Feature Based Automatic Text Summarization Methods: A Comprehensive State-of-the-Art Survey
With the advent of the World Wide Web, there are numerous online platforms that generate huge amounts of textual material, including social networks, online blogs, magazines, etc. This textual content contains useful information that can be used to advance humanity. Text summarization has been a sig...
Saved in:
| Published in: | IEEE access Vol. 10; p. 1 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the advent of the World Wide Web, there are numerous online platforms that generate huge amounts of textual material, including social networks, online blogs, magazines, etc. This textual content contains useful information that can be used to advance humanity. Text summarization has been a significant area of research in natural language processing (NLP). With the expansion of the internet, the amount of data in the world has exploded. Large volumes of data make locating the required and best information time-consuming. It is impractical to manually summarize petabytes of data; hence, computerized text summarization is rising in popularity. This study presents a comprehensive overview of the current status of text summarizing approaches, techniques, standard datasets, assessment criteria, and future research directions. The summarizing approaches are assessed based on several characteristics, including approach-based, document-number-based, Summarization domain-based, document-language-based, output summary nature, etc. This study concludes with a discussion of many obstacles and research opportunities linked to text summarizing research that may be relevant for future researchers in this field. |
|---|---|
| AbstractList | With the advent of the World Wide Web, there are numerous online platforms that generate huge amounts of textual material, including social networks, online blogs, magazines, etc. This textual content contains useful information that can be used to advance humanity. Text summarization has been a significant area of research in natural language processing (NLP). With the expansion of the internet, the amount of data in the world has exploded. Large volumes of data make locating the required and best information time-consuming. It is impractical to manually summarize petabytes of data; hence, computerized text summarization is rising in popularity. This study presents a comprehensive overview of the current status of text summarizing approaches, techniques, standard datasets, assessment criteria, and future research directions. The summarizing approaches are assessed based on several characteristics, including approach-based, document-number-based, Summarization domain-based, document-language-based, output summary nature, etc. This study concludes with a discussion of many obstacles and research opportunities linked to text summarizing research that may be relevant for future researchers in this field. |
| Author | Yadav, Arun Kumar Katna, Rishabh Yadav, Divakar Morato, Jorge |
| Author_xml | – sequence: 1 givenname: Divakar orcidid: 0000-0001-6051-479X surname: Yadav fullname: Yadav, Divakar organization: Department of Computer Science & Engineering, NIT Hamirpur (HP), India – sequence: 2 givenname: Rishabh surname: Katna fullname: Katna, Rishabh organization: Department of Computer Science & Engineering, NIT Hamirpur (HP), India – sequence: 3 givenname: Arun Kumar surname: Yadav fullname: Yadav, Arun Kumar organization: Department of Computer Science & Engineering, NIT Hamirpur (HP), India – sequence: 4 givenname: Jorge orcidid: 0000-0002-7530-9753 surname: Morato fullname: Morato, Jorge organization: Department of Computer Science, Universidad Carlos III de Madrid, Spain |
| BookMark | eNp9kUFv1DAQhS1UJErpL-glEucstidxbG4haqFSqx62nDhYjjNms9qNF9upWn493qYgxAFfbD3N9_TG7y05mfyEhFwwumKMqg9t112u1ytOOV8BB0aZeEVOOROqhBrEyV_vN-Q8xi3NR2apbk7Jtys0aQ5YfDIRh6Kdk9-bNNriHh9TsZ73exPGn1nxU3GLaeOH-LFoi87vDwE3OMXxAYt1MglL78q0wbINRy484NM78tqZXcTzl_uMfL26vO--lDd3n6-79qa0FZWpND1tHFBlDToOAgS6vmLIWC-twkr2lA8gamagYTU3ztbcVj1XDdhGMYdwRq4X38GbrT6EMWd-0t6M-lnw4bs2Ie-0Qy2ZtDBU0LtaVJYz2UtKxWBlBQPntM5e7xevQ_A_ZoxJb_0cphxf86ZWIBugTZ5Sy5QNPsaATtsxPX9SCmbcaUb1sRq9VKOP1eiXajIL_7C_E_-fulioERH_EEqpSkgJvwApAZr9 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s42979_023_02241_x crossref_primary_10_2478_ijssis_2024_0021 crossref_primary_10_3389_frai_2024_1399168 crossref_primary_10_1007_s42488_023_00111_y crossref_primary_10_3390_app12136584 crossref_primary_10_3390_bdcc9050117 crossref_primary_10_3390_math13162613 crossref_primary_10_1016_j_procs_2024_10_329 |
| Cites_doi | 10.1016/j.is.2020.101615 10.1016/j.cosrev.2021.100388 10.1186/s40537-020-00386-7 10.1016/j.ipm.2014.02.001 10.1093/comjnl/bxp124 10.1016/s0306-4573(02)00056-0 10.1016/j.datak.2010.02.005 10.1016/j.jpdc.2019.09.001 10.1613/jair.1523 10.1016/j.eswa.2014.03.023 10.1016/j.knosys.2019.03.002 10.1111/exsy.12340 10.1134/s0361768811060041 10.1016/j.eswa.2016.10.017 10.1007/s00500-017-2612-9 10.1016/j.eswa.2020.113679 10.1016/j.ipm.2004.04.003 10.1016/j.eswa.2018.07.047 10.1609/aaai.v34i05.6419 10.1016/j.ipm.2020.102359 10.1016/j.csl.2014.07.001 10.1007/springerreference_65284 10.1007/s11192-015-1765-5 10.1007/s12559-015-9359-3 10.4018/ijiit.2017010104 10.1016/j.eswa.2019.05.045 10.1007/s10586-018-2674-1 10.1016/j.datak.2019.101763 10.1126/science.264.5164.1421 10.18653/v1/2022.emnlp-main.396 10.1371/journal.pone.0115671 10.1016/j.eswa.2019.01.037 10.1016/j.swevo.2016.03.004 10.18653/v1/D19-1324 10.1007/978-1-4614-3223-4_3 10.1109/tsmca.2011.2116001 10.1162/089120105774321091 10.1016/j.csl.2016.07.002 10.1016/j.eswa.2019.112958 10.1136/bmj.b2535 10.1016/j.ipm.2021.102536 10.1016/j.procs.2015.02.031 10.1016/j.jbi.2016.10.014 10.1016/j.eswa.2019.112904 10.1016/j.datak.2013.08.005 10.1109/pacrim.2015.7334805 10.1016/j.eswa.2019.06.002 10.18653/v1/2020.acl-main.124 10.1016/j.eswa.2012.12.012 10.1016/j.jbi.2020.103452 10.1007/s12559-020-09748-y 10.1007/s12652-020-02591-x 10.1007/s11042-020-09549-3 10.1016/j.infsof.2008.09.009 10.1016/j.ipm.2019.03.003 10.1007/s10462-021-09964-4 10.1109/raics.2013.6745442 10.1080/24751839.2017.1364040 10.18653/v1/d17-1222 10.1016/j.ipm.2010.03.004 10.1016/j.eswa.2019.03.045 10.1007/3-540-36127-8_20 10.1007/s10462-015-9442-x 10.1016/j.ipm.2016.12.002 10.1016/j.ipm.2007.01.013 10.1016/s0957-4174(03)00062-9 10.1007/s11042-021-10613-9 10.1371/journal.pone.0023862 10.1016/j.eij.2019.11.001 10.18653/v1/2020.acl-main.451 10.1016/j.ipm.2007.01.026 10.1016/j.ins.2019.05.020 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2022.3231016 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_818c3d43bf564c218b8006dc843d2205 10_1109_ACCESS_2022_3231016 9994688 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD ABAZT JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-ab07f309caef23636efb41e11b8c9e48b02d3651a37152afc52c4b2973c791fe3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000906232700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:46:14 EDT 2025 Mon Jun 30 06:35:45 EDT 2025 Tue Nov 18 21:03:49 EST 2025 Sat Nov 29 04:02:21 EST 2025 Tue Nov 25 14:44:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-ab07f309caef23636efb41e11b8c9e48b02d3651a37152afc52c4b2973c791fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6051-479X 0000-0002-7530-9753 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9994688 |
| PQID | 2759387307 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_9994688 crossref_citationtrail_10_1109_ACCESS_2022_3231016 proquest_journals_2759387307 doaj_primary_oai_doaj_org_article_818c3d43bf564c218b8006dc843d2205 crossref_primary_10_1109_ACCESS_2022_3231016 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref50 (ref72) 2022 ref46 ref48 ref47 ref42 ref41 ref43 Mihalcea (ref21) ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref80 Khandelwal (ref51) 2019 ref35 (ref71) 2022 ref79 ref34 ref37 Sinha (ref33) 2018 ref36 ref31 ref75 (ref78) 2022 ref30 Dohare (ref44) 2017 ref77 ref32 Ganesan (ref74) 2022 ref76 Ganesan (ref45) ref2 ref1 ref39 ref38 ref70 ref73 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref65 ref28 ref27 ref29 Farzindar (ref62) ref60 ref61 |
| References_xml | – ident: ref43 doi: 10.1016/j.is.2020.101615 – ident: ref1 doi: 10.1016/j.cosrev.2021.100388 – ident: ref50 doi: 10.1186/s40537-020-00386-7 – ident: ref56 doi: 10.1016/j.ipm.2014.02.001 – ident: ref10 doi: 10.1093/comjnl/bxp124 – ident: ref29 doi: 10.1016/s0306-4573(02)00056-0 – ident: ref11 doi: 10.1016/j.datak.2010.02.005 – ident: ref39 doi: 10.1016/j.jpdc.2019.09.001 – ident: ref19 doi: 10.1613/jair.1523 – ident: ref23 doi: 10.1016/j.eswa.2014.03.023 – ident: ref38 doi: 10.1016/j.knosys.2019.03.002 – ident: ref15 doi: 10.1111/exsy.12340 – ident: ref25 doi: 10.1134/s0361768811060041 – ident: ref36 doi: 10.1016/j.eswa.2016.10.017 – ident: ref73 doi: 10.1007/s00500-017-2612-9 – ident: ref5 doi: 10.1016/j.eswa.2020.113679 – ident: ref26 doi: 10.1016/j.ipm.2004.04.003 – ident: ref42 doi: 10.1016/j.eswa.2018.07.047 – ident: ref46 doi: 10.1609/aaai.v34i05.6419 – ident: ref35 doi: 10.1016/j.ipm.2020.102359 – ident: ref65 doi: 10.1016/j.csl.2014.07.001 – ident: ref79 doi: 10.1007/springerreference_65284 – ident: ref9 doi: 10.1007/s11192-015-1765-5 – start-page: 340 volume-title: Proc. 23rd Int. Conf. Comput. Linguistics (Coling) ident: ref45 article-title: Opinosis: A graph based approach to abstractive summarization of highly redundant opinions – volume-title: Opinosis Dataset—Topic Related Review Sentences year: 2022 ident: ref74 – volume-title: GitHub—JafferWilson/Process-Data-of-CNN-DailyMail: This Repository Holds the Output of the Repository year: 2022 ident: ref72 – ident: ref53 doi: 10.1007/s12559-015-9359-3 – ident: ref14 doi: 10.4018/ijiit.2017010104 – ident: ref20 doi: 10.1016/j.eswa.2019.05.045 – year: 2019 ident: ref51 article-title: Sample efficient text summarization using a single pre-trained transformer publication-title: arXiv:1905.08836 – ident: ref24 doi: 10.1007/s10586-018-2674-1 – ident: ref64 doi: 10.1016/j.datak.2019.101763 – ident: ref67 doi: 10.1126/science.264.5164.1421 – start-page: 404 volume-title: Proc. Conf. Empirical Methods Natural Lang. Process. ident: ref21 article-title: TextRank: Bringing order into text – ident: ref66 doi: 10.18653/v1/2022.emnlp-main.396 – ident: ref6 doi: 10.1371/journal.pone.0115671 – ident: ref32 doi: 10.1016/j.eswa.2019.01.037 – year: 2017 ident: ref44 article-title: Text summarization using abstract meaning representation publication-title: arXiv:1706.01678 – ident: ref28 doi: 10.1016/j.swevo.2016.03.004 – year: 2018 ident: ref33 article-title: Extractive text summarization using neural networks publication-title: arXiv:1802.10137 – ident: ref58 doi: 10.18653/v1/D19-1324 – ident: ref4 doi: 10.1007/978-1-4614-3223-4_3 – ident: ref57 doi: 10.1109/tsmca.2011.2116001 – ident: ref47 doi: 10.1162/089120105774321091 – ident: ref13 doi: 10.1016/j.csl.2016.07.002 – ident: ref16 doi: 10.1016/j.eswa.2019.112958 – ident: ref8 doi: 10.1136/bmj.b2535 – start-page: 27 volume-title: Proc. Text Summarization Branches Out ident: ref62 article-title: Legal text summarization by exploration of the thematic structure and argumentative roles – ident: ref76 doi: 10.1016/j.ipm.2021.102536 – ident: ref12 doi: 10.1016/j.procs.2015.02.031 – ident: ref31 doi: 10.1016/j.jbi.2016.10.014 – ident: ref40 doi: 10.1016/j.eswa.2019.112904 – ident: ref52 doi: 10.1016/j.datak.2013.08.005 – ident: ref48 doi: 10.1109/pacrim.2015.7334805 – ident: ref17 doi: 10.1016/j.eswa.2019.06.002 – ident: ref81 doi: 10.18653/v1/2020.acl-main.124 – ident: ref55 doi: 10.1016/j.eswa.2012.12.012 – ident: ref61 doi: 10.1016/j.jbi.2020.103452 – ident: ref80 doi: 10.1007/s12559-020-09748-y – ident: ref75 doi: 10.1007/s12652-020-02591-x – ident: ref63 doi: 10.1007/s11042-020-09549-3 – ident: ref7 doi: 10.1016/j.infsof.2008.09.009 – ident: ref68 doi: 10.1016/j.ipm.2019.03.003 – ident: ref3 doi: 10.1007/s10462-021-09964-4 – ident: ref82 doi: 10.1109/raics.2013.6745442 – ident: ref41 doi: 10.1080/24751839.2017.1364040 – ident: ref77 doi: 10.18653/v1/d17-1222 – ident: ref54 doi: 10.1016/j.ipm.2010.03.004 – ident: ref70 doi: 10.1016/j.eswa.2019.03.045 – ident: ref30 doi: 10.1007/3-540-36127-8_20 – ident: ref2 doi: 10.1007/s10462-015-9442-x – ident: ref18 doi: 10.1016/j.ipm.2016.12.002 – ident: ref27 doi: 10.1016/j.ipm.2007.01.013 – ident: ref49 doi: 10.1016/s0957-4174(03)00062-9 – ident: ref37 doi: 10.1007/s11042-021-10613-9 – ident: ref59 doi: 10.1371/journal.pone.0023862 – volume-title: CNN-Dailymail year: 2022 ident: ref71 – ident: ref22 doi: 10.1016/j.eij.2019.11.001 – volume-title: Datasets/Gigaword.Py at Master ⋅ Tensorflow/Datasets year: 2022 ident: ref78 – ident: ref34 doi: 10.18653/v1/2020.acl-main.451 – ident: ref60 doi: 10.1016/j.ipm.2007.01.026 – ident: ref69 doi: 10.1016/j.ins.2019.05.020 |
| SSID | ssj0000816957 |
| Score | 2.315614 |
| SecondaryResourceType | review_article |
| Snippet | With the advent of the World Wide Web, there are numerous online platforms that generate huge amounts of textual material, including social networks, online... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Abstractive summarization Computer science cosine-similarity Data mining Deep learning Documents extractive summarization graph-based algorithm Measurement Natural language processing Neural networks Social networks Web sites |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSxwxGA9FPLSH4qOlW7Xk4LGpk3fibV2UXhShFoQewuRFC2W3zO4K_vd-ycRloWAvvQ7JZPK9M-T7_RA6jYZTrqknsnihMJGTPmhGvKLR5pCYsn0lm9A3N-b-3t5uUX2VO2EjPPAouDNIKIFHwX2WSgRISB5KHBWDETyWJtESfTtttw5TNQYbqqzUDWaIdvZsOpvBjuBAyNgXXoqawnC-lYoqYn-jWPkrLtdkc7WH3rYqEU_Hr9tHr9L8AL3Zwg48RD9K8bYeEr6APBTxdL1aVPRVfAfhFn-rPWmtxxJfV5ro5Tme4uL_Q_o5XlvHtdQki0ygDCSwGswbHtLjO_T96vJu9pU0pgQSRGdWpPedzryzoU-ZccVVyl7QRKk3wSZhfMciV5L2oBbJ-hwkC8IX2qqgLc2Jv0c788U8fUDYSB0gBvRC6iyUsYZH8HtW-L9zVElOEHsWmgsNRrywWfx29TjRWTdK2hVJuybpCfq8mfRnRNF4efhF0cZmaIHArg_AMFwzDPcvw5igw6LLzUugEob9mAk6ftata-66dExLyw0EO_3xfyx9hF6X7Yx_ao7RzmpYpxO0Gx5Wv5bDp2qpT2LW5pk priority: 102 providerName: Directory of Open Access Journals |
| Title | Feature Based Automatic Text Summarization Methods: A Comprehensive State-of-the-Art Survey |
| URI | https://ieeexplore.ieee.org/document/9994688 https://www.proquest.com/docview/2759387307 https://doaj.org/article/818c3d43bf564c218b8006dc843d2205 |
| Volume | 10 |
| WOSCitedRecordID | wos000906232700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSxwxFH6o9NAetNWWrrWSQ49GZ_I73tZF6UUp1ILQQ5j8ooWyW2Z3BS_-7SaZ7CC0FHoZhiEZMvnyXr5k8t4H8Mkr2lLZWsyzFTLlKe6cJNiK1uvoAhG6K2IT8uZG3d3pL1twMsbChBDK4bNwmm_Lv3y_cOu8VXaWyAwTSm3DtpRiiNUa91OygITmsiYWaht9Np3N0jekJSAhpzTTmKxp_mzyKTn6q6jKH564TC9Xe__XsNewW2kkmg64v4GtMN-HvY1EA6oWuw-vnuUbPIDvmfCt-4Au0tzl0XS9WpSMreg2uWj0tcSx1bhMdF2kpZfnaIrya_vwYzjqjgo9xYuIE3XEqQGpXn8fHt7Ct6vL29lnXNUVsGONWuHONjLSRrsuREIFFSFa1oa2tcrpwJRtiKeCt12CkpMuOk4cs1nqykndxkDfwc58MQ_vASkuXfIbHeMypn7QivrkK0jWDI9eBD4Bsul242rq8ayA8cuUJUijzYCVyViZitUETsZKv4fMG_8ufpHxHIvmtNnlQQLKVCs0iZ046hm1kQvmEruxiS8L7xSjPkccT-Aggzu-pOI6gaPN6DDVxJeGSK6pSg5SHv691gd4mRs47Nccwc6qX4eP8MLdr34u--Oy-E_X68fL4zKSnwAhoO12 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1daxQxFL3UKtg-WG0tbls1Dz427Uw-JknftoulYrsIrlDwIUy-UJBdmd0t-O9NMtmhoAi-DUMSMjm5NyeZ3HsA3jlJaypqg3myQiYdxa0VBJumdipYTxrVZrEJMZ3Kuzv1aQtOh1gY732-fObP0mP-l-8Wdp2Oys4jmWGNlI_gMWeMVH201nCikiQkFBcltVBdqfPxZBK_Im4CCTmjicgkVfMHy0_O0l9kVf7wxXmBudr7v649h2eFSKJxj_wL2PLzfdjbiDSgYrP7sPsg4-ABfE2Ub915dBlXL4fG69Ui52xFs-ik0eccyVYiM9FtFpdeXqAxSs12_lt_2R1lgooXAUfyiGMHYr3u3v96CV-u3s8m17joK2DLKrnCralEoJWyrQ-ENrTxwbDa17WRVnkmTUUcbXjdRjA5aYPlxDKTxK6sUHXw9BC254u5fwVIcmGj52gZFyGOg5LURW9Bkmp4cI3nIyCbYde2JB9PGhg_dN6EVEr3WOmElS5YjeB0qPSzz73x7-KXCc-haEqcnV9EoHSxQx35iaWOURN4w2zkNyYy5sZZyahLMccjOEjgDo0UXEdwspkduhj5UhPBFZXRRYqjv9d6C0-vZ7c3-ubD9OMx7KTO9qc3J7C96tb-NTyx96vvy-5Nnsm_AW8i7pc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Based+Automatic+Text+Summarization+Methods%3A+A+Comprehensive+State-of-the-Art+Survey&rft.jtitle=IEEE+access&rft.au=Yadav%2C+Divakar&rft.au=Katna%2C+Rishabh&rft.au=Yadav%2C+Arun+Kumar&rft.au=Morato%2C+Jorge&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=10&rft.spage=133981&rft_id=info:doi/10.1109%2FACCESS.2022.3231016&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |