Ship Motion Attitude Prediction Based on an Adaptive Dynamic Particle Swarm Optimization Algorithm and Bidirectional LSTM Neural Network

A new neural network prediction model is proposed for predicting ship motion attitude with high accuracy. This prediction model is based on an adaptive dynamic particle swarm optimization algorithm (ADPSO) and bidirectional long short-term memory (BiLSTM) neural network, which is to optimize the hyp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 8; pp. 90087 - 90098
Main Authors: Zhang, Guoyin, Tan, Feng, Wu, Yanxia
Format: Journal Article
Language:English
Published: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A new neural network prediction model is proposed for predicting ship motion attitude with high accuracy. This prediction model is based on an adaptive dynamic particle swarm optimization algorithm (ADPSO) and bidirectional long short-term memory (BiLSTM) neural network, which is to optimize the hyperparameters of BiLSTM neural network by the proposed ADPSO algorithm. The ADPSO algorithm introduces dynamic search space strategy into the classical particle swarm optimization algorithm and adjusts the learning factor adaptively to balance the global and local search ability, so as to improve the optimization performance and improve its optimization effect in BiLSTM parameter optimization process. The results show that the model can obtain higher prediction accuracy and faster convergence speed, and has better prediction performance in the prediction of ship motion attitude.
AbstractList A new neural network prediction model is proposed for predicting ship motion attitude with high accuracy. This prediction model is based on an adaptive dynamic particle swarm optimization algorithm (ADPSO) and bidirectional long short-term memory (BiLSTM) neural network, which is to optimize the hyperparameters of BiLSTM neural network by the proposed ADPSO algorithm. The ADPSO algorithm introduces dynamic search space strategy into the classical particle swarm optimization algorithm and adjusts the learning factor adaptively to balance the global and local search ability, so as to improve the optimization performance and improve its optimization effect in BiLSTM parameter optimization process. The results show that the model can obtain higher prediction accuracy and faster convergence speed, and has better prediction performance in the prediction of ship motion attitude.
Author Tan, Feng
Wu, Yanxia
Zhang, Guoyin
Author_xml – sequence: 1
  givenname: Guoyin
  surname: Zhang
  fullname: Zhang, Guoyin
  organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China
– sequence: 2
  givenname: Feng
  orcidid: 0000-0002-5278-9539
  surname: Tan
  fullname: Tan, Feng
  organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China
– sequence: 3
  givenname: Yanxia
  surname: Wu
  fullname: Wu, Yanxia
  email: wuyanxia@hrbeu.edu.cn
  organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China
BookMark eNp9UU1vEzEQtVCRKKW_oBdLnBPstde7PqahpZXSD2nL2ZrYs63Dbhy8DlX5Bf3ZONmAEAd88ei9eU8z896To3VYIyFnnE05Z_rTbD6_aJppwQo2LbQWmuk35LjgSk9EKdTRX_U7cjoMK5ZfnaGyOiavzZPf0JuQfFjTWUo-bR3S-4jO2z12DgM6mgvIvINN8j-Qfn5ZQ-8tvYeYvO2QNs8Qe3qX2d7_hNGsewzRp6c-Kx09985H3FtCRxfNww29xW3M9S2m5xC_fSBvW-gGPD38J-Tr5cXD_GqyuPtyPZ8tJlayOk0AVIWVhiVftlYUQjBsmYC6dspBKZxVyla2BBAouQTWcsWl1ExVzDLJW3FCrkdfF2BlNtH3EF9MAG_2QIiP5rCUySdaSo2ILSrpynKJUOlaYlsXti6qOnt9HL02MXzf4pDMKmxjXnAwhSwlZ0yLXZceu2wMwxCxNdan_Y1SBN8ZzswuRzPmaHY5mkOOWSv-0f6e-P-qs1Hl8_B_FJnhvJLiF4grrIg
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11804_025_00722_4
crossref_primary_10_3390_app12020757
crossref_primary_10_3390_jmse12050711
crossref_primary_10_1016_j_energy_2025_137206
crossref_primary_10_1007_s40722_022_00255_w
crossref_primary_10_1016_j_ast_2024_108903
crossref_primary_10_1080_17445302_2024_2336675
crossref_primary_10_1109_TII_2021_3088404
crossref_primary_10_3390_su15043628
crossref_primary_10_3233_JIFS_210603
crossref_primary_10_1016_j_oceaneng_2025_122722
crossref_primary_10_1016_j_oceaneng_2024_118223
crossref_primary_10_1016_j_oceaneng_2024_119237
crossref_primary_10_1109_ACCESS_2021_3112973
crossref_primary_10_1109_TGRS_2024_3495662
crossref_primary_10_1051_jnwpu_20244230377
crossref_primary_10_1038_s41598_023_47416_x
crossref_primary_10_3390_jmse13091792
crossref_primary_10_1002_adts_202100220
crossref_primary_10_1016_j_energy_2021_119887
crossref_primary_10_3390_jmse12020291
crossref_primary_10_1016_j_oceaneng_2022_113235
crossref_primary_10_1016_j_marstruc_2020_102928
crossref_primary_10_3390_w15071306
crossref_primary_10_1016_j_heliyon_2023_e21377
crossref_primary_10_1007_s12530_023_09496_y
crossref_primary_10_1007_s11200_023_0134_y
crossref_primary_10_1016_j_oceaneng_2024_118236
crossref_primary_10_1016_j_oceaneng_2022_110555
crossref_primary_10_1371_journal_pone_0310133
crossref_primary_10_1007_s13344_025_0016_7
crossref_primary_10_54392_irjmt2468
crossref_primary_10_1016_j_ress_2023_109572
crossref_primary_10_3390_electronics13173555
crossref_primary_10_1007_s13369_024_09921_7
crossref_primary_10_1016_j_oceaneng_2024_117428
crossref_primary_10_3390_jmse9040387
crossref_primary_10_4173_mic_2021_1_2
crossref_primary_10_1016_j_apor_2023_103701
crossref_primary_10_3389_fenrg_2023_1211360
crossref_primary_10_1007_s13369_022_06655_2
crossref_primary_10_3390_electronics10212689
crossref_primary_10_1080_15435075_2022_2143272
crossref_primary_10_1109_ACCESS_2023_3298649
crossref_primary_10_3390_jmse10060804
crossref_primary_10_4018_IJICTE_344427
crossref_primary_10_3390_rs13112164
crossref_primary_10_1002_cpe_8241
crossref_primary_10_1007_s13344_023_0085_4
crossref_primary_10_1016_j_oceaneng_2020_108503
crossref_primary_10_1080_1064119X_2024_2449235
crossref_primary_10_3390_jmse11050919
crossref_primary_10_1016_j_oceaneng_2022_112876
Cites_doi 10.1109/ACCESS.2020.2971348
10.1007/s00500-016-2116-z
10.1177/0142331217716983
10.1109/78.650093
10.1016/j.asoc.2018.09.013
10.1162/tacl_a_00105
10.1109/CEC.2004.1330875
10.1109/OCEANS.1981.1151574
10.1016/j.marstruc.2017.10.012
10.1109/ITAIC.2019.8785751
10.1002/mma.4565
10.1109/CEC.2019.8790060
10.1109/CISCE.2019.00113
10.2514/3.62814
10.18653/v1/N18-1132
10.1177/0142331219860731
10.1007/978-3-319-70093-9_5
10.1109/GNCC42960.2018.9018688
10.1162/neco.1997.9.8.1735
10.1109/TII.2018.2811377
10.1109/ICCCNT45670.2019.8944827
10.1016/j.swevo.2017.09.001
10.1109/CCDC.2017.7978772
10.1049/el.2017.2112
10.1109/ITNEC.2019.8729441
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2993909
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 90098
ExternalDocumentID oai_doaj_org_article_169b49eeefe64d55bea7984ef82c8278
10_1109_ACCESS_2020_2993909
9091174
Genre orig-research
GrantInformation_xml – fundername: Foundation for Distinguished Young Scholars of Harbin
  grantid: 2017RAYXJ016
– fundername: Natural Science Foundation of Heilongjiang Province
  grantid: F2018008
  funderid: 10.13039/501100005046
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3072019CFT0602
  funderid: 10.13039/501100012226
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-aa67e79ab1bfc32330ef03a88d6da53dc66c7c5aa3e414a0f1614490670c041f3
IEDL.DBID DOA
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538727700097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:24 EDT 2025
Sun Nov 30 04:02:54 EST 2025
Sat Nov 29 02:42:24 EST 2025
Tue Nov 18 22:35:07 EST 2025
Wed Aug 27 02:39:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-aa67e79ab1bfc32330ef03a88d6da53dc66c7c5aa3e414a0f1614490670c041f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5278-9539
OpenAccessLink https://doaj.org/article/169b49eeefe64d55bea7984ef82c8278
PQID 2454100938
PQPubID 4845423
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_169b49eeefe64d55bea7984ef82c8278
proquest_journals_2454100938
ieee_primary_9091174
crossref_citationtrail_10_1109_ACCESS_2020_2993909
crossref_primary_10_1109_ACCESS_2020_2993909
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
reimers (ref18) 2017
ref2
ref17
ref16
ref19
wang (ref7) 2017; 39
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
xingjian (ref21) 2017; 58
ref29
ref8
ref9
ref4
ref3
ref6
hao (ref1) 2016; 27
ref5
References_xml – ident: ref13
  doi: 10.1109/ACCESS.2020.2971348
– ident: ref26
  doi: 10.1007/s00500-016-2116-z
– ident: ref25
  doi: 10.1177/0142331217716983
– ident: ref14
  doi: 10.1109/78.650093
– ident: ref23
  doi: 10.1016/j.asoc.2018.09.013
– ident: ref17
  doi: 10.1162/tacl_a_00105
– ident: ref29
  doi: 10.1109/CEC.2004.1330875
– volume: 58
  start-page: 100
  year: 2017
  ident: ref21
  article-title: Research on short-term prediction of typical trial sea environment in China based on LSTM neural network
  publication-title: Shipbuild China
– ident: ref5
  doi: 10.1109/OCEANS.1981.1151574
– ident: ref4
  doi: 10.1016/j.marstruc.2017.10.012
– ident: ref12
  doi: 10.1109/ITAIC.2019.8785751
– volume: 39
  start-page: 69
  year: 2017
  ident: ref7
  article-title: Short-term prediction of ship motion based on LSTM
  publication-title: Ship Science and Technology
– ident: ref3
  doi: 10.1002/mma.4565
– ident: ref16
  doi: 10.1109/CEC.2019.8790060
– ident: ref11
  doi: 10.1109/CISCE.2019.00113
– ident: ref2
  doi: 10.2514/3.62814
– ident: ref19
  doi: 10.18653/v1/N18-1132
– ident: ref8
  doi: 10.1177/0142331219860731
– ident: ref20
  doi: 10.1007/978-3-319-70093-9_5
– ident: ref24
  doi: 10.1109/GNCC42960.2018.9018688
– year: 2017
  ident: ref18
  article-title: Optimal hyperparameters for deep LSTM-networks for sequence labeling tasks
  publication-title: arXiv 1707 06799
– volume: 27
  start-page: 13
  year: 2016
  ident: ref1
  article-title: Design of the deck longitudinal motion compensation for carrier landing
  publication-title: Aeronautical Science and Technology
– ident: ref15
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref22
  doi: 10.1109/TII.2018.2811377
– ident: ref10
  doi: 10.1109/ICCCNT45670.2019.8944827
– ident: ref28
  doi: 10.1016/j.swevo.2017.09.001
– ident: ref6
  doi: 10.1109/CCDC.2017.7978772
– ident: ref27
  doi: 10.1049/el.2017.2112
– ident: ref9
  doi: 10.1109/ITNEC.2019.8729441
SSID ssj0000816957
Score 2.4125607
Snippet A new neural network prediction model is proposed for predicting ship motion attitude with high accuracy. This prediction model is based on an adaptive dynamic...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 90087
SubjectTerms Adaptive algorithms
ADPSO algorithm
Attitudes
BiLSTM neural network
Heuristic algorithms
Logic gates
Machine learning
Marine vehicles
Model accuracy
Neural networks
Optimization algorithms
Particle swarm optimization
prediction accuracy
Prediction algorithms
Prediction models
Predictions
Predictive models
Process parameters
Ship motion
Ship motion attitude
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH5qKw5wYCuoAwX5wLFpndiJ7ePMtBUHOow0RerNcmyHjtRZlKbwF_qz--y4EQiExM3yEjn5XvwWvwXgU8Ula4QqMpQdfMataDJTBM8pZbj3vJSUN7HYhJjN5NWVmu_A0RAL472Pzmf-ODTjXb7b2LtgKjtRyNxQgt6FXSGqPlZrsKeEAhKqFCmxUE7VyXg6xXdAFbCgx3joonKvfmM-MUd_Kqryx0kc2cv5i__b2Et4nsRIMu5xfwU7fv0anv2SXHAf7hfXyy25iFV6yLgLLgHOk3kbbmZi3wQZmCPYMDjuzDYcfOS0r1BP5omkyOKnaVfkK46uUsgmGd9837TL7nqFKx2ZLHu2GG2K5Mvi8oKEjB_YnvUu5m_g2_nZ5fRzluouZJZT2WXGVMILZeq8biwrGKO-ocxI6SpnSuZsVVlhS2OY5zk3tMmDVqlCxI-lPG_YW9hbb9b-AEglBRO5qXJZKxTMLMrzhaDSGhRLclw3guIREG1TUvJQG-NGR-WEKt2jqAOKOqE4gqNh0bbPyfHv6ZOA9DA1JNSOHQihTh9TI_HUXCGwja-4K8vaG6Ek940srCyEHMF-gH14SEJ8BIePdKPTz3-rC17yPJiK5Lu_r3oPT8MGe0vOIex17Z3_AE_sj255236MdP0AIGv1rw
  priority: 102
  providerName: IEEE
Title Ship Motion Attitude Prediction Based on an Adaptive Dynamic Particle Swarm Optimization Algorithm and Bidirectional LSTM Neural Network
URI https://ieeexplore.ieee.org/document/9091174
https://www.proquest.com/docview/2454100938
https://doaj.org/article/169b49eeefe64d55bea7984ef82c8278
Volume 8
WOSCitedRecordID wos000538727700097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbhMx0EIVBzggoCACpfKBI0vttdePYxJacSAhUorUm-X12jRSk0bbpb1x5rMZPxoFIcGFy8qyPd61Z3YetmcGoXeCKxakrivQHXzFnQyVrePNKW2597xRhIeUbELO5-riQi_2Un3FO2E5PHBeuBMqdMu19z54wbumab2VWnEfVO1ULZObL5F6z5hKPFgBXCNLmCFK9Ml4OoUZgUFYkw_AgsHU17-JohSxv6RY-YMvJ2Fz9hQ9KVoiHueve4Ye-M1z9HgvduAh-rm8XG3xLCXhweMhnvh3Hi_6ePCS6iYgnzoMBQvtnd1GvoY_5gT0eFEmjpd3tl_jL9C6Lh6ZeHz17bpfDZdrgOzwZJWlXtoyxJ-X5zMcA3pAeZ5vkL9AX89Oz6efqpJWoXKcqKGyVkgvtW1pGxyrGSM-EGaV6kRnG9Y5IZx0jbXMc8otCTQajTo69DjCaWAv0cHmeuNfISyUZJJaQVWrQe9yoK7XkihnQeugADdC9f0KG1dijsfUF1cm2R5Em4wWE9FiClpG6P0OaJtDbvy9-ySibtc1xstOFUBFpiym-RcVjdBhRPxuEBiXgq02Qkf3hGDKv31jat5wGneC1Ov_8eo36FGcTt7WOUIHQ__dv0UP3e2wuumPE1nDc_bj9Dg5J_4CneH7kA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4aAwl44DYQhQF-4HHZHMeJ7ce2MA3Rlkot0t4sx3G2SutFWQZ_gZ_NseNFIBASb5YvkZPvxOficwF4X3CZ1UKxBGUHl3Ar6sQw7zmlDHeO55LyOhSbELOZPD9X8z046mNhnHPB-cwd-2a4y6-29sabyk4UMjeUoO_A3ZxzRrtord6i4ktIqFzE1EIpVSfD8RjfApVARo_x2EX1Xv3GfkKW_lhW5Y-zODCY08f_t7Un8CgKkmTYIf8U9tzmGTz8Jb3gAfxYXK52ZBrq9JBh650CKkfmjb-bCX0jZGEVwYbB8crs_NFHPnQ16sk8EhVZfDfNmnzB0XUM2iTDq4tts2ov17iyIqNVxxiDVZFMFssp8Tk_sD3rnMyfw9fTj8vxWRIrLySWU9kmxhTCCWXKtKxtxrKMuppmRsqqqEyeVbYorLC5MZnjKTe0Tr1eqXzMj6U8rbMXsL_ZbtxLIIUUmUhNkcpSoWhmUaJngkprUDBJcd0A2C0g2sa05L46xpUO6glVukNRexR1RHEAR_2iXZeV49_TRx7pfqpPqR06EEIdP6ZG4im5QmBrV_Aqz0tnhJLc1ZJZyYQcwIGHvX9IRHwAh7d0o-Pvf60Zz3nqjUXy1d9XvYP7Z8vpRE8-zT6_hgd-s51d5xD22-bGvYF79lu7um7eBhr_CQdU-PY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ship+Motion+Attitude+Prediction+Based+on+an+Adaptive+Dynamic+Particle+Swarm+Optimization+Algorithm+and+Bidirectional+LSTM+Neural+Network&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Guoyin&rft.au=Tan%2C+Feng&rft.au=Wu%2C+Yanxia&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=90087&rft.epage=90098&rft_id=info:doi/10.1109%2FACCESS.2020.2993909&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2993909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon