The Neural Network of One-Dimensional Convolution-An Example of the Diagnosis of Diabetic Retinopathy

Diabetes is a serious threat to health development, because diabetes is a disease that caused most other diseases (complications). Diabetic retinopathy is the most important manifestation of diabetic microangiopathy and is also one of the most common complications in people with diabetes. At present...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 7; s. 69657 - 69666
Hlavní autor: Sun, Yunlei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Diabetes is a serious threat to health development, because diabetes is a disease that caused most other diseases (complications). Diabetic retinopathy is the most important manifestation of diabetic microangiopathy and is also one of the most common complications in people with diabetes. At present, the diagnosis of diabetic retinal complications mainly depends on the pictures for diagnosis. The fundus images are the main ways to diagnose retinal diseases at present, but the diagnosis process is complicated. Based on this, this paper uses the electronic medical record information of 301 hospitalized patients with diabetes from 2009 to 2013, mainly using the diabetes diagnostic data, diabetes glycosylation data and diabetes biochemical test data, the depth of learning methods and medical diabetes combined with the application of convolution Neural Network Method (CNN) to build a diagnostic model, and thus draw the diagnosis. The main contribution of this study is twofold: 1) In this paper, we apply the CNN method to one-dimensional unrelated data sets and solve the problem of how to do one-dimensional irrelevant data convolution. 2) In this paper, the CNN model is combined with the BN layer to prevent the dispersion of the gradient, speed up the training speed and improve the accuracy of the model. In addition, this model incorporates an adaptive learning rate algorithm and optimizes the model. The experiments show that this method can achieve a training accuracy of 99.85% and a testing accuracy of 97.56%, which is more than 2% higher than that of using logistic regression. The model methods involved in this study can not only be used for the diagnosis of diabetic retinopathy, but also for the diagnosis of other diseases, such as chronic kidney disease, cardiovascular, and cerebrovascular diseases
AbstractList Diabetes is a serious threat to health development, because diabetes is a disease that caused most other diseases (complications). Diabetic retinopathy is the most important manifestation of diabetic microangiopathy and is also one of the most common complications in people with diabetes. At present, the diagnosis of diabetic retinal complications mainly depends on the pictures for diagnosis. The fundus images are the main ways to diagnose retinal diseases at present, but the diagnosis process is complicated. Based on this, this paper uses the electronic medical record information of 301 hospitalized patients with diabetes from 2009 to 2013, mainly using the diabetes diagnostic data, diabetes glycosylation data and diabetes biochemical test data, the depth of learning methods and medical diabetes combined with the application of convolution Neural Network Method (CNN) to build a diagnostic model, and thus draw the diagnosis. The main contribution of this study is twofold: 1) In this paper, we apply the CNN method to one-dimensional unrelated data sets and solve the problem of how to do one-dimensional irrelevant data convolution. 2) In this paper, the CNN model is combined with the BN layer to prevent the dispersion of the gradient, speed up the training speed and improve the accuracy of the model. In addition, this model incorporates an adaptive learning rate algorithm and optimizes the model. The experiments show that this method can achieve a training accuracy of 99.85% and a testing accuracy of 97.56%, which is more than 2% higher than that of using logistic regression. The model methods involved in this study can not only be used for the diagnosis of diabetic retinopathy, but also for the diagnosis of other diseases, such as chronic kidney disease, cardiovascular, and cerebrovascular diseases
Diabetes is a serious threat to health development, because diabetes is a disease that caused most other diseases (complications). Diabetic retinopathy is the most important manifestation of diabetic microangiopathy and is also one of the most common complications in people with diabetes. At present, the diagnosis of diabetic retinal complications mainly depends on the pictures for diagnosis. The fundus images are the main ways to diagnose retinal diseases at present, but the diagnosis process is complicated. Based on this, this paper uses the electronic medical record information of 301 hospitalized patients with diabetes from 2009 to 2013, mainly using the diabetes diagnostic data, diabetes glycosylation data and diabetes biochemical test data, the depth of learning methods and medical diabetes combined with the application of convolution Neural Network Method (CNN) to build a diagnostic model, and thus draw the diagnosis. The main contribution of this study is twofold: 1) In this paper, we apply the CNN method to one-dimensional unrelated data sets and solve the problem of how to do one-dimensional irrelevant data convolution. 2) In this paper, the CNN model is combined with the BN layer to prevent the dispersion of the gradient, speed up the training speed and improve the accuracy of the model. In addition, this model incorporates an adaptive learning rate algorithm and optimizes the model. The experiments show that this method can achieve a training accuracy of 99.85% and a testing accuracy of 97.56%, which is more than 2% higher than that of using logistic regression. The model methods involved in this study can not only be used for the diagnosis of diabetic retinopathy, but also for the diagnosis of other diseases, such as chronic kidney disease, cardiovascular, and cerebrovascular diseases.
Author Sun, Yunlei
Author_xml – sequence: 1
  givenname: Yunlei
  orcidid: 0000-0003-3745-6899
  surname: Sun
  fullname: Sun, Yunlei
  email: sunyunlei@upc.edu.cn
  organization: College of Computer & Communication Engineering, China University of Petroleum (East China), Qingdao, China
BookMark eNp9Uctu1DAUtVCRKKVf0E0k1hn8jr0cpQNUqqhEy9pyMteth4w92J5C_x6HFIRY4MV9-Zyjq3teo5MQAyB0QfCKEKzfrft-c3u7opjoFdVEakpfoFNai5YJJk_-ql-h85x3uD5VR6I7RXD3AM0nOCY71VS-x_S1ia65CdBe-j2E7GOoX30Mj3E6ltq169Bsftj9YYIZWSr_0tv7ELPP86A2AxQ_Np9rDPFgy8PTG_TS2SnD-XM-Q1_eb-76j-31zYerfn3djhyr0g5MDbrTGBRzzvGtpNh1Sim65U4AV6MWWo2UYKGckpYNgwZOmVWSM2s5ZmfoatHdRrszh-T3Nj2ZaL35NYjp3thUd5vAjANQah0fMHVcMztsKceCEzdKrZXmVevtonVI8dsRcjG7eEz1GNlQLoSkvJOyovSCGlPMOYEzoy92vlNJ1k-GYDObZBaTzGySeTapctk_3N8b_591sbA8APxhqI4Ijgn7CRtnnrQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_media_2020_101742
crossref_primary_10_3233_JIFS_220772
crossref_primary_10_2478_jaiscr_2025_0009
crossref_primary_10_3390_s22051803
crossref_primary_10_1007_s11042_023_16449_9
crossref_primary_10_1080_21681163_2021_2002190
crossref_primary_10_1109_ACCESS_2022_3142925
crossref_primary_10_3233_HIS_220004
crossref_primary_10_3390_diagnostics13081439
crossref_primary_10_1155_2022_7902786
crossref_primary_10_1016_j_optlastec_2025_113284
crossref_primary_10_1109_ACCESS_2020_2976149
crossref_primary_10_1007_s00371_022_02489_z
crossref_primary_10_1007_s10462_022_10185_6
crossref_primary_10_1109_ACCESS_2020_3016782
crossref_primary_10_1007_s11042_024_19766_9
crossref_primary_10_1080_03091902_2020_1791986
crossref_primary_10_1109_ACCESS_2021_3074458
Cites_doi 10.1007/s12539-009-0016-2
10.1145/2808492.2808524
10.3115/v1/D14-1181
10.1109/ACII.2015.7344603
10.1016/j.procs.2017.08.193
10.1190/1.1443281
10.1109/ICCV.2015.178
10.1109/CVPR.2015.7298594
10.1007/978-3-319-46493-0_38
10.1109/ICIP.2015.7351374
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2916922
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 69666
ExternalDocumentID oai_doaj_org_article_cbe22af4b02f493abd240541fc699894
10_1109_ACCESS_2019_2916922
8715401
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities: Automated machine learning for diabetes big data
  grantid: 18CX02019A
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-b38b9790e83fff4d620f78882d4f5e48c9598c21058f86a3bb9e423a8643aa403
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471758100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:21 EDT 2025
Sat Nov 01 14:32:57 EDT 2025
Sat Nov 29 03:57:35 EST 2025
Tue Nov 18 21:51:49 EST 2025
Wed Aug 27 06:00:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-b38b9790e83fff4d620f78882d4f5e48c9598c21058f86a3bb9e423a8643aa403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3745-6899
OpenAccessLink https://ieeexplore.ieee.org/document/8715401
PQID 2455624766
PQPubID 4845423
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_cbe22af4b02f493abd240541fc699894
