Deep Learning-Based mmWave Beam Selection for 5G NR/6G with Sub-6 GHz Channel Information: Algorithms and Prototype Validation

In fifth-generation (5G) communications, millimeter wave (mmWave) is one of the key technologies to increase the data rate. To overcome this technology's poor propagation characteristics, it is necessary to employ a number of antennas and form narrow beams. It becomes crucial then, especially f...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 8; p. 1
Main Authors: Sim, Min Soo, Lim, Yeon-Geun, Park, Sang Hyun, Dai, Linglong, Chae, Chan-Byoung
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In fifth-generation (5G) communications, millimeter wave (mmWave) is one of the key technologies to increase the data rate. To overcome this technology's poor propagation characteristics, it is necessary to employ a number of antennas and form narrow beams. It becomes crucial then, especially for initial access, to attain fine beam alignment between a next generation NodeB (gNB) and a user equipment (UE). The current 5G New Radio (NR) standard, however, adopts an exhaustive search-based beam sweeping, which causes time overhead of a half frame for initial beam establishment. In this paper, we propose a deep learning-based beam selection, which is compatible with the 5G NR standard. To select a mmWave beam, we exploit sub-6 GHz channel information. We introduce a deep neural network (DNN) structure and explain how we estimate a power delay profile (PDP) of a sub-6 GHz channel, which is used as an input of the DNN. We then validate its performance with real environment-based 3D ray-tracing simulations and over-the-air experiments with a mmWave prototype. Evaluation results confirm that, with support from the sub-6 GHz connection, the proposed beam selection reduces the beam sweeping overhead by up to 79.3 %.
AbstractList In fifth-generation (5G) communications, millimeter wave (mmWave) is one of the key technologies to increase the data rate. To overcome this technology's poor propagation characteristics, it is necessary to employ a number of antennas and form narrow beams. It becomes crucial then, especially for initial access, to attain fine beam alignment between a next generation NodeB (gNB) and a user equipment (UE). The current 5G New Radio (NR) standard, however, adopts an exhaustive search-based beam sweeping, which causes time overhead of a half frame for initial beam establishment. In this paper, we propose a deep learning-based beam selection, which is compatible with the 5G NR standard. To select a mmWave beam, we exploit sub-6 GHz channel information. We introduce a deep neural network (DNN) structure and explain how we estimate a power delay profile (PDP) of a sub-6 GHz channel, which is used as an input of the DNN. We then validate its performance with real environment-based 3D ray-tracing simulations and over-the-air experiments with a mmWave prototype. Evaluation results confirm that, with support from the sub-6 GHz connection, the proposed beam selection reduces the beam sweeping overhead by up to 79.3 %.
Author Dai, Linglong
Sim, Min Soo
Park, Sang Hyun
Lim, Yeon-Geun
Chae, Chan-Byoung
Author_xml – sequence: 1
  givenname: Min Soo
  surname: Sim
  fullname: Sim, Min Soo
  organization: School of Integrated Technology, Yonsei University, Korea
– sequence: 2
  givenname: Yeon-Geun
  surname: Lim
  fullname: Lim, Yeon-Geun
  organization: Samsung Electronics, Korea
– sequence: 3
  givenname: Sang Hyun
  surname: Park
  fullname: Park, Sang Hyun
  organization: School of Integrated Technology, Yonsei University, Korea
– sequence: 4
  givenname: Linglong
  surname: Dai
  fullname: Dai, Linglong
  organization: Department of Electronic Engineering, Tsinghua University, China
– sequence: 5
  givenname: Chan-Byoung
  surname: Chae
  fullname: Chae, Chan-Byoung
  organization: School of Integrated Technology, Yonsei University, Korea. (e-mail: cbchae@yonsei.ac.kr)
BookMark eNqFkU1v00AQhi1UJErpL-hlJc5O99tebmkoaaQIEOHjuBrvjlNH9m5YO6By4LfjxFWFuLCXWY2e953RvC-zsxADZtkVozPGqLmeLxa3m82MU05n3JSUl-pZds6ZNrlQQp_99X-RXfb9jo6vHFuqOM9-v0XckzVCCk3Y5jfQoydd9w1-ILlB6MgGW3RDEwOpYyJqSd5_utZL8rMZ7snmUOWaLO9-kcU9hIAtWYWR6uDIvyHzdhvTyHU9geDJxxSHODzskXyFtvEn6FX2vIa2x8vHepF9eXf7eXGXrz8sV4v5OneSlkNe8Qqc5iWtitrzUlbCQ-FrL430UlVMcRTOyVIDUCoLbWrljfCaOeUo0yAustXk6yPs7D41HaQHG6Gxp0ZMWwtpaFyLVhjOeaGYHI2lqYpS1wwMVgYNV4rWo9fryWuf4vcD9oPdxUMK4_qWSyULoYuiHCkxUS7Fvk9YP01l1B5zs1Nu9pibfcxtVJl_VK4ZTpcaEjTtf7RXk7ZBxKdphgpJpRR_AI3mphQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3301571
crossref_primary_10_1109_TWC_2022_3149903
crossref_primary_10_1109_TWC_2022_3170104
crossref_primary_10_3390_s24196464
crossref_primary_10_1007_s10776_021_00546_3
crossref_primary_10_1109_JIOT_2024_3505617
crossref_primary_10_1155_2021_8876186
crossref_primary_10_1109_TMC_2025_3526753
crossref_primary_10_1109_ACCESS_2023_3314167
crossref_primary_10_1109_ACCESS_2021_3128432
crossref_primary_10_1109_ACCESS_2022_3205341
crossref_primary_10_1109_TCOMM_2024_3395297
crossref_primary_10_3390_electronics10131505
crossref_primary_10_3390_fi14040117
crossref_primary_10_1109_JIOT_2021_3071354
crossref_primary_10_1134_S1064226922070063
crossref_primary_10_1016_j_phycom_2022_101626
crossref_primary_10_1109_TCOMM_2022_3222345
crossref_primary_10_1016_j_vehcom_2021_100402
crossref_primary_10_1109_TCOMM_2024_3405372
crossref_primary_10_3390_su15010672
crossref_primary_10_1109_TCOMM_2023_3240754
crossref_primary_10_1109_TMC_2020_3013575
crossref_primary_10_1186_s13638_021_02080_5
crossref_primary_10_1002_ett_4155
crossref_primary_10_3390_electronics10222786
crossref_primary_10_1109_LCOMM_2025_3566460
crossref_primary_10_1109_TCOMM_2022_3223066
crossref_primary_10_1016_j_suscom_2021_100522
crossref_primary_10_1109_JSAC_2025_3531528
crossref_primary_10_1109_COMST_2024_3385908
crossref_primary_10_1109_TAP_2022_3149663
crossref_primary_10_1109_TMC_2022_3159697
crossref_primary_10_1109_TNSM_2021_3119531
crossref_primary_10_1109_ACCESS_2020_3025181
crossref_primary_10_3390_app11178117
crossref_primary_10_1109_ACCESS_2021_3124812
crossref_primary_10_1109_TVT_2021_3140019
crossref_primary_10_3390_s21030873
crossref_primary_10_1109_JIOT_2024_3449808
crossref_primary_10_1109_ACCESS_2023_3290217
crossref_primary_10_1109_COMST_2024_3449031
crossref_primary_10_1016_j_rser_2022_112722
crossref_primary_10_1109_TCOMM_2021_3110301
crossref_primary_10_1038_s41598_024_70651_9
crossref_primary_10_1109_JSYST_2023_3320119
crossref_primary_10_1109_TWC_2024_3387988
crossref_primary_10_1109_ACCESS_2023_3317371
crossref_primary_10_1109_ACCESS_2024_3485987
crossref_primary_10_1016_j_comcom_2021_10_034
crossref_primary_10_1109_ACCESS_2020_3015762
crossref_primary_10_1109_ACCESS_2022_3161951
crossref_primary_10_1155_2020_1428968
crossref_primary_10_1109_ACCESS_2020_3006015
crossref_primary_10_1109_OJCOMS_2025_3583074
crossref_primary_10_1109_JSAC_2025_3536503
crossref_primary_10_1109_TCOMM_2024_3511954
crossref_primary_10_3390_electronics14132705
crossref_primary_10_1109_TCOMM_2024_3490493
crossref_primary_10_1080_23270012_2020_1802622
crossref_primary_10_1016_j_phycom_2021_101443
crossref_primary_10_1109_ACCESS_2021_3067503
crossref_primary_10_1109_TWC_2021_3085823
crossref_primary_10_1109_ACCESS_2021_3104277
crossref_primary_10_1109_TWC_2023_3283267
crossref_primary_10_1109_ACCESS_2021_3095346
crossref_primary_10_1109_TWC_2024_3401686
crossref_primary_10_1109_JSSC_2022_3204807
crossref_primary_10_1109_TNSE_2022_3201748
crossref_primary_10_3390_s20226475
crossref_primary_10_1109_ACCESS_2023_3347502
crossref_primary_10_1109_ACCESS_2024_3417358
crossref_primary_10_1109_TCCN_2021_3132609
crossref_primary_10_1109_TVT_2022_3176017
crossref_primary_10_1109_TWC_2023_3324916
crossref_primary_10_3390_s23094359
crossref_primary_10_1007_s11277_025_11770_y
crossref_primary_10_1109_MAES_2020_3015604
Cites_doi 10.1109/ICASSP.2018.8461461
10.1109/MCOM.2014.6736750
10.1109/49.585778
10.1109/LWC.2019.2899571
10.1109/JSTSP.2018.2818649
10.1109/MWC.2018.1700351
10.1109/ICCW.2018.8403591
10.1109/MCOM.2019.1800384
10.1109/ACCESS.2018.2888868
10.1109/TWC.2015.2457921
10.1109/MCOM.2018.1701019
10.1109/ACCESS.2016.2631222
10.1109/ACCESS.2019.2902372
10.1109/TMTT.2016.2574849
10.1109/ACCESS.2018.2850226
10.1109/ACCESS.2013.2260813
10.1109/TCOMM.2015.2449860
10.1002/9780470825631
10.1109/ICCW.2018.8403779
10.1109/TVT.2017.2787627
10.1109/TAP.1986.1143830
10.1109/TCCN.2017.2758370
10.1109/LWC.2017.2757490
10.1109/TVT.2018.2882635
10.1109/MCOM.2019.1800509
10.1109/ACCESS.2019.2895594
10.1109/SPAWC.2017.8227772
10.1109/MCOM.2015.7010532
10.1109/INFOCOM.2015.7218630
10.1109/VETECS.2011.5956484
10.1109/MWC.2019.1900027
10.1109/MWC.2019.1800039
10.1109/COMST.2018.2869411
10.1016/j.neunet.2014.09.003
10.1109/LCOMM.2011.110711.112047
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2980285
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_39222751445b49b786f1a9eb9e92550f
10_1109_ACCESS_2020_2980285
9034044
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-b2bac6280b7fd284b3da7dfd494d45b152e3cc486aa004769f5d93d61c5c016a3
IEDL.DBID RIE
ISICitedReferencesCount 121
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524748500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:28 EDT 2025
Sun Jun 29 12:15:38 EDT 2025
Tue Nov 18 22:33:12 EST 2025
Sat Nov 29 02:42:06 EST 2025
Wed Aug 27 02:35:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-b2bac6280b7fd284b3da7dfd494d45b152e3cc486aa004769f5d93d61c5c016a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7126-0924
0000-0001-9561-3341
OpenAccessLink https://ieeexplore.ieee.org/document/9034044
PQID 2454736778
PQPubID 4845423
PageCount 1
ParticipantIDs ieee_primary_9034044
proquest_journals_2454736778
crossref_citationtrail_10_1109_ACCESS_2020_2980285
crossref_primary_10_1109_ACCESS_2020_2980285
doaj_primary_oai_doaj_org_article_39222751445b49b786f1a9eb9e92550f
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref34) 2019
ref12
ref15
ref36
ref14
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref19
kay (ref37) 1993
ref18
lim (ref30) 0
(ref31) 2019
ref24
ref23
ref26
ref25
(ref35) 2019
ref20
ref42
ref41
alrabeiah (ref27) 2019
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
wei (ref16) 2019
ref40
References_xml – ident: ref18
  doi: 10.1109/ICASSP.2018.8461461
– ident: ref3
  doi: 10.1109/MCOM.2014.6736750
– ident: ref40
  doi: 10.1109/49.585778
– ident: ref21
  doi: 10.1109/LWC.2019.2899571
– ident: ref25
  doi: 10.1109/JSTSP.2018.2818649
– ident: ref1
  doi: 10.1109/MWC.2018.1700351
– ident: ref11
  doi: 10.1109/ICCW.2018.8403591
– ident: ref5
  doi: 10.1109/MCOM.2019.1800384
– ident: ref10
  doi: 10.1109/ACCESS.2018.2888868
– year: 2019
  ident: ref34
  publication-title: NR Physical Channels and Modulation (Release 15)
– year: 2019
  ident: ref31
  publication-title: Study on Channel Model for Frequencies From 0 5 to 100 GHz
– ident: ref7
  doi: 10.1109/TWC.2015.2457921
– ident: ref42
  doi: 10.1109/MCOM.2018.1701019
– year: 0
  ident: ref30
  article-title: Map-based millimeter-wave channel models: An overview, hybrid modeling, data, and learning
  publication-title: IEEE Wireless Commun Mag
– year: 2019
  ident: ref35
  publication-title: NR Physical Layer Procedures for Control (Release 15)
– ident: ref9
  doi: 10.1109/ACCESS.2016.2631222
– ident: ref20
  doi: 10.1109/ACCESS.2019.2902372
– ident: ref41
  doi: 10.1109/TMTT.2016.2574849
– ident: ref22
  doi: 10.1109/ACCESS.2018.2850226
– ident: ref2
  doi: 10.1109/ACCESS.2013.2260813
– ident: ref8
  doi: 10.1109/TCOMM.2015.2449860
– ident: ref32
  doi: 10.1002/9780470825631
– ident: ref36
  doi: 10.1109/ICCW.2018.8403779
– ident: ref19
  doi: 10.1109/TVT.2017.2787627
– ident: ref38
  doi: 10.1109/TAP.1986.1143830
– ident: ref13
  doi: 10.1109/TCCN.2017.2758370
– ident: ref15
  doi: 10.1109/LWC.2017.2757490
– ident: ref24
  doi: 10.1109/TVT.2018.2882635
– year: 1993
  ident: ref37
  publication-title: Fundamentals of Statistical Signal Processing
– ident: ref29
  doi: 10.1109/MCOM.2019.1800509
– ident: ref23
  doi: 10.1109/ACCESS.2019.2895594
– year: 2019
  ident: ref27
  article-title: Deep learning for mmWave beam and blockage prediction using sub-6GHz channels
  publication-title: arXiv 1910 02900
– ident: ref14
  doi: 10.1109/SPAWC.2017.8227772
– ident: ref6
  doi: 10.1109/MCOM.2015.7010532
– ident: ref26
  doi: 10.1109/INFOCOM.2015.7218630
– ident: ref33
  doi: 10.1109/VETECS.2011.5956484
– ident: ref17
  doi: 10.1109/MWC.2019.1900027
– ident: ref28
  doi: 10.1109/MWC.2019.1800039
– ident: ref4
  doi: 10.1109/COMST.2018.2869411
– ident: ref12
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref39
  doi: 10.1109/LCOMM.2011.110711.112047
– year: 2019
  ident: ref16
  article-title: Knowledge-aided deep learning for beamspace channel estimation in millimeter-wave massive MIMO systems
  publication-title: arXiv 1910 12455
SSID ssj0000816957
Score 2.5489907
Snippet In fifth-generation (5G) communications, millimeter wave (mmWave) is one of the key technologies to increase the data rate. To overcome this technology's poor...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 5G NR
Algorithms
and ultra-low latency
Artificial neural networks
beam selection
beamforming
Deep learning
Machine learning
Millimeter waves
mmWave
Prototypes
Ray tracing
Sweeping
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOCCiIhYJ84IhZx7EdT2-7C92eVhVf7c1ybKdU2s1Wu6GHHvjtjBN3tQgJLlyTyYfnTeaNLecNIW9l2pkIijPhgmHS1ZGZ0kmmYmOED6bwKvTNJqrFwlxcwNleq6-0J2yQBx4cN0b-FqJCWpeqllBXRjeFg1hDBKyGeZOyL69gbzLV52BTaFBVlhkqOIwnsxmOCCeEgr8XYJBW1W9U1Cv25xYrf-TlnmxOHpNHuUqkk-HtnpB7sX1KHu5pBx6Snx9ivKZZHvWSTZGNAl2tzt1NpNPoVvRz3-EG3U6xLqVqThefxnpOz6-67xTTBdN0fnpL098FbVzS_FtSsj-mk-XleoN2qy11baBnm3W3Tmu19BtW7UMTpmfk68nHL7NTlpspMC-56Vgtaue1MLyumoCcVJfBVaEJEmRA1yKNx9J7abRzSUFSQ6MClEEjWB7LQlc-Jwftuo0vCNWqCQZP8TrBAh6U0FFp8C5yMEUcEXHnV-uz0nhqeLG0_YyDgx3AsAkMm8EYkXe7i64HoY2_m08TYDvTpJLdH8DYsTl27L9iZ0QOE9y7mwAvJZdyRI7u4Lf5i95akZTPyiS39_J_PPoVeZCGMyzmHJGDbvMjvib3_U13td286YP5F4Cs8iI
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Learning-Based mmWave Beam Selection for 5G NR/6G with Sub-6 GHz Channel Information: Algorithms and Prototype Validation
URI https://ieeexplore.ieee.org/document/9034044
https://www.proquest.com/docview/2454736778
https://doaj.org/article/39222751445b49b786f1a9eb9e92550f
Volume 8
WOSCitedRecordID wos000524748500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swECaSoEM79JUWdZsGHDpGMU2RFNnNdhNnqRH0mU3g4xQEsKXAdjJ0yG_vkWKMFi0KdBEE6SRQ-Eje8cT7PkLeibgz0UhWcBt0IayDQpdWFBIazX3QIy9DEpuo5nN9cWHOd8jRthYGANLmMziOp-lffuj8TUyVDQ0rBRNil-xWleprtbb5lCggYWSViYVGzAzH0yl-Ay4BOTvmRqMjlb85n8TRn0VV_piJk3s5ffJ_DXtKHucwko573J-RHWifk0e_kAvuk7sPANc086deFhN0V4Eul9_tLdAJ2CX9nCRwEBeKgSuVMzr_NFQzGjOzFOeTQtHZ2Q8ayw9aWNBctxTt39Px4rJbod1yTW0b6Pmq23QxmUu_YVjfqzS9IF9PT75Mz4qstlB4wfSmcNxZr7hmrmoCOi1XBluFJggjgpAO_TyU3gutrI0Uk8o0MpgyKETTY9xoy5dkr-1aeEWokk3QeIs5DMeE8UZyBVIZb4EZPYIB4fcw1D5TkUdFjEWdliTM1D12dcSuztgNyNH2oeueiePf5pOI79Y00minCwhcnUdljcEh51VspHTCuEqrZmQNOAMGl1qsGZD9CPb2JRnnATm47y11HvLrmkdqtDLy8b3--1NvyMPYwD5_c0D2NqsbeEse-NvN1Xp1mJIBePx4d3KYevZP66_yqg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLbGQIIdxo8NUTbAB47L6jq2Y-_WFtYiRjXBgN0s_3iZkNpkarsdduBvn514EQiExC1KniNHn-33_OL3fQi9ZfFkouIko8bLjBkLmcwNyziUkjovB477RmyimM3k-bk63UAHXS0MADSHz-AwXjb_8n3trmKqrK9Izghj99D9qJyVqrW6jEqUkFC8SNRCA6L6w_E4fEXYBFJySJUMrpT_5n4alv4kq_LHWtw4mOPH_9e1J2g7BZJ42CL_FG1A9Qxt_UIvuIN-vgO4xIlB9SIbBYfl8WLx3VwDHoFZ4C-NCE5ABofQFfMJnn3uiwmOuVkcVpRM4Mn0BscChArmOFUuRfsjPJxf1Mtgt1hhU3l8uqzXdUzn4m8hsG91mnbR1-P3Z-NplvQWMseIXGeWWuMElcQWpQ9uy-beFL70TDHPuA2eHnLnmBTGRJJJoUruVe5FwNOFyNHkz9FmVVfwAmHBSy_DI2JDQMaUU5wK4EI5A0TJAfQQvYNBu0RGHjUx5rrZlBClW-x0xE4n7HrooGt02XJx_Nt8FPHtTCORdnMjAKfTvNQhPKS0iJ3klilbSFEOjAKrQIXNFil7aCeC3b0k4dxD-3ejRadJv9I0kqPlkZHv5d9bvUEPp2efTvTJh9nHPfQodrbN5uyjzfXyCl6hB-56_WO1fN2M7FtFA_PN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+mmWave+Beam+Selection+for+5G+NR%2F6G+With+Sub-6+GHz+Channel+Information%3A+Algorithms+and+Prototype+Validation&rft.jtitle=IEEE+access&rft.au=Sim%2C+Min+Soo&rft.au=Lim%2C+Yeon-Geun&rft.au=Park%2C+Sang+Hyun&rft.au=Dai%2C+Linglong&rft.date=2020-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=8&rft.spage=51634&rft_id=info:doi/10.1109%2FACCESS.2020.2980285&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon