Deep Learning-Based mmWave Beam Selection for 5G NR/6G with Sub-6 GHz Channel Information: Algorithms and Prototype Validation
In fifth-generation (5G) communications, millimeter wave (mmWave) is one of the key technologies to increase the data rate. To overcome this technology's poor propagation characteristics, it is necessary to employ a number of antennas and form narrow beams. It becomes crucial then, especially f...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 8; S. 1 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In fifth-generation (5G) communications, millimeter wave (mmWave) is one of the key technologies to increase the data rate. To overcome this technology's poor propagation characteristics, it is necessary to employ a number of antennas and form narrow beams. It becomes crucial then, especially for initial access, to attain fine beam alignment between a next generation NodeB (gNB) and a user equipment (UE). The current 5G New Radio (NR) standard, however, adopts an exhaustive search-based beam sweeping, which causes time overhead of a half frame for initial beam establishment. In this paper, we propose a deep learning-based beam selection, which is compatible with the 5G NR standard. To select a mmWave beam, we exploit sub-6 GHz channel information. We introduce a deep neural network (DNN) structure and explain how we estimate a power delay profile (PDP) of a sub-6 GHz channel, which is used as an input of the DNN. We then validate its performance with real environment-based 3D ray-tracing simulations and over-the-air experiments with a mmWave prototype. Evaluation results confirm that, with support from the sub-6 GHz connection, the proposed beam selection reduces the beam sweeping overhead by up to 79.3 %. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2020.2980285 |