crossref_citationtrail_10_1109_ACCESS_2019_2916922
crossref_primary_10_1109_ACCESS_2019_2916922
proquest_journals_2455624766
ieee_primary_8715401
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
baek (ref4) 2003; 2
vijayan (ref10) 2016
ref2
ref17
ref18
ref8
zhang (ref7) 2015
xu (ref13) 2014; 2
ref9
ref3
ref6
cao (ref1) 2016; 31
ref5
zeiler (ref11) 2013
krizhevsky (ref15) 2012; 60
simonyan (ref16) 2014; abs 1409 1556
References_xml – start-page: 818
  year: 2013
  ident: ref11
  article-title: Visualizing and understanding convolutional networks
  publication-title: Proc Eur Conf Comput Vis
– volume: 2
  start-page: 1790
  year: 2014
  ident: ref13
  article-title: Deep convolutional neural network for image deconvolution
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref9
  doi: 10.1007/s12539-009-0016-2
– start-page: 649
  year: 2015
  ident: ref7
  article-title: Character-level convolutional networks for text classification
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 122
  year: 2016
  ident: ref10
  article-title: Prediction and diagnosis of diabetes mellitus-A machine learning approach
  publication-title: Proc IEEE Recent Adv Intell Comput Syst (RAICS)
– volume: 60
  start-page: 2012
  year: 2012
  ident: ref15
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
– volume: 31
  start-page: 33
  year: 2016
  ident: ref1
  article-title: Prediction and comparison of risk of retinopathy with type 2 diabetes mellitus based on Logistic regression and random forest algorithm
  publication-title: China Medical Equipment
– ident: ref2
  doi: 10.1145/2808492.2808524
– ident: ref6
  doi: 10.3115/v1/D14-1181
– ident: ref5
  doi: 10.1109/ACII.2015.7344603
– ident: ref8
  doi: 10.1016/j.procs.2017.08.193
– ident: ref14
  doi: 10.1190/1.1443281
– volume: 2
  start-page: 1219
  year: 2003
  ident: ref4
  article-title: Image edge detection using adaptive morphology Meyer wavelet-CNN
  publication-title: Proc Int Joint Conf Neural Netw
– volume: abs 1409 1556
  year: 2014
  ident: ref16
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Comput Sci
– ident: ref12
  doi: 10.1109/ICCV.2015.178
– ident: ref17
  doi: 10.1109/CVPR.2015.7298594
– ident: ref18
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref3
  doi: 10.1109/ICIP.2015.7351374
SSID ssj0000816957
Score 2.320936
Snippet Diabetes is a serious threat to health development, because diabetes is a disease that caused most other diseases (complications). Diabetic retinopathy is the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 69657
SubjectTerms Accuracy
Adaptive algorithms
Adaptive learning
adaptive learning rate
Artificial neural networks
batch normalization
Convolution
convolutional neural network
Deconvolution
Diabetes
Diabetic mellitus
Diabetic retinopathy
Diagnosis
Diagnostic systems
Electronic health records
Feature extraction
Kidney diseases
Machine learning
Model accuracy
Neural networks
Regression models
Retinopathy
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RaxQxEA5S-qAPYlvF01by0EfXZrPZbObxem3pQzlFVPoWkmwCB7InvWup_96ZTXpcEeqLr2Gyu5mZZL5ZJt8wdlyDTwk3UdXr3lSqF23la0xWjFO-jsJ1zXhD7sdVN5-b62v4stXqi2rCMj1wVtxJ8FFKl5QXMilonO8xBrWqTkEDkYfT6Ss62EqmxjPY1BrartAM1QJOprMZrohqueCTREwEUj4KRSNjf2mx8te5PAabi1fsZUGJfJq_bo89i8M-e7HFHXjAIhqYE7UGys1zLTdfJv55iNUZMfZntg0-Ww53xbuq6cDP7x3RAZMkIj9-lgvtFisayMUxi8C_0jXoJfUq_v2afb84_za7rErPhCooYdaVb4yHDkQ0TUpJ9VqKRFmu7FVqozIBWjAB87zWJKNd4z1ERFTOIDJxTonmDdsZlkN8yzi0DrEGzmgAkxTduQ50wuAWGqNkn2DC5IP6bCiE4tTX4qcdEwsBNuvcks5t0fmEfdxM-pX5NJ4WPyW7bESJDHscQBexxUXsv1xkwg7IqpuHYI6IOLWesMMHK9uycVdWqhYRoeq0fvc_Xv2ePafl5H82h2xnfXMbj9huuFsvVjcfRp_9A2Nr650
  priority: 102
  providerName: Directory of Open Access Journals
Title The Neural Network of One-Dimensional Convolution-An Example of the Diagnosis of Diabetic Retinopathy
URI https://ieeexplore.ieee.org/document/8715401
https://www.proquest.com/docview/2455624766
https://doaj.org/article/cbe22af4b02f493abd240541fc699894
Volume 7
WOSCitedRecordID wos000471758100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKxQEO5aOgLpTKB45NmziOP47LdisOsCAEqDfLdmxpJZSg7raCC7-dGduNqKiQuESRNY6SPDt-48y8IeR1o12MMImqXvSq4n3dVa4BZ0VZ7ppQW9mmDLmv7-RqpS4u9McdcjzlwoQQUvBZOMHT9C-_H_0VbpWdArkHggG-zj0pRc7VmvZTsICE7mQRFmpqfTpfLOAZMHpLnzBgQZqxW4tP0ugvRVX--hKn5eX80f_d2GOyV2gknWfcn5CdMDwlD_8QF9wnAUYARe0NsFvlYG86RvphCNUZSvpnOQ66GIfrMvyq-UCXPyzqBaMlUEN6liPx1htsyNEza08_YZ70iMWMfz4jX86Xnxdvq1JUofK8VtvKtcppqeug2hgj7wWrI7rBrOexC1x53WnlwRHsVFTCts7pAJTLKqAu1vK6fU52h3EIB4TqzgIZgR6tBi9GSCu1iLD6-VZx1kc9I-zmbRtfFMex8MU3kzyPWpsMkUGITIFoRo6nTt-z4Ma_zd8gjJMpqmWnBsDHlMlnvAuM2chdzSLXrXU98JiON9ELjQL0M7KPmE4XKXDOyOHNoDBlZm8M4x1QRi6FeHF3r5fkAd5g3qY5JLvby6vwitz319v15vIo-fxwfP9reZQG8G8kUuqx
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1VLRJwKB-lYtsCPnBsWsdxEvu43bYqYlkQKqg3y3ZsaSWUoO62gn_fmcSNQCAkbpFlR07eOH7jzLwBeJtrFyMuoqypGpXJhpeZy9FZUVa6PHBbF32G3Nd5vVioqyv9aQMOx1yYEEIffBaO6LL_l990_oaOyo6R3CPBQF9niypnpWyt8USFSkjosk7SQjnXx9PZDJ-C4rf0kUAepIX4bfvpVfpTWZU_vsX9BnP-5P-m9hS2E5Fk0wH5Z7AR2ufw-Bd5wR0IaAOM1Dew32II92ZdZB_bkJ2SqP8gyMFmXXubDDCbtuzshyXFYOqJ5JCdDrF4yxU1DPEzS88-U6Z0R-WMf76AL-dnl7OLLJVVyLzkap25Qjldax5UEWOUTSV4JEdYNDKWQSqvS608uoKliqqyhXM6IOmyCsmLtZIXu7DZdm14CUyXFukIjig0-jFVbWtdRdz_fKGkaKKegLh_28YnzXEqffHN9L4H12aAyBBEJkE0gcNx0PdBcuPf3U8IxrEr6WX3DYiPScvPeBeEsFE6LqLUhXUNMplS5tFXmiToJ7BDmI43SXBO4ODeKExa2ysjZImkUdZVtff3UW_g4cXlh7mZv1u834dHNNnh0OYANtfXN-EVPPC36-Xq-nVvwHdzouvU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Neural+Network+of+One-Dimensional+Convolution-An+Example+of+the+Diagnosis+of+Diabetic+Retinopathy&rft.jtitle=IEEE+access&rft.au=Sun%2C+Yunlei&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=69657&rft.epage=69666&rft_id=info:doi/10.1109%2FACCESS.2019.2916922&rft.externalDocID=8715401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon