title: Finite mixture models publication-title: Annual Review of Statistics and Its Application – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b46 article-title: Learning representations by back-propagating errors publication-title: nature – year: 2016 ident: b23 article-title: Variational deep embedding: An unsupervised and generative approach to clustering – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b31 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE – year: 2017 ident: b51 article-title: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms – volume: 24 start-page: 381 year: 2002 end-page: 396 ident: b17 article-title: Unsupervised learning of finite mixture models publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2006 ident: b3 publication-title: Pattern recognition and machine learning – year: 2022 ident: b34 article-title: Geometry-based molecular generation with deep constrained variational autoencoder publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 31 year: 2018 ident: b22 article-title: Unsupervised adversarial invariance publication-title: Advances in Neural Information Processing Systems – volume: 44 start-page: 857 year: 2013 end-page: 869 ident: b43 article-title: Bounded asymmetrical student’s-t mixture model publication-title: IEEE Transactions on Cybernetics – reference: Yang, X., Deng, C., Zheng, F., Yan, J., & Liu, W. (2019). Deep spectral clustering using dual autoencoder network. In – volume: vol. 29 year: 2016 ident: b8 article-title: Infogan: Interpretable representation learning by information maximizing generative adversarial nets publication-title: Advances in neural information processing systems – volume: 107 year: 2020 ident: b26 article-title: Dirichlet variational autoencoder publication-title: Pattern Recognition – volume: 152 start-page: 487 year: 2022 end-page: 498 ident: b49 article-title: GIU-GANs: Global information utilization for generative adversarial networks publication-title: Neural Networks – volume: 44 start-page: 9654 year: 2022 end-page: 9668 ident: b15 article-title: Unsupervised grouped axial data modeling via hierarchical Bayesian nonparametric models with Watson distributions publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 146 year: 2024 ident: b45 article-title: A topic modeling and image classification framework: The generalized Dirichlet variational autoencoder publication-title: Pattern Recognition – volume: 63 start-page: 139 year: 2020 end-page: 144 ident: b19 article-title: Generative adversarial networks publication-title: Communications of the ACM – reference: (pp. 4066–4075). – volume: 34 start-page: 6303 year: 2023 end-page: 6312 ident: b56 article-title: Deep clustering analysis via dual variational autoencoder with spherical latent embeddings publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2013 ident: b28 article-title: Auto-encoding variational bayes – volume: 62 start-page: 45 year: 2008 end-page: 53 ident: b32 article-title: Univariate distribution relationships publication-title: The American Statistician – start-page: 1558 year: 2016 end-page: 1566 ident: b29 article-title: Autoencoding beyond pixels using a learned similarity metric publication-title: International conference on machine learning – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: b21 article-title: Data clustering: a review publication-title: ACM Computing Surveys (CSUR) – volume: 13 start-page: 4721 year: 2014 end-page: 4730 ident: b27 article-title: Capacity and error probability analysis of diversity reception schemes over generalized- publication-title: IEEE Transactions on Wireless Communication – volume: 47 start-page: 3143 year: 2014 end-page: 3157 ident: b38 article-title: Bayesian estimation of Dirichlet mixture model with variational inference publication-title: Pattern Recognition – volume: 29 start-page: 1716 issue: 10 year: 2007 ident: 10.1016/j.neunet.2024.106979_b5 article-title: High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2007.1095 – year: 2022 ident: 10.1016/j.neunet.2024.106979_b10 article-title: ZeRGAN: Zero-reference GAN for fusion of multispectral and panchromatic images publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 152 start-page: 487 year: 2022 ident: 10.1016/j.neunet.2024.106979_b49 article-title: GIU-GANs: Global information utilization for generative adversarial networks publication-title: Neural Networks doi: 10.1016/j.neunet.2022.05.014 – volume: 9 issue: 11 year: 2008 ident: 10.1016/j.neunet.2024.106979_b50 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – volume: 6 start-page: 355 year: 2019 ident: 10.1016/j.neunet.2024.106979_b39 article-title: Finite mixture models publication-title: Annual Review of Statistics and Its Application doi: 10.1146/annurev-statistics-031017-100325 – volume: 31 start-page: 103 issue: 1 year: 2011 ident: 10.1016/j.neunet.2024.106979_b42 article-title: Robust student’s-t mixture model with spatial constraints and its application in medical image segmentation publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2011.2165342 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.neunet.2024.106979_b46 article-title: Learning representations by back-propagating errors publication-title: nature doi: 10.1038/323533a0 – volume: 34 start-page: 6303 issue: 9 year: 2023 ident: 10.1016/j.neunet.2024.106979_b56 article-title: Deep clustering analysis via dual variational autoencoder with spherical latent embeddings publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3135460 – volume: 46 start-page: 1101 issue: 4 year: 2013 ident: 10.1016/j.neunet.2024.106979_b57 article-title: Multilayer graph cuts based unsupervised color–texture image segmentation using multivariate mixed student’s t-distribution and regional credibility merging publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.09.024 – year: 2013 ident: 10.1016/j.neunet.2024.106979_b28 – volume: 155 start-page: 155 year: 2022 ident: 10.1016/j.neunet.2024.106979_b36 article-title: DualG-GAN, a dual-channel generator based generative adversarial network for text-to-face synthesis publication-title: Neural Networks doi: 10.1016/j.neunet.2022.08.016 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 10.1016/j.neunet.2024.106979_b1 article-title: Representation learning: A review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2013.50 – volume: vol. 29 year: 2016 ident: 10.1016/j.neunet.2024.106979_b8 article-title: Infogan: Interpretable representation learning by information maximizing generative adversarial nets – volume: 30 start-page: 1683 issue: 6 year: 2018 ident: 10.1016/j.neunet.2024.106979_b13 article-title: Axially symmetric data clustering through Dirichlet process mixture models of Watson distributions publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2872986 – volume: 44 start-page: 857 issue: 6 year: 2013 ident: 10.1016/j.neunet.2024.106979_b43 article-title: Bounded asymmetrical student’s-t mixture model publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2273714 – start-page: 1558 year: 2016 ident: 10.1016/j.neunet.2024.106979_b29 article-title: Autoencoding beyond pixels using a learned similarity metric – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 10.1016/j.neunet.2024.106979_b21 article-title: Data clustering: a review publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/331499.331504 – volume: 33 start-page: 2160 issue: 11 year: 2011 ident: 10.1016/j.neunet.2024.106979_b37 article-title: Bayesian estimation of beta mixture models with variational inference publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2011.63 – volume: 62 start-page: 45 issue: 1 year: 2008 ident: 10.1016/j.neunet.2024.106979_b32 article-title: Univariate distribution relationships publication-title: The American Statistician doi: 10.1198/000313008X270448 – ident: 10.1016/j.neunet.2024.106979_b20 doi: 10.24963/ijcai.2017/243 – volume: 23 start-page: 762 issue: 5 year: 2012 ident: 10.1016/j.neunet.2024.106979_b14 article-title: Variational learning for finite Dirichlet mixture models and applications publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2012.2190298 – volume: 107 year: 2020 ident: 10.1016/j.neunet.2024.106979_b26 article-title: Dirichlet variational autoencoder publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107514 – year: 2016 ident: 10.1016/j.neunet.2024.106979_b18 – volume: 27 start-page: 529 issue: 4 year: 1997 ident: 10.1016/j.neunet.2024.106979_b44 article-title: Prediction with the dynamic Bayesian gamma mixture model publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans doi: 10.1109/3468.594918 – year: 2022 ident: 10.1016/j.neunet.2024.106979_b34 article-title: Geometry-based molecular generation with deep constrained variational autoencoder publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 39 start-page: 6641 issue: 7 year: 2012 ident: 10.1016/j.neunet.2024.106979_b4 article-title: A finite mixture model for simultaneous high-dimensional clustering, localized feature selection and outlier rejection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.12.038 – volume: 47 start-page: 3143 issue: 9 year: 2014 ident: 10.1016/j.neunet.2024.106979_b38 article-title: Bayesian estimation of Dirichlet mixture model with variational inference publication-title: Pattern Recognition doi: 10.1016/j.patcog.2014.04.002 – volume: 63 start-page: 139 issue: 11 year: 2020 ident: 10.1016/j.neunet.2024.106979_b19 article-title: Generative adversarial networks publication-title: Communications of the ACM doi: 10.1145/3422622 – volume: 13 start-page: 4721 issue: 9 year: 2014 ident: 10.1016/j.neunet.2024.106979_b27 article-title: Capacity and error probability analysis of diversity reception schemes over generalized-K fading channels using a mixture gamma distribution publication-title: IEEE Transactions on Wireless Communication doi: 10.1109/TWC.2014.2331691 – volume: 146 year: 2024 ident: 10.1016/j.neunet.2024.106979_b45 article-title: A topic modeling and image classification framework: The generalized Dirichlet variational autoencoder publication-title: Pattern Recognition doi: 10.1016/j.patcog.2023.110037 – year: 2016 ident: 10.1016/j.neunet.2024.106979_b11 – volume: 24 start-page: 381 issue: 3 year: 2002 ident: 10.1016/j.neunet.2024.106979_b17 article-title: Unsupervised learning of finite mixture models publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.990138 – year: 2017 ident: 10.1016/j.neunet.2024.106979_b51 – volume: 171 start-page: 440 year: 2024 ident: 10.1016/j.neunet.2024.106979_b2 article-title: Top-down generation of low-resolution representations improves visual perception and imagination publication-title: Neural Networks doi: 10.1016/j.neunet.2023.12.030 – ident: 10.1016/j.neunet.2024.106979_b24 doi: 10.24963/ijcai.2017/273 – volume: 33 start-page: 340 issue: 1 year: 2022 ident: 10.1016/j.neunet.2024.106979_b55 article-title: Clustering analysis via deep generative models with mixture models publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2020.3027761 – start-page: 489 year: 2017 ident: 10.1016/j.neunet.2024.106979_b41 article-title: Reparameterization gradients through acceptance-rejection sampling algorithms – volume: 5 start-page: 361 issue: Apr year: 2004 ident: 10.1016/j.neunet.2024.106979_b33 article-title: Rcv1: A new benchmark collection for text categorization research publication-title: Journal of Machine Learning Research – volume: 13 start-page: 1533 issue: 11 year: 2004 ident: 10.1016/j.neunet.2024.106979_b6 article-title: Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2004.834664 – volume: 31 year: 2018 ident: 10.1016/j.neunet.2024.106979_b22 article-title: Unsupervised adversarial invariance publication-title: Advances in Neural Information Processing Systems – volume: 33 start-page: 7400 issue: 12 year: 2021 ident: 10.1016/j.neunet.2024.106979_b25 article-title: Temporal network embedding for link prediction via vae joint attention mechanism publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3084957 – start-page: 478 year: 2016 ident: 10.1016/j.neunet.2024.106979_b52 article-title: Unsupervised deep embedding for clustering analysis – volume: 238 year: 2024 ident: 10.1016/j.neunet.2024.106979_b9 article-title: Elastic deep autoencoder for text embedding clustering by an improved graph regularization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121780 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 10.1016/j.neunet.2024.106979_b35 article-title: Least squares quantization in PCM publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1982.1056489 – ident: 10.1016/j.neunet.2024.106979_b48 doi: 10.1145/2809695.2809718 – ident: 10.1016/j.neunet.2024.106979_b54 doi: 10.1109/CVPR.2019.00419 – start-page: 217 year: 1998 ident: 10.1016/j.neunet.2024.106979_b12 article-title: WWW indexation and document navigation using conceptual structures – volume: 44 start-page: 9654 issue: 12 year: 2022 ident: 10.1016/j.neunet.2024.106979_b15 article-title: Unsupervised grouped axial data modeling via hierarchical Bayesian nonparametric models with Watson distributions publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2021.3128271 – year: 2006 ident: 10.1016/j.neunet.2024.106979_b3 – volume: 35 start-page: 5566 issue: 4 year: 2024 ident: 10.1016/j.neunet.2024.106979_b16 article-title: Grouped spherical data modeling through hierarchical nonparametric bayesian models and its application to fMRI data analysis publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2022.3208202 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.neunet.2024.106979_b31 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – volume: vol. 33 start-page: 4610 year: 2019 ident: 10.1016/j.neunet.2024.106979_b40 article-title: Clustergan: Latent space clustering in generative adversarial networks – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.neunet.2024.106979_b30 article-title: Deep learning publication-title: nature doi: 10.1038/nature14539 – volume: 172 year: 2024 ident: 10.1016/j.neunet.2024.106979_b47 article-title: A multimodal dynamical variational autoencoder for audiovisual speech representation learning publication-title: Neural Networks doi: 10.1016/j.neunet.2024.106120 – volume: 33 start-page: 4945 issue: 9 year: 2021 ident: 10.1016/j.neunet.2024.106979_b58 article-title: Tensorizing GAN with high-order pooling for Alzheimer’s disease assessment publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3063516 – year: 2016 ident: 10.1016/j.neunet.2024.106979_b23 – year: 2024 ident: 10.1016/j.neunet.2024.106979_b7 article-title: A survey on generative diffusion models publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2024.3361474 – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 10.1016/j.neunet.2024.106979_b53 article-title: Survey of clustering algorithms publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2005.845141 |
| SSID | ssj0006843 |
| Score | 2.4731646 |
| Snippet | This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 106979 |
| SubjectTerms | Algorithms Autoencoder Bayes Theorem Cluster Analysis Clustering Data augmentation Deep Learning Gamma mixture models Humans Neural Networks, Computer Normal Distribution VAE Variational inference |
| Title | Deep clustering analysis via variational autoencoder with Gamma mixture latent embeddings |
| URI | https://dx.doi.org/10.1016/j.neunet.2024.106979 https://www.ncbi.nlm.nih.gov/pubmed/39662201 https://www.proquest.com/docview/3146651768 |
| Volume | 183 |
| WOSCitedRecordID | wos001383683500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbYxoEL4zcdMBkJcalSZY4TO8cB7QBNhUMnyslyHFtK1aZlbarCX89z7KRFY9o4cIlaJ24Tv88v33t-fg-hN5GEdxAxNDBE0oAymFIyiUL4qhSXiTKhccUm2HDIx-P0q1-KWdblBFhZ8s0mXfxXUUMbCNtunf0Hcbc_Cg3wGYQORxA7HG8l-A9aL7pqWtkMCG4Hok87si5kdw2mceP-k9VqbtNY2mwStTv2TM5msjsrNvWqwhRYaLnq6lmm87z1p0-abE91uo7SBZG3vPyscgs5hdxULeoGzsf6zUapz1uAzeRPt8ndBuC0EcLvgM9XxVQ6kP7yJ7xXgsTbsCyvSDlLA8JcYaGe_ktbq32jHf0JBmrqistcUe3OyzDplbqChwPLntDe9vI_M2kPv4jBxfm5GPXHo7eLH4EtMmYX433FlT10QFicgh4_OP3UH39uX90Jdzsymhtt9lrWAYFX__g6LnOdrVJzltEDdN8bG_jUgeQhuqPLR-iwKeSBvV5_jL5bzOAtZnCDGQyYwTuYwTuYwRYzuMYM9pjBDjN4i5kn6GLQH73_GPiaG4GiIV8FGdWakSymeagzDuQ7i3mkdQRTljBqlMktQyUmiWNgupSTzDBtVBwanakc6OhTtF_OS_0cYaNVwvVJEmppbJ2DLM8pjVPKTJwpEukOiprRE8onpLd1UaaiiTycCDfmwo65cGPeQUHba-ESstxwPWsEIzypdGRRALBu6Pm6kaMAnWsX0mSp59VSREAvkvgELPUOeuYE3N5LlCYJAVZ9dIveL9C97dx5ifZXl5V-he6q9apYXh6jPTbmxx6ivwFGTbDb |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+clustering+analysis+via+variational+autoencoder+with+Gamma+mixture+latent+embeddings&rft.jtitle=Neural+networks&rft.au=Guo%2C+Jiaxun&rft.au=Fan%2C+Wentao&rft.au=Amayri%2C+Manar&rft.au=Bouguila%2C+Nizar&rft.date=2025-03-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=183&rft.spage=106979&rft_id=info:doi/10.1016%2Fj.neunet.2024.106979&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |