Dynamic Bayesian Network Modeling, Learning, and Inference: A Survey

Since the introduction of Dynamic Bayesian Networks (DBNs), their efficiency and effectiveness have increased through the development of three significant aspects: (i) modeling, (ii) learning and (iii) inference. However, no reviews of the literature have been found that chronicle their importance a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 9; s. 117639 - 117648
Hlavní autoři: Shiguihara, Pedro, Lopes, Alneu De Andrade, Mauricio, David
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Since the introduction of Dynamic Bayesian Networks (DBNs), their efficiency and effectiveness have increased through the development of three significant aspects: (i) modeling, (ii) learning and (iii) inference. However, no reviews of the literature have been found that chronicle their importance and development over time. The aim of this study is to provide a systematic review of the literature that details the evolution and advancement of DBNs, focusing in the period 1997-2019 that emphasize the aspects of modeling, learning and inference. While the literature presents temporal event networks, knowledge encapsulation, relational and time varying representations as the four predominant DBN modeling approaches, this work groups them as essential techniques within DBNs and help practitioners by associating each to various challenge that arise in pattern discovery and prediction in dynamic processes. Regarding learning, the predominant methods mainly focus on scoring with greedy search. Finally, our study suggests that the main methods used in DBN inference extend or adapt those used in static BNs, and are oriented to either optimize processing time or error rate.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3105520