A Digital Twin-based Automatic Programming Method for Adaptive Control of Manufacturing Cells
The booming personalized and customized demands of customers in Industry 4.0 pose great challenges for manufacturing enterprises in terms of flexibility and responsiveness. Nowadays, many effective dynamic scheduling approaches have been proposed for manufacturing systems to quickly respond to chang...
Uloženo v:
| Vydáno v: | IEEE access Ročník 10; s. 1 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The booming personalized and customized demands of customers in Industry 4.0 pose great challenges for manufacturing enterprises in terms of flexibility and responsiveness. Nowadays, many effective dynamic scheduling approaches have been proposed for manufacturing systems to quickly respond to changes in customer demands, where, however, the implementation of an automatic programming method with high control accuracy and low control delay is still challenging. The above unaddressed issue brings about a lot of labor-intensive and time-consuming manual offline programming work when adjusting the scheduling scheme to meet dynamic customer demands, resulting in limited flexibility and responsiveness in current manufacturing systems. To bridge this gap, a bi-level adaptive control architecture enabled by an automatic programming method is proposed and embedded into a digital twin manufacturing cell (DTMC). The bi-level architecture aims to automatically map an input task scheduling scheme with a batch of jobs into a group of control programs through a behavior model network and a set of event models embedded in DTMC. It also provides an adaptive program modification mechanism to quickly adapt to the dynamic adjustment of the scheduling scheme caused by the changing of customer demands or production conditions, thus equipping DTMC with strong flexibility and responsiveness. Based on the bi-level architecture, a DTMC prototype system is developed, where its application and evaluation results demonstrate the feasibility and effectiveness of the proposed approach. |
|---|---|
| AbstractList | The booming personalized and customized demands of customers in Industry 4.0 pose a great challenge for manufacturing enterprises in terms of flexibility and responsiveness. Nowadays, many effective dynamic scheduling approaches have been proposed for manufacturing systems to quickly respond to changes in customer demands, where, however, the implementation of an automatic programming method with high control accuracy and low control delay is still challenging. The above unaddressed issue brings about a lot of labor-intensive and time-consuming manual offline programming work when adjusting the scheduling scheme to meet dynamic customer demands, resulting in limited flexibility and responsiveness in current manufacturing systems. To bridge this gap, a bi-level adaptive control architecture enabled by an automatic programming method is proposed and embedded into a digital twin manufacturing cell (DTMC). The bi-level architecture aims to automatically map an input task scheduling scheme with a batch of jobs into a group of control programs through a behavior model network and a set of event models embedded in DTMC. It also provides an adaptive program modification mechanism to quickly adapt to the dynamic adjustment of the scheduling scheme caused by the changing of customer demands or production conditions, thus equipping DTMC with strong flexibility and responsiveness. Based on the bi-level architecture, a DTMC prototype system is developed, where its application and evaluation examples demonstrate the feasibility and effectiveness of the proposed method. The booming personalized and customized demands of customers in Industry 4.0 pose great challenges for manufacturing enterprises in terms of flexibility and responsiveness. Nowadays, many effective dynamic scheduling approaches have been proposed for manufacturing systems to quickly respond to changes in customer demands, where, however, the implementation of an automatic programming method with high control accuracy and low control delay is still challenging. The above unaddressed issue brings about a lot of labor-intensive and time-consuming manual offline programming work when adjusting the scheduling scheme to meet dynamic customer demands, resulting in limited flexibility and responsiveness in current manufacturing systems. To bridge this gap, a bi-level adaptive control architecture enabled by an automatic programming method is proposed and embedded into a digital twin manufacturing cell (DTMC). The bi-level architecture aims to automatically map an input task scheduling scheme with a batch of jobs into a group of control programs through a behavior model network and a set of event models embedded in DTMC. It also provides an adaptive program modification mechanism to quickly adapt to the dynamic adjustment of the scheduling scheme caused by the changing of customer demands or production conditions, thus equipping DTMC with strong flexibility and responsiveness. Based on the bi-level architecture, a DTMC prototype system is developed, where its application and evaluation results demonstrate the feasibility and effectiveness of the proposed approach. |
| Author | Chang, Fengtian Zhang, Chao Zhou, Guanghui Jing, Yanzhen Wang, Rui |
| Author_xml | – sequence: 1 givenname: Chao surname: Zhang fullname: Zhang, Chao organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 2 givenname: Guanghui orcidid: 0000-0002-4913-6967 surname: Zhou fullname: Zhou, Guanghui organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 3 givenname: Yanzhen surname: Jing fullname: Jing, Yanzhen organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 4 givenname: Rui surname: Wang fullname: Wang, Rui organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 5 givenname: Fengtian surname: Chang fullname: Chang, Fengtian organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China |
| BookMark | eNp9UU1r3DAUFCWFJml-QS6CnL3Vh2VZR-Mk7UJCC0mPRehzq8VrbWQ5pf--cp2WkkN1eeIxM--9mTNwMsbRAXCJ0QZjJD50fX_z8LAhiJANxYIJxN6AU4IbUVFGm5N__u_AxTTtUXltaTF-Cr518DrsQlYDfPwRxkqryVnYzTkeVA4Gfklxl9ThEMYdvHf5e7TQxwQ7q445PDvYxzGnOMDo4b0aZ69MntMC7t0wTO_BW6-GyV281HPw9fbmsf9U3X3-uO27u8rUqM2VJrStuaVEUMab2mujWo4V0YoLz7XGDlliDPfe2gLwGNnaO6aVYYgbXtNzsF11bVR7eUzhoNJPGVWQvxsx7aRK5ZzBydZRbT0ug2pXC2xbzrw1GmMjRMNEU7SuVq1jik-zm7LcxzmNZX1JOEI1Lm4uE8WKMilOU3JemmJiDosdKgwSI7mEI9dw5BKOfAmncOkr7p-N_8-6XFnBOfeXIYpxBDP6C3hHnMw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_s25113484 crossref_primary_10_1016_j_knosys_2022_110009 crossref_primary_10_1016_j_apenergy_2022_119986 crossref_primary_10_1016_j_aei_2025_103264 crossref_primary_10_1016_j_rcim_2025_102993 crossref_primary_10_1016_j_aei_2025_103321 crossref_primary_10_1016_j_jnca_2024_104024 crossref_primary_10_1016_j_cie_2023_109319 crossref_primary_10_3390_app15158525 crossref_primary_10_1016_j_aei_2023_102121 crossref_primary_10_1016_j_procs_2024_02_050 crossref_primary_10_1051_e3sconf_202459205024 crossref_primary_10_1007_s00170_022_10667_5 crossref_primary_10_1016_j_rcim_2024_102778 crossref_primary_10_1007_s00170_024_13861_9 crossref_primary_10_1109_JRFID_2024_3387996 |
| Cites_doi | 10.1109/TSMC.2020.3041121 10.1109/TII.2020.3011062 10.1109/TII.2019.2938885 10.1109/TLA.2020.9082917 10.1016/j.rcim.2020.101954 10.1109/TSMC.2017.2723764 10.1109/JSYST.2016.2514414 10.1109/CASE48305.2020.9216732 10.1109/ACCESS.2019.2891060 10.1016/j.procir.2019.04.084 10.1109/ACCESS.2021.3050238 10.1109/TII.2021.3073649 10.1109/ACCESS.2018.2869275 10.1016/j.jclepro.2022.130541 10.1016/j.rcim.2017.06.009 10.1109/JIOT.2018.2814063 10.1109/TSMC.2017.2736339 10.1080/00207543.2019.1607978 10.1080/00207543.2021.1951869 10.1109/JIOT.2020.3005729 10.1016/j.jmsy.2017.10.003 10.1109/LRA.2018.2799420 10.1109/TCYB.2019.2901268 10.1109/TSMC.2019.2930418 10.1109/ACCESS.2021.3110242 10.1109/TII.2020.3007764 10.1016/j.procs.2016.04.203 10.1109/COMST.2017.2705720 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2022.3195905 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_8e3bdf13574e491d875fdcb11c996596 10_1109_ACCESS_2022_3195905 9847215 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Young Talent fund of University Association for Science and Technology in Shaanxi, China grantid: 20210409 – fundername: China Postdoctoral Science Foundation grantid: 2021M692556 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 51975463; 52105530 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-b23847d32935764fbca871a2ba79f7bb1e0d2cc7ffdd576f10d4fe5bac507c743 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000838622900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:44:29 EDT 2025 Sun Nov 30 04:21:21 EST 2025 Sat Nov 29 06:32:17 EST 2025 Tue Nov 18 21:51:49 EST 2025 Wed Aug 27 02:24:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-b23847d32935764fbca871a2ba79f7bb1e0d2cc7ffdd576f10d4fe5bac507c743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4913-6967 |
| OpenAccessLink | https://doaj.org/article/8e3bdf13574e491d875fdcb11c996596 |
| PQID | 2700412164 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2022_3195905 crossref_citationtrail_10_1109_ACCESS_2022_3195905 proquest_journals_2700412164 ieee_primary_9847215 doaj_primary_oai_doaj_org_article_8e3bdf13574e491d875fdcb11c996596 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref21 doi: 10.1109/TSMC.2020.3041121 – ident: ref17 doi: 10.1109/TII.2020.3011062 – ident: ref19 doi: 10.1109/TII.2019.2938885 – ident: ref15 doi: 10.1109/TLA.2020.9082917 – ident: ref11 doi: 10.1016/j.rcim.2020.101954 – ident: ref6 doi: 10.1109/TSMC.2017.2723764 – ident: ref27 doi: 10.1109/JSYST.2016.2514414 – ident: ref5 doi: 10.1109/CASE48305.2020.9216732 – ident: ref16 doi: 10.1109/ACCESS.2019.2891060 – ident: ref7 doi: 10.1016/j.procir.2019.04.084 – ident: ref4 doi: 10.1109/ACCESS.2021.3050238 – ident: ref18 doi: 10.1109/TII.2021.3073649 – ident: ref3 doi: 10.1109/ACCESS.2018.2869275 – ident: ref23 doi: 10.1016/j.jclepro.2022.130541 – ident: ref25 doi: 10.1016/j.rcim.2017.06.009 – ident: ref2 doi: 10.1109/JIOT.2018.2814063 – ident: ref8 doi: 10.1109/TSMC.2017.2736339 – ident: ref10 doi: 10.1080/00207543.2019.1607978 – ident: ref20 doi: 10.1080/00207543.2021.1951869 – ident: ref22 doi: 10.1109/JIOT.2020.3005729 – ident: ref24 doi: 10.1016/j.jmsy.2017.10.003 – ident: ref1 doi: 10.1109/LRA.2018.2799420 – ident: ref12 doi: 10.1109/TCYB.2019.2901268 – ident: ref9 doi: 10.1109/TSMC.2019.2930418 – ident: ref13 doi: 10.1109/ACCESS.2021.3110242 – ident: ref14 doi: 10.1109/TII.2020.3007764 – ident: ref26 doi: 10.1016/j.procs.2016.04.203 – ident: ref28 doi: 10.1109/COMST.2017.2705720 |
| SSID | ssj0000816957 |
| Score | 2.336197 |
| Snippet | The booming personalized and customized demands of customers in Industry 4.0 pose great challenges for manufacturing enterprises in terms of flexibility and... The booming personalized and customized demands of customers in Industry 4.0 pose a great challenge for manufacturing enterprises in terms of flexibility and... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models Adaptive control Aerospace electronics Automatic programming Behavior model Customers Digital twin Digital twins Dynamic scheduling Event model Flexibility Industrial applications Industry 4.0 Job shop scheduling Manufacturing Programming Scheduling System effectiveness Task scheduling |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUo6qEc-kVRt6XIB46kxFlvHB_TtKgHQBxA4lJZ_hhXK22ziN0tf58Zx0RIRUi9RZEd2Xm2Z57tecPYIQiAUti6UN41hXRRFVaDK7S1rkb7pLVLIq6n6vy8ub7WF1vsaIyFAYB0-Qy-0mM6yw9Lv6GtsmONS2lFEeUvlKqHWK1xP4USSOiZysJCotTHbddhH5ACVhUyUz3TlKLukfFJGv05qco_K3EyLydv_q9hb9nr7EbydsD9HduC_j3beSQuuMt-tfz7_DflBOGXd_O-IHsVeLtZL5NKK78Ybmb9wcL8LOWR5ujA8jbYG1oCeTdcYufLyM9sv6EIiBTSyDtYLFYf2NXJj8vuZ5GTKRRels26cGibpQpTNO9IMWR03iJXspWzSkflnIAyVN6rGEPAAlGUQUaYOevRY_ToZ-yx7X7Zw0fGZWktQlwLC8h30IUBNfU6NI23ehqhnrDq4S8bn5XGKeHFwiTGUWozQGMIGpOhmbCjsdLNILTxfPFvBN9YlFSy0wvExeRJZxqYuhAFdliC1CIgN4vBOyG8Jh1FbOguYTl-JMM4YfsPg8HkGb0ydEAvRYXs8tPTtT6zV9TAYXtmn22vbzfwhb30f9fz1e1BGqz3_TTofw priority: 102 providerName: IEEE |
| Title | A Digital Twin-based Automatic Programming Method for Adaptive Control of Manufacturing Cells |
| URI | https://ieeexplore.ieee.org/document/9847215 https://www.proquest.com/docview/2700412164 https://doaj.org/article/8e3bdf13574e491d875fdcb11c996596 |
| Volume | 10 |
| WOSCitedRecordID | wos000838622900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlJQ-MRMSJG-fGEEAMFDGAxIIsP1GlkiLawsZv5-yEqhISLCwZosvr7uL7vsT-jpATx5xLmSoSYXSZcO1FosDpBJTSBdYnAB1FXG_E7W35-Ah3C62-wpywVh64ddxZ6XJtPcv7gjsOzCK-9tZoxgwELbwotp0KWCBTcQwuWQF90ckMsRTOqrrGJ0JCmGXIU6EPoWHdQimKiv1di5Uf43IsNlcbZL1DibRq726TLLlmi6wtaAduk6eKXgyfQ8sPev8xbJJzLEeWVrPpOIqw0rt24tULGtNBbBNNEZ_SyqrXMMLRup2jTseeDlQzCwsc4opFWrvRaLJDHq4u7-vrpOuVkBieltNEY-nlwuZYvZFBcK-NQiqkMq0EeKE1c6nNjBHeW4sGnqWWe9fXyiAgNAgjdslyM27cHqE8VQojWDDlkM4gQnEiN2DL0ijIvSt6JPt2mzSdkHjoZzGSkVCkIFtfy-Br2fm6R07nB722Ohq_m5-HeMxNgwh23IGpIbvUkH-lRo9sh2jOTwLoIUQ4PXL4HV3ZvbATGf6_c5Yhedz_j0sfkNXwOO23mkOyPH2buSOyYt6nw8nbccxV3A4-L4_jisMvzpHtWw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxELWqggQc-CqIQAEfOHbpeuPE6-OyUBWRRD0EqRdk-WOMIoVN1STw95nxuqtKICRuq5W9svfZnnm25w1j70AAlMJOC-VdXUgXVWE1uEJb66Zon7R2ScR1phaL-vJSXxywkyEWBgDS5TN4T4_pLD9s_J62yk41LqUVRZTfocxZOVpr2FGhFBJ6orK0kCj1adO22AskgVWF3FRPNCWpu2V-kkp_Tqvyx1qcDMzZo_9r2mP2MDuSvOmRf8IOoHvKHtySFzxi3xr-cfWdsoLw5a9VV5DFCrzZ7zZJp5Vf9HezfmBhPk-ZpDm6sLwJ9ooWQd7219j5JvK57fYUA5GCGnkL6_X2Gft69mnZnhc5nULhZVnvCofWWaowRgOPJENG5y2yJVs5q3RUzgkoQ-W9ijEELBBFGWSEibMefUaPnsZzdthtOnjBuCytRZCnwgIyHnRiQI29DnXtrR5HmI5YdfOXjc9a45TyYm0S5yi16aExBI3J0IzYyVDpqpfa-HfxDwTfUJR0stMLxMXkaWdqGLsQBXZYgtQiIDuLwTshvCYlRWzoEWE5fCTDOGLHN4PB5Dm9NXREL0WF_PLl32u9ZffOl_OZmX1efHnF7lNj-82aY3a4u97Da3bX_9ytttdv0sD9DT3r68g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Digital+Twin-Based+Automatic+Programming+Method+for+Adaptive+Control+of+Manufacturing+Cells&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Chao&rft.au=Zhou%2C+Guanghui&rft.au=Jing%2C+Yanzhen&rft.au=Wang%2C+Rui&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=80784&rft.epage=80793&rft_id=info:doi/10.1109%2FACCESS.2022.3195905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3195905 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |