Emergency Logistics Scheduling Under Uncertain Transportation Time Using Online Optimization Methods

In the immediate aftermath of large-scale disasters, emergency logistics services play important roles in saving lives and reducing losses. Efficient relief logistics scheduling depends on the accurate transport time information for available routes. However, this information cannot be obtained prec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 9; S. 36995 - 37010
Hauptverfasser: Zhang, Yutong, Liu, Jing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the immediate aftermath of large-scale disasters, emergency logistics services play important roles in saving lives and reducing losses. Efficient relief logistics scheduling depends on the accurate transport time information for available routes. However, this information cannot be obtained precisely until a vehicle uses the road. Considering the correlation between information acquisition and logistics operations, this paper focuses on a multiperiod online decision-making problem to simulate the information acquiring process. This problem can be referenced for emergency resource scheduling scenarios in which previous decisions impact knowledge for future logistics plans. A multi-trip cumulative capacitated vehicle routing problem with uncertain transportation time is investigated as the basic model. The tradeoff between transportation efficiency and the unknown transport time discovery rate is considered in a multiobjective evolutionary algorithm (MOEA). A memetic algorithm (MA) and a robust optimization (RO) -MA for single-period post-disaster emergency logistics are also proposed to solve the problem for comparison. In these algorithms, evolutionary operators that benefit solution fixing and variation are proposed. In the experiments, a real-world instance is employed. A simulative experimental environment is established. Dynamic information gained within the process of logistics scheduling is highlighted via multi-period online optimization. Different scenarios corresponding to estimates in emergency situations are provided to validate the performance of the algorithms. The experimental results show that the hybrid strategy, MOEA+MA, can obtain the best result in more than half of the considered cases which demonstrates the necessary balance between obtaining information and transportation efficiency.
AbstractList In the immediate aftermath of large-scale disasters, emergency logistics services play important roles in saving lives and reducing losses. Efficient relief logistics scheduling depends on the accurate transport time information for available routes. However, this information cannot be obtained precisely until a vehicle uses the road. Considering the correlation between information acquisition and logistics operations, this paper focuses on a multiperiod online decision-making problem to simulate the information acquiring process. This problem can be referenced for emergency resource scheduling scenarios in which previous decisions impact knowledge for future logistics plans. A multi-trip cumulative capacitated vehicle routing problem with uncertain transportation time is investigated as the basic model. The tradeoff between transportation efficiency and the unknown transport time discovery rate is considered in a multiobjective evolutionary algorithm (MOEA). A memetic algorithm (MA) and a robust optimization (RO) -MA for single-period post-disaster emergency logistics are also proposed to solve the problem for comparison. In these algorithms, evolutionary operators that benefit solution fixing and variation are proposed. In the experiments, a real-world instance is employed. A simulative experimental environment is established. Dynamic information gained within the process of logistics scheduling is highlighted via multi-period online optimization. Different scenarios corresponding to estimates in emergency situations are provided to validate the performance of the algorithms. The experimental results show that the hybrid strategy, MOEA+MA, can obtain the best result in more than half of the considered cases which demonstrates the necessary balance between obtaining information and transportation efficiency.
Author Liu, Jing
Zhang, Yutong
Author_xml – sequence: 1
  givenname: Yutong
  orcidid: 0000-0001-5472-6542
  surname: Zhang
  fullname: Zhang, Yutong
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 2
  givenname: Jing
  orcidid: 0000-0002-6834-5350
  surname: Liu
  fullname: Liu, Jing
  email: neouma@163.com
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
BookMark eNp9UU1PAyEQJUYTv_oLetnEc-uwsMvu0TRVm9T0UHsmLMxWmhYqbA_666WuGuNBDsPMY97LDO-SnDrvkJAhhTGlUN_eTSbT5XKcQ07HDErKC35CLnJa1iNWsPL0V35OBjFuIJ0qQYW4IGa6w7BGp9-yuV_b2Fkds6V-QXPYWrfOVs5gSFFj6JR12XNQLu59KjrrU2l3mK3isXPhEgGzxb6zO_vePz9h9-JNvCZnrdpGHHzdV2R1P32ePI7mi4fZ5G4-0hyqbtQwDaZRzJgKjEBuNDUKqKJFgw1tWEKxBV2URrXAm7RrWomBgrbibQrsisx6XePVRu6D3anwJr2y8hPwYS1VSBtuUXLNqaCCCVG0POes5qbRpjCUM5YrYZLWTa-1D_71gLGTG38ILo0vc15XlRAM6tRV9106-BgDtlLb_mu6oOxWUpBHj2TvkTx6JL88Slz2h_s98f-sYc-yiPjDqFkJQgD7AIWaoE8
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_joitmc_2025_100482
crossref_primary_10_3390_su14159083
crossref_primary_10_29109_gujsc_1374303
crossref_primary_10_1007_s10878_025_01271_w
crossref_primary_10_3390_math13111806
Cites_doi 10.1016/j.jclepro.2019.05.344
10.1109/4235.996017
10.1016/j.tre.2014.11.007
10.1016/j.jom.2012.08.003
10.1016/j.trb.2019.03.014
10.1007/s10589-014-9713-5
10.1016/j.apm.2016.04.005
10.1016/j.tre.2009.07.005
10.1109/ACCESS.2020.3020829
10.1145/1276958.1277187
10.1007/s00291-012-0317-0
10.1016/j.tre.2006.10.012
10.1016/j.cor.2008.07.002
10.1016/j.asoc.2016.11.005
10.1016/j.apm.2017.10.041
10.1016/j.tre.2012.09.001
10.1016/j.tre.2016.05.002
10.1016/j.tre.2020.102118
10.1016/j.trb.2010.09.002
10.1016/j.trb.2014.11.010
10.1016/j.ejor.2016.01.021
10.1016/j.ejor.2019.09.008
10.1016/j.ejor.2017.04.009
10.1016/j.cie.2018.09.005
10.1109/HICSS.2012.418
10.1007/s00291-011-0268-x
10.1016/j.jclepro.2017.01.001
10.1016/j.ejor.2016.08.061
10.1109/TITS.2014.2313628
10.1007/978-3-642-30665-5_16
10.1016/j.tre.2006.04.004
10.1016/j.tre.2013.12.006
10.1016/j.ejor.2005.03.077
10.1016/j.cie.2013.10.007
10.1016/j.eswa.2013.10.026
10.1016/j.ejor.2016.04.041
10.1016/j.cor.2009.06.014
10.1016/j.tre.2014.12.002
10.1016/j.tre.2016.12.011
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3061454
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 37010
ExternalDocumentID oai_doaj_org_article_4c417173775f424394dbcd5d14332a7d
10_1109_ACCESS_2021_3061454
9360770
Genre orig-research
GrantInformation_xml – fundername: General Program of the National Natural Science Foundation of China (NSFC)
  grantid: 61773300
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-b3c0dba3dd80d7e4dc1da01a15beb1b380def0c56daf04b30653630a0f84f0f83
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626501100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:40:17 EDT 2025
Mon Jun 30 04:23:01 EDT 2025
Tue Nov 18 22:22:55 EST 2025
Sat Nov 29 06:12:00 EST 2025
Wed Aug 27 02:48:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-b3c0dba3dd80d7e4dc1da01a15beb1b380def0c56daf04b30653630a0f84f0f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5472-6542
0000-0002-6834-5350
OpenAccessLink https://doaj.org/article/4c417173775f424394dbcd5d14332a7d
PQID 2498877309
PQPubID 4845423
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2021_3061454
doaj_primary_oai_doaj_org_article_4c417173775f424394dbcd5d14332a7d
ieee_primary_9360770
proquest_journals_2498877309
crossref_primary_10_1109_ACCESS_2021_3061454
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
yan (ref36) 2014; 15
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1016/j.jclepro.2019.05.344
– ident: ref32
  doi: 10.1109/4235.996017
– ident: ref31
  doi: 10.1016/j.tre.2014.11.007
– ident: ref9
  doi: 10.1016/j.jom.2012.08.003
– ident: ref6
  doi: 10.1016/j.trb.2019.03.014
– ident: ref4
  doi: 10.1007/s10589-014-9713-5
– ident: ref19
  doi: 10.1016/j.apm.2016.04.005
– ident: ref10
  doi: 10.1016/j.tre.2009.07.005
– ident: ref13
  doi: 10.1109/ACCESS.2020.3020829
– ident: ref26
  doi: 10.1145/1276958.1277187
– ident: ref12
  doi: 10.1007/s00291-012-0317-0
– ident: ref29
  doi: 10.1016/j.tre.2006.10.012
– ident: ref38
  doi: 10.1016/j.cor.2008.07.002
– ident: ref27
  doi: 10.1016/j.asoc.2016.11.005
– ident: ref7
  doi: 10.1016/j.apm.2017.10.041
– ident: ref20
  doi: 10.1016/j.tre.2012.09.001
– ident: ref8
  doi: 10.1016/j.tre.2016.05.002
– ident: ref33
  doi: 10.1016/j.tre.2020.102118
– ident: ref5
  doi: 10.1016/j.trb.2010.09.002
– ident: ref30
  doi: 10.1016/j.trb.2014.11.010
– ident: ref24
  doi: 10.1016/j.ejor.2016.01.021
– ident: ref22
  doi: 10.1016/j.ejor.2019.09.008
– ident: ref23
  doi: 10.1016/j.ejor.2017.04.009
– ident: ref14
  doi: 10.1016/j.cie.2018.09.005
– ident: ref1
  doi: 10.1109/HICSS.2012.418
– ident: ref21
  doi: 10.1007/s00291-011-0268-x
– ident: ref2
  doi: 10.1016/j.jclepro.2017.01.001
– ident: ref25
  doi: 10.1016/j.ejor.2016.08.061
– volume: 15
  start-page: 2378
  year: 2014
  ident: ref36
  article-title: Optimal scheduling for highway emergency repairs under large-scale supply-demand perturbations
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2014.2313628
– ident: ref28
  doi: 10.1007/978-3-642-30665-5_16
– ident: ref35
  doi: 10.1016/j.tre.2006.04.004
– ident: ref16
  doi: 10.1016/j.tre.2013.12.006
– ident: ref11
  doi: 10.1016/j.ejor.2005.03.077
– ident: ref37
  doi: 10.1016/j.cie.2013.10.007
– ident: ref34
  doi: 10.1016/j.eswa.2013.10.026
– ident: ref17
  doi: 10.1016/j.ejor.2016.04.041
– ident: ref3
  doi: 10.1016/j.cor.2009.06.014
– ident: ref15
  doi: 10.1016/j.tre.2014.12.002
– ident: ref39
  doi: 10.1016/j.tre.2016.12.011
SSID ssj0000816957
Score 2.2695878
Snippet In the immediate aftermath of large-scale disasters, emergency logistics services play important roles in saving lives and reducing losses. Efficient relief...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 36995
SubjectTerms Algorithms
Data processing
Decision making
Emergency service
Emergency vehicles
Evolutionary algorithms
humanitarian logistics
Logistics
multiphase scheduling
Optimization
Pareto optimization
Resource scheduling
robustness
Route planning
Routing
Scheduling
Stochastic processes
Transportation
uncertain environment
Uncertainty
Vehicle dynamics
Vehicle routing
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB2VigMcKFAQSwvygWPT2msnjo_tqhWHUpAAqTfL8dioEt2i7pbvZ8bxRlQgJC5WFNmRk2dPPPbMewDvaAmb0OncZEW-iVEqNaFLselbtAMmTeawqJac24uL_vLSfdqCgykXJqVUgs_SIV-Ws3y8iXe8VXbkdCetJQf9gbXdmKs17aewgIRrbSUWUtIdHS8W9A7kAs7VoWbHpzX3fj6Fo7-Kqvxhicvv5Wzn_zr2FJ7UZaQ4HnF_Bltp-Rwe_0YuuAt4usmsFOclzecqrsRnwgg5-PybKIpHVMYxKEBMNOcFK8G5IaIEFIiRjlR8JOtyXdM2xYeiPL16AV_PTr8s3jdVU6GJRvbrZtBR4hA0Yi_RJoNRYZAqqHYgqz1oupuyjG2HIUszsK687rQMMvcmU6FfwvbyZplegUjYhZBzokVGZ7rE56842B5dli4Gm2cw33xsHyvhOOtefPfF8ZDOjwh5RshXhGZwMDX6MfJt_Lv6CaM4VWWy7HKD4PF17nkTjeJgA2vbbOacCoxDxBYVc7cFizPYZUinh1Q0Z7C_GRO-TuyVJ2-VzDKZRff676324BF3cNyl2Yft9e1degMP48_11er2bRmzvwBboOvb
  priority: 102
  providerName: IEEE
Title Emergency Logistics Scheduling Under Uncertain Transportation Time Using Online Optimization Methods
URI https://ieeexplore.ieee.org/document/9360770
https://www.proquest.com/docview/2498877309
https://doaj.org/article/4c417173775f424394dbcd5d14332a7d
Volume 9
WOSCitedRecordID wos000626501100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TwQhECbGWGhhfMbzFQpLV-Fgl6XUyxkLX4ma2BGWAWOip7k7Lf3tDix3OWOijQ0FYR_MsB_MwnwfIQe4hPWgRSgCx9hEcu4LW3lX1CWoBrxAOEyqJRfq6qp-eNA3M1Jf8UxYSw_cGu5YOsnjTrFSZZDdmMcJjYMSeCTesgoi-jKlZ4KphME1r3SpMs0QZ_r4pNfDHmFA2OVHIoZBpfw2FSXG_iyx8gOX02RztkKW8yqRnrRvt0rm_GCNLM1wB64T6E8SJ-lFyuJ5ciN6iy6AeLb8kSZBIyxdu-dPpyzmyRU0pn7QdF6Atmyj9BrB4yVnZdLLJCw92iD3Z_273nmRJRMKJ1k9LhrhGDRWANQMlJfgOFjGLS8bBOVGYK0PzJUV2MBkE2XjRSWYZaGWAQuxSeYHrwO_RaiHytoQPK4hKln5uL0KjapBB6adVaFDuhPrGZf5xKOsxbNJcQXTpjW5iSY32eQdcji96K2l0_i9-Wl0y7Rp5MJOFThCTB4h5q8R0iHr0anTm2hRMaVYh-xOnGzydzsyGIwi6iLq6e3_ePQOWYzdaX_Z7JL58fDd75EF9zF-Gg3305DF8vKzv58SD78AcOHv7Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB7EFto-9JctXms1Dz66mlyym82jPRTF81rQgm8hm0mK0J7inf37m8nmloql0JewLMmS3S-ZzSQz3wewm5awAY2MVRTJN1FChMo1wVdtjbrDIJM5zKolUz2btVdX5usa7A25MCGEHHwW9ukyn-Xjjb-nrbIDIxuudXLQn5BylumztYYdFZKQMLUu1EKCm4PDySS9RXICx2JfkutTqwe_n8zSX2RVHtni_IM5fvV_XXsNL8tCkh32yL-BtTB_Cy_-oBfcADxa5VayaU70ufYLdpFQQgo__86y5lEqfR8WwAai84wWo-wQlkMKWE9Iyr4k-_KzJG6y86w9vXgH346PLicnVVFVqLzi7bLqpOfYOYnYctRBoRfouHCi7pLd7mS6GyL3dYMuctWRsrxsJHc8tiqmQr6H9fnNPGwCC9g4F2NIy4xGNYFOYLHTLZrIjXc6jmC8-tjWF8pxUr74YbPrwY3tEbKEkC0IjWBvaHTbM278u_pnQnGoSnTZ-UaCx5bZZ5VXgsINtK6jGlMyMHYeaxTE3uY0jmCDIB0eUtAcwdZqTNgytRc2-avJMCfDaD78vdUOPDu5PJ_a6ens7CM8p872ezZbsL68uw-f4Kn_tbxe3G3n8fsb1s_vKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergency+Logistics+Scheduling+Under+Uncertain+Transportation+Time+Using+Online+Optimization+Methods&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Yutong&rft.au=Liu%2C+Jing&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=36995&rft.epage=37010&rft_id=info:doi/10.1109%2FACCESS.2021.3061454&rft.externalDocID=9360770
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon