Deep Learning-Based mmWave Beam Selection for 5G NR/6G with Sub-6 GHz Channel Information: Algorithms and Prototype Validation
In fifth-generation (5G) communications, millimeter wave (mmWave) is one of the key technologies to increase the data rate. To overcome this technology's poor propagation characteristics, it is necessary to employ a number of antennas and form narrow beams. It becomes crucial then, especially f...
Saved in:
| Published in: | IEEE access Vol. 8; p. 1 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In fifth-generation (5G) communications, millimeter wave (mmWave) is one of the key technologies to increase the data rate. To overcome this technology's poor propagation characteristics, it is necessary to employ a number of antennas and form narrow beams. It becomes crucial then, especially for initial access, to attain fine beam alignment between a next generation NodeB (gNB) and a user equipment (UE). The current 5G New Radio (NR) standard, however, adopts an exhaustive search-based beam sweeping, which causes time overhead of a half frame for initial beam establishment. In this paper, we propose a deep learning-based beam selection, which is compatible with the 5G NR standard. To select a mmWave beam, we exploit sub-6 GHz channel information. We introduce a deep neural network (DNN) structure and explain how we estimate a power delay profile (PDP) of a sub-6 GHz channel, which is used as an input of the DNN. We then validate its performance with real environment-based 3D ray-tracing simulations and over-the-air experiments with a mmWave prototype. Evaluation results confirm that, with support from the sub-6 GHz connection, the proposed beam selection reduces the beam sweeping overhead by up to 79.3 %. |
|---|---|
| AbstractList | In fifth-generation (5G) communications, millimeter wave (mmWave) is one of the key technologies to increase the data rate. To overcome this technology's poor propagation characteristics, it is necessary to employ a number of antennas and form narrow beams. It becomes crucial then, especially for initial access, to attain fine beam alignment between a next generation NodeB (gNB) and a user equipment (UE). The current 5G New Radio (NR) standard, however, adopts an exhaustive search-based beam sweeping, which causes time overhead of a half frame for initial beam establishment. In this paper, we propose a deep learning-based beam selection, which is compatible with the 5G NR standard. To select a mmWave beam, we exploit sub-6 GHz channel information. We introduce a deep neural network (DNN) structure and explain how we estimate a power delay profile (PDP) of a sub-6 GHz channel, which is used as an input of the DNN. We then validate its performance with real environment-based 3D ray-tracing simulations and over-the-air experiments with a mmWave prototype. Evaluation results confirm that, with support from the sub-6 GHz connection, the proposed beam selection reduces the beam sweeping overhead by up to 79.3 %. |
| Author | Dai, Linglong Sim, Min Soo Park, Sang Hyun Lim, Yeon-Geun Chae, Chan-Byoung |
| Author_xml | – sequence: 1 givenname: Min Soo surname: Sim fullname: Sim, Min Soo organization: School of Integrated Technology, Yonsei University, Korea – sequence: 2 givenname: Yeon-Geun surname: Lim fullname: Lim, Yeon-Geun organization: Samsung Electronics, Korea – sequence: 3 givenname: Sang Hyun surname: Park fullname: Park, Sang Hyun organization: School of Integrated Technology, Yonsei University, Korea – sequence: 4 givenname: Linglong surname: Dai fullname: Dai, Linglong organization: Department of Electronic Engineering, Tsinghua University, China – sequence: 5 givenname: Chan-Byoung surname: Chae fullname: Chae, Chan-Byoung organization: School of Integrated Technology, Yonsei University, Korea. (e-mail: cbchae@yonsei.ac.kr) |
| BookMark | eNqFkU1v00AQhi1UJErpL-hlJc5O99tebmkoaaQIEOHjuBrvjlNH9m5YO6By4LfjxFWFuLCXWY2e953RvC-zsxADZtkVozPGqLmeLxa3m82MU05n3JSUl-pZds6ZNrlQQp_99X-RXfb9jo6vHFuqOM9-v0XckzVCCk3Y5jfQoydd9w1-ILlB6MgGW3RDEwOpYyJqSd5_utZL8rMZ7snmUOWaLO9-kcU9hIAtWYWR6uDIvyHzdhvTyHU9geDJxxSHODzskXyFtvEn6FX2vIa2x8vHepF9eXf7eXGXrz8sV4v5OneSlkNe8Qqc5iWtitrzUlbCQ-FrL430UlVMcRTOyVIDUCoLbWrljfCaOeUo0yAustXk6yPs7D41HaQHG6Gxp0ZMWwtpaFyLVhjOeaGYHI2lqYpS1wwMVgYNV4rWo9fryWuf4vcD9oPdxUMK4_qWSyULoYuiHCkxUS7Fvk9YP01l1B5zs1Nu9pibfcxtVJl_VK4ZTpcaEjTtf7RXk7ZBxKdphgpJpRR_AI3mphQ |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3301571 crossref_primary_10_1109_TWC_2022_3149903 crossref_primary_10_1109_TWC_2022_3170104 crossref_primary_10_3390_s24196464 crossref_primary_10_1007_s10776_021_00546_3 crossref_primary_10_1109_JIOT_2024_3505617 crossref_primary_10_1155_2021_8876186 crossref_primary_10_1109_TMC_2025_3526753 crossref_primary_10_1109_ACCESS_2023_3314167 crossref_primary_10_1109_ACCESS_2021_3128432 crossref_primary_10_1109_ACCESS_2022_3205341 crossref_primary_10_1109_TCOMM_2024_3395297 crossref_primary_10_3390_electronics10131505 crossref_primary_10_3390_fi14040117 crossref_primary_10_1109_JIOT_2021_3071354 crossref_primary_10_1134_S1064226922070063 crossref_primary_10_1016_j_phycom_2022_101626 crossref_primary_10_1109_TCOMM_2022_3222345 crossref_primary_10_1016_j_vehcom_2021_100402 crossref_primary_10_1109_TCOMM_2024_3405372 crossref_primary_10_3390_su15010672 crossref_primary_10_1109_TCOMM_2023_3240754 crossref_primary_10_1109_TMC_2020_3013575 crossref_primary_10_1186_s13638_021_02080_5 crossref_primary_10_1002_ett_4155 crossref_primary_10_3390_electronics10222786 crossref_primary_10_1109_LCOMM_2025_3566460 crossref_primary_10_1109_TCOMM_2022_3223066 crossref_primary_10_1016_j_suscom_2021_100522 crossref_primary_10_1109_JSAC_2025_3531528 crossref_primary_10_1109_COMST_2024_3385908 crossref_primary_10_1109_TAP_2022_3149663 crossref_primary_10_1109_TMC_2022_3159697 crossref_primary_10_1109_TNSM_2021_3119531 crossref_primary_10_1109_ACCESS_2020_3025181 crossref_primary_10_3390_app11178117 crossref_primary_10_1109_ACCESS_2021_3124812 crossref_primary_10_1109_TVT_2021_3140019 crossref_primary_10_3390_s21030873 crossref_primary_10_1109_JIOT_2024_3449808 crossref_primary_10_1109_ACCESS_2023_3290217 crossref_primary_10_1109_COMST_2024_3449031 crossref_primary_10_1016_j_rser_2022_112722 crossref_primary_10_1109_TCOMM_2021_3110301 crossref_primary_10_1038_s41598_024_70651_9 crossref_primary_10_1109_JSYST_2023_3320119 crossref_primary_10_1109_TWC_2024_3387988 crossref_primary_10_1109_ACCESS_2023_3317371 crossref_primary_10_1109_ACCESS_2024_3485987 crossref_primary_10_1016_j_comcom_2021_10_034 crossref_primary_10_1109_ACCESS_2020_3015762 crossref_primary_10_1109_ACCESS_2022_3161951 crossref_primary_10_1155_2020_1428968 crossref_primary_10_1109_ACCESS_2020_3006015 crossref_primary_10_1109_OJCOMS_2025_3583074 crossref_primary_10_1109_JSAC_2025_3536503 crossref_primary_10_1109_TCOMM_2024_3511954 crossref_primary_10_3390_electronics14132705 crossref_primary_10_1109_TCOMM_2024_3490493 crossref_primary_10_1080_23270012_2020_1802622 crossref_primary_10_1016_j_phycom_2021_101443 crossref_primary_10_1109_ACCESS_2021_3067503 crossref_primary_10_1109_TWC_2021_3085823 crossref_primary_10_1109_ACCESS_2021_3104277 crossref_primary_10_1109_TWC_2023_3283267 crossref_primary_10_1109_ACCESS_2021_3095346 crossref_primary_10_1109_TWC_2024_3401686 crossref_primary_10_1109_JSSC_2022_3204807 crossref_primary_10_1109_TNSE_2022_3201748 crossref_primary_10_3390_s20226475 crossref_primary_10_1109_ACCESS_2023_3347502 crossref_primary_10_1109_ACCESS_2024_3417358 crossref_primary_10_1109_TCCN_2021_3132609 crossref_primary_10_1109_TVT_2022_3176017 crossref_primary_10_1109_TWC_2023_3324916 crossref_primary_10_3390_s23094359 crossref_primary_10_1007_s11277_025_11770_y crossref_primary_10_1109_MAES_2020_3015604 |
| Cites_doi | 10.1109/ICASSP.2018.8461461 10.1109/MCOM.2014.6736750 10.1109/49.585778 10.1109/LWC.2019.2899571 10.1109/JSTSP.2018.2818649 10.1109/MWC.2018.1700351 10.1109/ICCW.2018.8403591 10.1109/MCOM.2019.1800384 10.1109/ACCESS.2018.2888868 10.1109/TWC.2015.2457921 10.1109/MCOM.2018.1701019 10.1109/ACCESS.2016.2631222 10.1109/ACCESS.2019.2902372 10.1109/TMTT.2016.2574849 10.1109/ACCESS.2018.2850226 10.1109/ACCESS.2013.2260813 10.1109/TCOMM.2015.2449860 10.1002/9780470825631 10.1109/ICCW.2018.8403779 10.1109/TVT.2017.2787627 10.1109/TAP.1986.1143830 10.1109/TCCN.2017.2758370 10.1109/LWC.2017.2757490 10.1109/TVT.2018.2882635 10.1109/MCOM.2019.1800509 10.1109/ACCESS.2019.2895594 10.1109/SPAWC.2017.8227772 10.1109/MCOM.2015.7010532 10.1109/INFOCOM.2015.7218630 10.1109/VETECS.2011.5956484 10.1109/MWC.2019.1900027 10.1109/MWC.2019.1800039 10.1109/COMST.2018.2869411 10.1016/j.neunet.2014.09.003 10.1109/LCOMM.2011.110711.112047 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.2980285 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_39222751445b49b786f1a9eb9e92550f 10_1109_ACCESS_2020_2980285 9034044 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-b2bac6280b7fd284b3da7dfd494d45b152e3cc486aa004769f5d93d61c5c016a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 121 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524748500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:28 EDT 2025 Sun Jun 29 12:15:38 EDT 2025 Tue Nov 18 22:33:12 EST 2025 Sat Nov 29 02:42:06 EST 2025 Wed Aug 27 02:35:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-b2bac6280b7fd284b3da7dfd494d45b152e3cc486aa004769f5d93d61c5c016a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7126-0924 0000-0001-9561-3341 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9034044 |
| PQID | 2454736778 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_9034044 proquest_journals_2454736778 crossref_citationtrail_10_1109_ACCESS_2020_2980285 crossref_primary_10_1109_ACCESS_2020_2980285 doaj_primary_oai_doaj_org_article_39222751445b49b786f1a9eb9e92550f |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 (ref34) 2019 ref12 ref15 ref36 ref14 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref19 kay (ref37) 1993 ref18 lim (ref30) 0 (ref31) 2019 ref24 ref23 ref26 ref25 (ref35) 2019 ref20 ref42 ref41 alrabeiah (ref27) 2019 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 wei (ref16) 2019 ref40 |
| References_xml | – ident: ref18 doi: 10.1109/ICASSP.2018.8461461 – ident: ref3 doi: 10.1109/MCOM.2014.6736750 – ident: ref40 doi: 10.1109/49.585778 – ident: ref21 doi: 10.1109/LWC.2019.2899571 – ident: ref25 doi: 10.1109/JSTSP.2018.2818649 – ident: ref1 doi: 10.1109/MWC.2018.1700351 – ident: ref11 doi: 10.1109/ICCW.2018.8403591 – ident: ref5 doi: 10.1109/MCOM.2019.1800384 – ident: ref10 doi: 10.1109/ACCESS.2018.2888868 – year: 2019 ident: ref34 publication-title: NR Physical Channels and Modulation (Release 15) – year: 2019 ident: ref31 publication-title: Study on Channel Model for Frequencies From 0 5 to 100 GHz – ident: ref7 doi: 10.1109/TWC.2015.2457921 – ident: ref42 doi: 10.1109/MCOM.2018.1701019 – year: 0 ident: ref30 article-title: Map-based millimeter-wave channel models: An overview, hybrid modeling, data, and learning publication-title: IEEE Wireless Commun Mag – year: 2019 ident: ref35 publication-title: NR Physical Layer Procedures for Control (Release 15) – ident: ref9 doi: 10.1109/ACCESS.2016.2631222 – ident: ref20 doi: 10.1109/ACCESS.2019.2902372 – ident: ref41 doi: 10.1109/TMTT.2016.2574849 – ident: ref22 doi: 10.1109/ACCESS.2018.2850226 – ident: ref2 doi: 10.1109/ACCESS.2013.2260813 – ident: ref8 doi: 10.1109/TCOMM.2015.2449860 – ident: ref32 doi: 10.1002/9780470825631 – ident: ref36 doi: 10.1109/ICCW.2018.8403779 – ident: ref19 doi: 10.1109/TVT.2017.2787627 – ident: ref38 doi: 10.1109/TAP.1986.1143830 – ident: ref13 doi: 10.1109/TCCN.2017.2758370 – ident: ref15 doi: 10.1109/LWC.2017.2757490 – ident: ref24 doi: 10.1109/TVT.2018.2882635 – year: 1993 ident: ref37 publication-title: Fundamentals of Statistical Signal Processing – ident: ref29 doi: 10.1109/MCOM.2019.1800509 – ident: ref23 doi: 10.1109/ACCESS.2019.2895594 – year: 2019 ident: ref27 article-title: Deep learning for mmWave beam and blockage prediction using sub-6GHz channels publication-title: arXiv 1910 02900 – ident: ref14 doi: 10.1109/SPAWC.2017.8227772 – ident: ref6 doi: 10.1109/MCOM.2015.7010532 – ident: ref26 doi: 10.1109/INFOCOM.2015.7218630 – ident: ref33 doi: 10.1109/VETECS.2011.5956484 – ident: ref17 doi: 10.1109/MWC.2019.1900027 – ident: ref28 doi: 10.1109/MWC.2019.1800039 – ident: ref4 doi: 10.1109/COMST.2018.2869411 – ident: ref12 doi: 10.1016/j.neunet.2014.09.003 – ident: ref39 doi: 10.1109/LCOMM.2011.110711.112047 – year: 2019 ident: ref16 article-title: Knowledge-aided deep learning for beamspace channel estimation in millimeter-wave massive MIMO systems publication-title: arXiv 1910 12455 |
| SSID | ssj0000816957 |
| Score | 2.5489907 |
| Snippet | In fifth-generation (5G) communications, millimeter wave (mmWave) is one of the key technologies to increase the data rate. To overcome this technology's poor... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 5G NR Algorithms and ultra-low latency Artificial neural networks beam selection beamforming Deep learning Machine learning Millimeter waves mmWave Prototypes Ray tracing Sweeping |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOCCiIhYJ84IhZx7EdT2-7C92eVhVf7c1ybKdU2s1Wu6GHHvjtjBN3tQgJLlyTyYfnTeaNLecNIW9l2pkIijPhgmHS1ZGZ0kmmYmOED6bwKvTNJqrFwlxcwNleq6-0J2yQBx4cN0b-FqJCWpeqllBXRjeFg1hDBKyGeZOyL69gbzLV52BTaFBVlhkqOIwnsxmOCCeEgr8XYJBW1W9U1Cv25xYrf-TlnmxOHpNHuUqkk-HtnpB7sX1KHu5pBx6Snx9ivKZZHvWSTZGNAl2tzt1NpNPoVvRz3-EG3U6xLqVqThefxnpOz6-67xTTBdN0fnpL098FbVzS_FtSsj-mk-XleoN2qy11baBnm3W3Tmu19BtW7UMTpmfk68nHL7NTlpspMC-56Vgtaue1MLyumoCcVJfBVaEJEmRA1yKNx9J7abRzSUFSQ6MClEEjWB7LQlc-Jwftuo0vCNWqCQZP8TrBAh6U0FFp8C5yMEUcEXHnV-uz0nhqeLG0_YyDgx3AsAkMm8EYkXe7i64HoY2_m08TYDvTpJLdH8DYsTl27L9iZ0QOE9y7mwAvJZdyRI7u4Lf5i95akZTPyiS39_J_PPoVeZCGMyzmHJGDbvMjvib3_U13td286YP5F4Cs8iI priority: 102 providerName: Directory of Open Access Journals |
| Title | Deep Learning-Based mmWave Beam Selection for 5G NR/6G with Sub-6 GHz Channel Information: Algorithms and Prototype Validation |
| URI | https://ieeexplore.ieee.org/document/9034044 https://www.proquest.com/docview/2454736778 https://doaj.org/article/39222751445b49b786f1a9eb9e92550f |
| Volume | 8 |
| WOSCitedRecordID | wos000524748500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swECaSoEM79JUWdZsGHDpGMU2RFNnNdhNnqRH0mU3g4xQEsKXAdjJ0yG_vkWKMFi0KdBEE6SRQ-Eje8cT7PkLeibgz0UhWcBt0IayDQpdWFBIazX3QIy9DEpuo5nN9cWHOd8jRthYGANLmMziOp-lffuj8TUyVDQ0rBRNil-xWleprtbb5lCggYWSViYVGzAzH0yl-Ay4BOTvmRqMjlb85n8TRn0VV_piJk3s5ffJ_DXtKHucwko573J-RHWifk0e_kAvuk7sPANc086deFhN0V4Eul9_tLdAJ2CX9nCRwEBeKgSuVMzr_NFQzGjOzFOeTQtHZ2Q8ayw9aWNBctxTt39Px4rJbod1yTW0b6Pmq23QxmUu_YVjfqzS9IF9PT75Mz4qstlB4wfSmcNxZr7hmrmoCOi1XBluFJggjgpAO_TyU3gutrI0Uk8o0MpgyKETTY9xoy5dkr-1aeEWokk3QeIs5DMeE8UZyBVIZb4EZPYIB4fcw1D5TkUdFjEWdliTM1D12dcSuztgNyNH2oeueiePf5pOI79Y00minCwhcnUdljcEh51VspHTCuEqrZmQNOAMGl1qsGZD9CPb2JRnnATm47y11HvLrmkdqtDLy8b3--1NvyMPYwD5_c0D2NqsbeEse-NvN1Xp1mJIBePx4d3KYevZP66_yqg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLbGQIIdxo8NUTbAB47L6jq2Y-_WFtYiRjXBgN0s_3iZkNpkarsdduBvn514EQiExC1KniNHn-33_OL3fQi9ZfFkouIko8bLjBkLmcwNyziUkjovB477RmyimM3k-bk63UAHXS0MADSHz-AwXjb_8n3trmKqrK9Izghj99D9qJyVqrW6jEqUkFC8SNRCA6L6w_E4fEXYBFJySJUMrpT_5n4alv4kq_LHWtw4mOPH_9e1J2g7BZJ42CL_FG1A9Qxt_UIvuIN-vgO4xIlB9SIbBYfl8WLx3VwDHoFZ4C-NCE5ABofQFfMJnn3uiwmOuVkcVpRM4Mn0BscChArmOFUuRfsjPJxf1Mtgt1hhU3l8uqzXdUzn4m8hsG91mnbR1-P3Z-NplvQWMseIXGeWWuMElcQWpQ9uy-beFL70TDHPuA2eHnLnmBTGRJJJoUruVe5FwNOFyNHkz9FmVVfwAmHBSy_DI2JDQMaUU5wK4EI5A0TJAfQQvYNBu0RGHjUx5rrZlBClW-x0xE4n7HrooGt02XJx_Nt8FPHtTCORdnMjAKfTvNQhPKS0iJ3klilbSFEOjAKrQIXNFil7aCeC3b0k4dxD-3ejRadJv9I0kqPlkZHv5d9bvUEPp2efTvTJh9nHPfQodrbN5uyjzfXyCl6hB-56_WO1fN2M7FtFA_PN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+mmWave+Beam+Selection+for+5G+NR%2F6G+With+Sub-6+GHz+Channel+Information%3A+Algorithms+and+Prototype+Validation&rft.jtitle=IEEE+access&rft.au=Sim%2C+Min+Soo&rft.au=Lim%2C+Yeon-Geun&rft.au=Park%2C+Sang+Hyun&rft.au=Dai%2C+Linglong&rft.date=2020-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=8&rft.spage=51634&rft_id=info:doi/10.1109%2FACCESS.2020.2980285&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |