Liver Semantic Segmentation Algorithm Based on Improved Deep Adversarial Networks in Combination of Weighted Loss Function on Abdominal CT Images
Due to the space inconsistency between benchmark image and segmentation result in many existing semantic segmentation algorithms for abdominal CT images, an improved model based on the basic framework of DeepLab-v3 is proposed, and Pix2pix network is introduced as the generation adversarial model. O...
Uložené v:
| Vydané v: | IEEE access Ročník 7; s. 96349 - 96358 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Due to the space inconsistency between benchmark image and segmentation result in many existing semantic segmentation algorithms for abdominal CT images, an improved model based on the basic framework of DeepLab-v3 is proposed, and Pix2pix network is introduced as the generation adversarial model. Our proposed model realizes the segmentation framework combining deep feature with multi-scale semantic feature. In order to improve the generalization ability and training accuracy of the model, this paper proposes a combination of the traditional multi-classification cross-entropy loss function with the content loss function of generator output and the adversarial loss function of discriminator output. A large number of qualitative and quantitative experimental results show that the performance of our proposed semantic segmentation algorithm is better than the existing algorithms, and can improve the segmentation efficiency while ensuring the space consistency of the semantics segmentation for abdominal CT images. |
|---|---|
| AbstractList | Due to the space inconsistency between benchmark image and segmentation result in many existing semantic segmentation algorithms for abdominal CT images, an improved model based on the basic framework of DeepLab-v3 is proposed, and Pix2pix network is introduced as the generation adversarial model. Our proposed model realizes the segmentation framework combining deep feature with multi-scale semantic feature. In order to improve the generalization ability and training accuracy of the model, this paper proposes a combination of the traditional multi-classification cross-entropy loss function with the content loss function of generator output and the adversarial loss function of discriminator output. A large number of qualitative and quantitative experimental results show that the performance of our proposed semantic segmentation algorithm is better than the existing algorithms, and can improve the segmentation efficiency while ensuring the space consistency of the semantics segmentation for abdominal CT images. |
| Author | Qian, Pengjiang Wang, Shuihua Yin, Hongsheng Xia, Kaijian Jiang, Yizhang |
| Author_xml | – sequence: 1 givenname: Kaijian orcidid: 0000-0002-1650-9982 surname: Xia fullname: Xia, Kaijian email: xiakaijian@163.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 2 givenname: Hongsheng surname: Yin fullname: Yin, Hongsheng organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 3 givenname: Pengjiang orcidid: 0000-0002-5596-3694 surname: Qian fullname: Qian, Pengjiang organization: Jiangsu Key Laboratory of Media Design and Software Technology, Wuxi, China – sequence: 4 givenname: Yizhang orcidid: 0000-0002-4558-9803 surname: Jiang fullname: Jiang, Yizhang organization: Jiangsu Key Laboratory of Media Design and Software Technology, Wuxi, China – sequence: 5 givenname: Shuihua orcidid: 0000-0003-2238-6808 surname: Wang fullname: Wang, Shuihua organization: School of Architecture Building and Civil Engineering, Loughborough University, Loughborough, U.K |
| BookMark | eNp9kc1u1DAUhSNUJErpE3RjifUMjn-SeDmEFkYawWKKWFo39nXqIYkHO9OKx-CNcUlBiAXxIlfX9zu2z3lZnE1hwqK4Kum6LKl6s2nb6_1-zWip1kzlVdNnxTkrK7Xikldnf9UvisuUDjR_TW7J-rz4sfP3GMkeR5hmb3LRjzjNMPswkc3Qh-jnu5G8hYSW5NZ2PMZwn-t3iEeysRlOED0M5CPODyF-TcRPpA1j56dFJDjyBX1_N2doF1IiN6fJLDv5hM6GMU8OpL3N2tBjelU8dzAkvHz6XxSfb65v2w-r3af323azWxlBm3kFEp3ipqxsxyTUHZeds1QyVAqZbBQIAdAgd8w1iE6iLaF2NQh0wpSd4RfFdtG1AQ76GP0I8bsO4PWvRoi9hpgtGVBXjDfSOiqYVcI4qziwzgkKjUEpOGat14tWNufbCdOsD-EU87OSZkLKqqSNqvKUWqZMzD5EdNr4xek5gh90SfVjoHoJVD8Gqp8CzSz_h_194_9TVwvlEfEP0dSVkKLhPwHbIrEN |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1049_tje2_12025 crossref_primary_10_1007_s13735_022_00240_x crossref_primary_10_1109_ACCESS_2019_2953517 crossref_primary_10_1016_j_compbiomed_2024_108420 crossref_primary_10_1007_s11227_019_03080_5 crossref_primary_10_1109_ACCESS_2020_2983478 crossref_primary_10_3389_fpubh_2020_599550 crossref_primary_10_1007_s40747_020_00216_6 crossref_primary_10_1007_s10916_019_1459_2 crossref_primary_10_1007_s11227_021_04266_6 crossref_primary_10_1007_s10916_019_1508_x crossref_primary_10_1088_1361_6560_abb6bf crossref_primary_10_1109_ACCESS_2020_2989819 crossref_primary_10_1109_LGRS_2025_3569580 crossref_primary_10_1109_ACCESS_2020_3021092 crossref_primary_10_3390_diagnostics10030131 crossref_primary_10_1016_j_irbm_2020_05_003 crossref_primary_10_1007_s12652_019_01589_4 crossref_primary_10_3390_app13010595 crossref_primary_10_1007_s10916_024_02115_6 crossref_primary_10_1155_2020_5128729 crossref_primary_10_1007_s10916_019_1448_5 crossref_primary_10_1109_ACCESS_2019_2937124 crossref_primary_10_1007_s44174_025_00341_1 crossref_primary_10_1038_s41598_022_19204_6 crossref_primary_10_1007_s00521_024_09815_7 crossref_primary_10_1109_JBHI_2020_2964016 crossref_primary_10_1155_2021_8798003 crossref_primary_10_1109_ACCESS_2023_3281558 crossref_primary_10_1007_s10723_020_09506_2 crossref_primary_10_1016_j_rse_2024_114122 crossref_primary_10_1155_2020_3641745 crossref_primary_10_1109_TCBB_2020_2986544 crossref_primary_10_3390_app10155032 crossref_primary_10_1371_journal_pone_0295690 crossref_primary_10_1016_j_iliver_2023_02_002 crossref_primary_10_1109_ACCESS_2019_2954707 crossref_primary_10_1016_j_engappai_2022_105532 crossref_primary_10_1016_j_health_2023_100224 crossref_primary_10_1109_ACCESS_2020_2980060 crossref_primary_10_1007_s11518_025_5670_z crossref_primary_10_1109_ACCESS_2021_3081040 crossref_primary_10_1007_s10916_019_1439_6 crossref_primary_10_1007_s11042_024_18388_5 crossref_primary_10_1007_s11082_023_06168_8 crossref_primary_10_3390_a16110516 crossref_primary_10_1016_j_artmed_2023_102539 crossref_primary_10_1007_s11042_020_08684_1 crossref_primary_10_1109_ACCESS_2020_2982286 crossref_primary_10_1109_ACCESS_2019_2937657 crossref_primary_10_1016_j_amc_2021_126539 crossref_primary_10_1166_jmihi_2021_3327 crossref_primary_10_1109_ACCESS_2019_2959831 crossref_primary_10_3390_math11010095 crossref_primary_10_1080_08839514_2022_2055395 crossref_primary_10_1166_jmihi_2021_3684 crossref_primary_10_1007_s10916_019_1431_1 crossref_primary_10_32604_cmc_2022_024312 crossref_primary_10_3390_app11188485 crossref_primary_10_1016_j_optlastec_2024_111298 crossref_primary_10_1109_TCBB_2020_3018137 crossref_primary_10_1007_s10916_019_1502_3 crossref_primary_10_1007_s12652_020_02004_z crossref_primary_10_1007_s12652_019_01508_7 crossref_primary_10_3389_fonc_2020_01476 crossref_primary_10_3233_MGS_230123 crossref_primary_10_1007_s11276_020_02471_4 crossref_primary_10_1007_s12652_020_02049_0 crossref_primary_10_1166_jmihi_2021_3328 crossref_primary_10_3390_math9101133 crossref_primary_10_1016_j_compag_2022_107204 crossref_primary_10_1016_j_neucom_2021_08_157 crossref_primary_10_3390_app15137300 crossref_primary_10_1109_ACCESS_2019_2955448 crossref_primary_10_1007_s11517_023_02908_w crossref_primary_10_3748_wjg_v26_i17_2082 crossref_primary_10_1016_j_imu_2022_100916 crossref_primary_10_1007_s10916_019_1462_7 crossref_primary_10_1007_s10916_019_1464_5 crossref_primary_10_1109_ACCESS_2020_3001212 crossref_primary_10_1088_1361_6560_ac155f crossref_primary_10_1109_ACCESS_2021_3106377 crossref_primary_10_1166_jmihi_2021_3535 crossref_primary_10_1007_s00330_023_09609_w crossref_primary_10_1109_ACCESS_2021_3078742 crossref_primary_10_1016_j_artmed_2022_102331 crossref_primary_10_1007_s12652_020_02204_7 |
| Cites_doi | 10.1245/s10434-017-5778-6 10.1097/RCT.0000000000000713 10.1007/978-3-319-66179-7_47 10.1002/mp.12291 10.1016/j.artmed.2017.03.008 10.1007/978-3-319-46454-1_40 10.1007/s10278-016-9934-5 10.1118/1.4823765 10.1109/TMI.2018.2845918 10.1007/s11042-017-5243-3 10.1007/s11554-016-0578-y 10.1038/s41598-018-28787-y 10.1145/2964284.2964314 10.1007/s11517-016-1495-8 10.1109/ICCV.2015.178 10.1109/MSP.2017.2765202 10.1007/s10462-017-9550-x 10.1016/j.media.2017.01.002 10.1007/s10916-018-1116-1 10.1109/TBME.2018.2880733 10.24963/ijcai.2017/220 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2019.2929270 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 96358 |
| ExternalDocumentID | oai_doaj_org_article_62385df042d94cfd93a2bf40a8ce543e 10_1109_ACCESS_2019_2929270 8764548 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61702225; 61772241 funderid: 10.13039/501100001809 – fundername: Open Fund Project of Jiangsu Key Laboratory of Media Design and Software Technology (Jiangnan University) grantid: 19ST0205 – fundername: Science and Technology Demonstration Project of Social Development of Wuxi grantid: WX18IVJN002 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20160187 funderid: 10.13039/501100004608 – fundername: Six Talent Peaks Project in Jiangsu Province grantid: XYDXX-127 funderid: 10.13039/501100010014 – fundername: Jiangsu Committee of Health on the Subject grantid: H2018071 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c408t-a5ef93c16db25a7b35bfd052e99e2589a44aa8e3f2f8eef5ed1a7f7a4ef4c1bc3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 95 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478961900076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:27 EDT 2025 Mon Jun 30 03:07:23 EDT 2025 Sat Nov 29 03:57:47 EST 2025 Tue Nov 18 22:35:44 EST 2025 Wed Aug 27 02:54:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-a5ef93c16db25a7b35bfd052e99e2589a44aa8e3f2f8eef5ed1a7f7a4ef4c1bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1650-9982 0000-0003-2238-6808 0000-0002-4558-9803 0000-0002-5596-3694 |
| OpenAccessLink | https://doaj.org/article/62385df042d94cfd93a2bf40a8ce543e |
| PQID | 2455610896 |
| PQPubID | 4845423 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2019_2929270 doaj_primary_oai_doaj_org_article_62385df042d94cfd93a2bf40a8ce543e ieee_primary_8764548 crossref_primary_10_1109_ACCESS_2019_2929270 proquest_journals_2455610896 |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | radford (ref13) 2016; 24 ref31 ref30 bilic (ref32) 2019 ref11 ref10 ref2 ref1 ref17 roth (ref19) 2017 dong (ref8) 2019; 78 chen (ref16) 2017; 22 ref24 ref23 ref26 ref25 warde-farley (ref18) 2017 ref22 ref21 (ref20) 2018 ref28 goodfellow (ref15) 2016 ref27 ref29 arjovsky (ref14) 2017; 32 ref9 ref4 goodfellow (ref12) 2014 ref3 ref6 badrinarayanan (ref5) 2015; 32 luc (ref7) 2016 |
| References_xml | – ident: ref30 doi: 10.1245/s10434-017-5778-6 – ident: ref27 doi: 10.1097/RCT.0000000000000713 – ident: ref21 doi: 10.1007/978-3-319-66179-7_47 – ident: ref24 doi: 10.1002/mp.12291 – ident: ref26 doi: 10.1016/j.artmed.2017.03.008 – ident: ref11 doi: 10.1007/978-3-319-46454-1_40 – ident: ref25 doi: 10.1007/s10278-016-9934-5 – ident: ref31 doi: 10.1118/1.4823765 – ident: ref3 doi: 10.1109/TMI.2018.2845918 – start-page: 2672 year: 2014 ident: ref12 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – volume: 24 start-page: 1 year: 2016 ident: ref13 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: Proc Int Conf Learn Represent – volume: 32 start-page: 1 year: 2017 ident: ref14 article-title: Towards principled methods for training generative adversarial networks publication-title: Proc Int Conf Learn Represent – volume: 78 start-page: 3613 year: 2019 ident: ref8 article-title: Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation publication-title: Multimedia Tools Appl doi: 10.1007/s11042-017-5243-3 – year: 2018 ident: ref20 publication-title: DeepLab Deep Labelling for Semantic Image Segmentation – ident: ref6 doi: 10.1007/s11554-016-0578-y – year: 2016 ident: ref7 article-title: Semantic segmentation using adversarial networks publication-title: ArXiv 1611 08408 – volume: 32 start-page: 1182 year: 2015 ident: ref5 article-title: SegNet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling publication-title: Comput Vis Pattern Recognit – ident: ref2 doi: 10.1038/s41598-018-28787-y – ident: ref4 doi: 10.1145/2964284.2964314 – ident: ref9 doi: 10.1007/s11517-016-1495-8 – ident: ref17 doi: 10.1109/ICCV.2015.178 – ident: ref23 doi: 10.1109/MSP.2017.2765202 – ident: ref1 doi: 10.1007/s10462-017-9550-x – ident: ref28 doi: 10.1016/j.media.2017.01.002 – ident: ref10 doi: 10.1007/s10916-018-1116-1 – year: 2019 ident: ref32 article-title: The Liver Tumor Segmentation Benchmark (LiTS) publication-title: arXiv 1901 04056 – ident: ref29 doi: 10.1109/TBME.2018.2880733 – start-page: 2018 year: 2017 ident: ref19 article-title: Stabilizing training of generative adversarial networks through regularization publication-title: Proc Adv Neural Inf Process Syst – start-page: 1 year: 2017 ident: ref18 article-title: Improving generative adversarial networks with denoising feature matching publication-title: Proc Int Conf Learn Represent – ident: ref22 doi: 10.24963/ijcai.2017/220 – volume: 22 start-page: 1182 year: 2017 ident: ref16 article-title: Rethinking atrous convolution for semantic image segmentation publication-title: Comput Vis Pattern Recognit – year: 2016 ident: ref15 article-title: NIPS 2016 tutorial: Generative adversarial networks publication-title: Proc Neural Inf Process Syst Conf (NIPS) |
| SSID | ssj0000816957 |
| Score | 2.4524019 |
| Snippet | Due to the space inconsistency between benchmark image and segmentation result in many existing semantic segmentation algorithms for abdominal CT images, an... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 96349 |
| SubjectTerms | Abdomen Algorithms atrous space pyramid pooling Cancer Computed tomography Convolution Entropy (Information theory) game adversarial generation adversarial networks Generative adversarial networks Generators Image segmentation Liver Model accuracy multi-scale features Semantic segmentation Semantics weighted loss function |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtwgEEVJ1EN7aJumVTdNIw49xoltwIbjZttVD6tVpaZtbgjDkK6UtaP1Jv-RP86AiRWpVaXeEAYMfjAM42EeIZ-chcIJZTJgTaAwgypTtXUZ85UsKs8aFoP6_FzUy6W8vFTfdsjJeBcGAKLzGZyGZPyX7zp7G0xlZ7hyOWrYu2S3rqvhrtZoTwkEEkrUKbBQkauz6WyGYwjeW-q0RC2gDITETzafGKM_kar8IYnj9jJ_9X8de01eJjWSTgfc98kOtG_IiyfBBQ_I_SK4XNDvsMaPt7KYuFqni0YtnV5fdZvV9veanuM25ihmDeYFTH8GuKGRqLk3YXrS5eAq3tNVS1F-4Fl6aKTz9Fe0rGKlBY6XznGTHJ7gGxrXRcIwOrvAtlFs9W_Jj_mXi9nXLBEwZJbncpsZAV4xWwTOKWHqhonGu1yUoBSUQirDuTESmC-9BPACXGFqXxsOntuisewd2Wu7Ft4TKnBO1ChNSuMYRx20sU5ZibpTxYucGTEh5SMy2qbo5IEk41rHU0qu9ACnDnDqBOeEnIyVbobgHP8ufh4gH4uGyNoxA7HUaaFqVAelcB5lmVPceqeYKRvPcyMtCM5gQg4C_mMjCfoJOXqcQDpJgV6XPJCP5lJVh3-v9YE8Dx0cTDpHZG-7uYWP5Jm92676zXGc4A8ycfuy priority: 102 providerName: IEEE |
| Title | Liver Semantic Segmentation Algorithm Based on Improved Deep Adversarial Networks in Combination of Weighted Loss Function on Abdominal CT Images |
| URI | https://ieeexplore.ieee.org/document/8764548 https://www.proquest.com/docview/2455610896 https://doaj.org/article/62385df042d94cfd93a2bf40a8ce543e |
| Volume | 7 |
| WOSCitedRecordID | wos000478961900076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOCCiILaXygSOhiR-JfdwuXXFYVkgU6M1y7HFZqZutmoUj_4F_zPjR1UpIcOESWY4fsWcyD2s8HyGvvYPGS20r4H2EMIO20p3zFQ-tatrAe56S-nxZdMulurzUH_egvmJMWE4PnDfuFNWzkj4gb3ktXPCaW9YHUVvlQAoOUfrWnd5zppIMxom07EqaoabWp9PZDFcUY7n0W4Y2AYvwxHuqKGXsLxArf8jlpGzmj8mjYiXSaf66J-QeDE_Jw73cgYfk1yJGVNBPsMa9WTksXK3LPaKBTq-vNuj1f1vTM9RSnmJVPj3A8juAG5pwmEcbuY8ucyT4SFcDRfGArnIeZBPo13Rwip0WuAA6Rx2Y3-AMvd8kPDA6u8CxUSqNz8jn-fnF7H1V8BUqJ2q1rayEoLlrIqSUtF3PZR98LRloDUwqbYWwVgEPLCiAIME3tgudFRCEa3rHn5ODYTPAC0IlkrxDYcGs5wJNzN557RSaRq1oam7lhLC7rTauJB-PGBjXJjkhtTaZPibSxxT6TMibXaebnHvj783PIg13TWPi7FSB7GQKO5l_sdOEHEYO2A2CykKgUzchx3ccYcpPPhomIrZorXR79D-mfkkexOXk851jcrC9_Q6vyH33Y7sab08Sf-Pzw8_zk3RL8Te3BAE7 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKQYIe-CqoCwV84Ni0SWwn9nG7sCoirJBYoLfIscdlpW5Sbbb8D_4xY8eNKoGQuFlJ7Dh5k5nxZDyPkLfWQGaF0gmwxlOYQZGo0tiEuUJmhWMNC0V9vlXlYiHPz9XnHXI07oUBgJB8Bse-Gf7l285c-1DZCX65HD3sO-SuQDtaDLu1xoiKp5BQooylhbJUnUxnM3wKn7-ljnP0A3JPSXzL_IQq_ZFW5Q9dHAzM_NH_Te0xeRgdSTodkH9CdqB9SvZulRfcJ78qn3RBv8AaX9_KYONiHbcatXR6edFtVtsfa3qKhsxSPDQEGLD9DuCKBqrmXnsBpYshWbynq5aiBsHV9DBI5-j3EFvFThU-L52jmRzO4B0a2wXKMDpb4tiouPpn5Ov8_XJ2lkQKhsTwVG4TLcApZjLPOiV02TDROJuKHJSCXEilOddaAnO5kwBOgM106UrNwXGTNYY9J7tt18IBoQKlokR9kmvLOHqhjbHKSPSeCp6lTIsJyW-QqU2sT-5pMi7rsE5JVT3AWXs46wjnhByNna6G8hz_vvzUQz5e6mtrhwOIZR0_1RodQimsQ21mFTfOKqbzxvFUSwModzAh-x7_cZAI_YQc3ghQHfVAX-fc04-mUhUv_t7rDbl_tvxU1dWHxceX5IGf7BDgOSS72801vCL3zM_tqt-8DsL-G4mW_wU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+Semantic+Segmentation+Algorithm+Based+on+Improved+Deep+Adversarial+Networks+in+Combination+of+Weighted+Loss+Function+on+Abdominal+CT+Images&rft.jtitle=IEEE+access&rft.au=Xia%2C+Kaijian&rft.au=Yin%2C+Hongsheng&rft.au=Qian%2C+Pengjiang&rft.au=Jiang%2C+Yizhang&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=96349&rft.epage=96358&rft_id=info:doi/10.1109%2FACCESS.2019.2929270&rft.externalDocID=8764548 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |