Liver Semantic Segmentation Algorithm Based on Improved Deep Adversarial Networks in Combination of Weighted Loss Function on Abdominal CT Images

Due to the space inconsistency between benchmark image and segmentation result in many existing semantic segmentation algorithms for abdominal CT images, an improved model based on the basic framework of DeepLab-v3 is proposed, and Pix2pix network is introduced as the generation adversarial model. O...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 7; s. 96349 - 96358
Hlavní autori: Xia, Kaijian, Yin, Hongsheng, Qian, Pengjiang, Jiang, Yizhang, Wang, Shuihua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Due to the space inconsistency between benchmark image and segmentation result in many existing semantic segmentation algorithms for abdominal CT images, an improved model based on the basic framework of DeepLab-v3 is proposed, and Pix2pix network is introduced as the generation adversarial model. Our proposed model realizes the segmentation framework combining deep feature with multi-scale semantic feature. In order to improve the generalization ability and training accuracy of the model, this paper proposes a combination of the traditional multi-classification cross-entropy loss function with the content loss function of generator output and the adversarial loss function of discriminator output. A large number of qualitative and quantitative experimental results show that the performance of our proposed semantic segmentation algorithm is better than the existing algorithms, and can improve the segmentation efficiency while ensuring the space consistency of the semantics segmentation for abdominal CT images.
AbstractList Due to the space inconsistency between benchmark image and segmentation result in many existing semantic segmentation algorithms for abdominal CT images, an improved model based on the basic framework of DeepLab-v3 is proposed, and Pix2pix network is introduced as the generation adversarial model. Our proposed model realizes the segmentation framework combining deep feature with multi-scale semantic feature. In order to improve the generalization ability and training accuracy of the model, this paper proposes a combination of the traditional multi-classification cross-entropy loss function with the content loss function of generator output and the adversarial loss function of discriminator output. A large number of qualitative and quantitative experimental results show that the performance of our proposed semantic segmentation algorithm is better than the existing algorithms, and can improve the segmentation efficiency while ensuring the space consistency of the semantics segmentation for abdominal CT images.
Author Qian, Pengjiang
Wang, Shuihua
Yin, Hongsheng
Xia, Kaijian
Jiang, Yizhang
Author_xml – sequence: 1
  givenname: Kaijian
  orcidid: 0000-0002-1650-9982
  surname: Xia
  fullname: Xia, Kaijian
  email: xiakaijian@163.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 2
  givenname: Hongsheng
  surname: Yin
  fullname: Yin, Hongsheng
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 3
  givenname: Pengjiang
  orcidid: 0000-0002-5596-3694
  surname: Qian
  fullname: Qian, Pengjiang
  organization: Jiangsu Key Laboratory of Media Design and Software Technology, Wuxi, China
– sequence: 4
  givenname: Yizhang
  orcidid: 0000-0002-4558-9803
  surname: Jiang
  fullname: Jiang, Yizhang
  organization: Jiangsu Key Laboratory of Media Design and Software Technology, Wuxi, China
– sequence: 5
  givenname: Shuihua
  orcidid: 0000-0003-2238-6808
  surname: Wang
  fullname: Wang, Shuihua
  organization: School of Architecture Building and Civil Engineering, Loughborough University, Loughborough, U.K
BookMark eNp9kc1u1DAUhSNUJErpE3RjifUMjn-SeDmEFkYawWKKWFo39nXqIYkHO9OKx-CNcUlBiAXxIlfX9zu2z3lZnE1hwqK4Kum6LKl6s2nb6_1-zWip1kzlVdNnxTkrK7Xikldnf9UvisuUDjR_TW7J-rz4sfP3GMkeR5hmb3LRjzjNMPswkc3Qh-jnu5G8hYSW5NZ2PMZwn-t3iEeysRlOED0M5CPODyF-TcRPpA1j56dFJDjyBX1_N2doF1IiN6fJLDv5hM6GMU8OpL3N2tBjelU8dzAkvHz6XxSfb65v2w-r3af323azWxlBm3kFEp3ipqxsxyTUHZeds1QyVAqZbBQIAdAgd8w1iE6iLaF2NQh0wpSd4RfFdtG1AQ76GP0I8bsO4PWvRoi9hpgtGVBXjDfSOiqYVcI4qziwzgkKjUEpOGat14tWNufbCdOsD-EU87OSZkLKqqSNqvKUWqZMzD5EdNr4xek5gh90SfVjoHoJVD8Gqp8CzSz_h_194_9TVwvlEfEP0dSVkKLhPwHbIrEN
CODEN IAECCG
CitedBy_id crossref_primary_10_1049_tje2_12025
crossref_primary_10_1007_s13735_022_00240_x
crossref_primary_10_1109_ACCESS_2019_2953517
crossref_primary_10_1016_j_compbiomed_2024_108420
crossref_primary_10_1007_s11227_019_03080_5
crossref_primary_10_1109_ACCESS_2020_2983478
crossref_primary_10_3389_fpubh_2020_599550
crossref_primary_10_1007_s40747_020_00216_6
crossref_primary_10_1007_s10916_019_1459_2
crossref_primary_10_1007_s11227_021_04266_6
crossref_primary_10_1007_s10916_019_1508_x
crossref_primary_10_1088_1361_6560_abb6bf
crossref_primary_10_1109_ACCESS_2020_2989819
crossref_primary_10_1109_LGRS_2025_3569580
crossref_primary_10_1109_ACCESS_2020_3021092
crossref_primary_10_3390_diagnostics10030131
crossref_primary_10_1016_j_irbm_2020_05_003
crossref_primary_10_1007_s12652_019_01589_4
crossref_primary_10_3390_app13010595
crossref_primary_10_1007_s10916_024_02115_6
crossref_primary_10_1155_2020_5128729
crossref_primary_10_1007_s10916_019_1448_5
crossref_primary_10_1109_ACCESS_2019_2937124
crossref_primary_10_1007_s44174_025_00341_1
crossref_primary_10_1038_s41598_022_19204_6
crossref_primary_10_1007_s00521_024_09815_7
crossref_primary_10_1109_JBHI_2020_2964016
crossref_primary_10_1155_2021_8798003
crossref_primary_10_1109_ACCESS_2023_3281558
crossref_primary_10_1007_s10723_020_09506_2
crossref_primary_10_1016_j_rse_2024_114122
crossref_primary_10_1155_2020_3641745
crossref_primary_10_1109_TCBB_2020_2986544
crossref_primary_10_3390_app10155032
crossref_primary_10_1371_journal_pone_0295690
crossref_primary_10_1016_j_iliver_2023_02_002
crossref_primary_10_1109_ACCESS_2019_2954707
crossref_primary_10_1016_j_engappai_2022_105532
crossref_primary_10_1016_j_health_2023_100224
crossref_primary_10_1109_ACCESS_2020_2980060
crossref_primary_10_1007_s11518_025_5670_z
crossref_primary_10_1109_ACCESS_2021_3081040
crossref_primary_10_1007_s10916_019_1439_6
crossref_primary_10_1007_s11042_024_18388_5
crossref_primary_10_1007_s11082_023_06168_8
crossref_primary_10_3390_a16110516
crossref_primary_10_1016_j_artmed_2023_102539
crossref_primary_10_1007_s11042_020_08684_1
crossref_primary_10_1109_ACCESS_2020_2982286
crossref_primary_10_1109_ACCESS_2019_2937657
crossref_primary_10_1016_j_amc_2021_126539
crossref_primary_10_1166_jmihi_2021_3327
crossref_primary_10_1109_ACCESS_2019_2959831
crossref_primary_10_3390_math11010095
crossref_primary_10_1080_08839514_2022_2055395
crossref_primary_10_1166_jmihi_2021_3684
crossref_primary_10_1007_s10916_019_1431_1
crossref_primary_10_32604_cmc_2022_024312
crossref_primary_10_3390_app11188485
crossref_primary_10_1016_j_optlastec_2024_111298
crossref_primary_10_1109_TCBB_2020_3018137
crossref_primary_10_1007_s10916_019_1502_3
crossref_primary_10_1007_s12652_020_02004_z
crossref_primary_10_1007_s12652_019_01508_7
crossref_primary_10_3389_fonc_2020_01476
crossref_primary_10_3233_MGS_230123
crossref_primary_10_1007_s11276_020_02471_4
crossref_primary_10_1007_s12652_020_02049_0
crossref_primary_10_1166_jmihi_2021_3328
crossref_primary_10_3390_math9101133
crossref_primary_10_1016_j_compag_2022_107204
crossref_primary_10_1016_j_neucom_2021_08_157
crossref_primary_10_3390_app15137300
crossref_primary_10_1109_ACCESS_2019_2955448
crossref_primary_10_1007_s11517_023_02908_w
crossref_primary_10_3748_wjg_v26_i17_2082
crossref_primary_10_1016_j_imu_2022_100916
crossref_primary_10_1007_s10916_019_1462_7
crossref_primary_10_1007_s10916_019_1464_5
crossref_primary_10_1109_ACCESS_2020_3001212
crossref_primary_10_1088_1361_6560_ac155f
crossref_primary_10_1109_ACCESS_2021_3106377
crossref_primary_10_1166_jmihi_2021_3535
crossref_primary_10_1007_s00330_023_09609_w
crossref_primary_10_1109_ACCESS_2021_3078742
crossref_primary_10_1016_j_artmed_2022_102331
crossref_primary_10_1007_s12652_020_02204_7
Cites_doi 10.1245/s10434-017-5778-6
10.1097/RCT.0000000000000713
10.1007/978-3-319-66179-7_47
10.1002/mp.12291
10.1016/j.artmed.2017.03.008
10.1007/978-3-319-46454-1_40
10.1007/s10278-016-9934-5
10.1118/1.4823765
10.1109/TMI.2018.2845918
10.1007/s11042-017-5243-3
10.1007/s11554-016-0578-y
10.1038/s41598-018-28787-y
10.1145/2964284.2964314
10.1007/s11517-016-1495-8
10.1109/ICCV.2015.178
10.1109/MSP.2017.2765202
10.1007/s10462-017-9550-x
10.1016/j.media.2017.01.002
10.1007/s10916-018-1116-1
10.1109/TBME.2018.2880733
10.24963/ijcai.2017/220
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2929270
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 96358
ExternalDocumentID oai_doaj_org_article_62385df042d94cfd93a2bf40a8ce543e
10_1109_ACCESS_2019_2929270
8764548
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61702225; 61772241
  funderid: 10.13039/501100001809
– fundername: Open Fund Project of Jiangsu Key Laboratory of Media Design and Software Technology (Jiangnan University)
  grantid: 19ST0205
– fundername: Science and Technology Demonstration Project of Social Development of Wuxi
  grantid: WX18IVJN002
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20160187
  funderid: 10.13039/501100004608
– fundername: Six Talent Peaks Project in Jiangsu Province
  grantid: XYDXX-127
  funderid: 10.13039/501100010014
– fundername: Jiangsu Committee of Health on the Subject
  grantid: H2018071
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c408t-a5ef93c16db25a7b35bfd052e99e2589a44aa8e3f2f8eef5ed1a7f7a4ef4c1bc3
IEDL.DBID DOA
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478961900076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:27 EDT 2025
Mon Jun 30 03:07:23 EDT 2025
Sat Nov 29 03:57:47 EST 2025
Tue Nov 18 22:35:44 EST 2025
Wed Aug 27 02:54:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-a5ef93c16db25a7b35bfd052e99e2589a44aa8e3f2f8eef5ed1a7f7a4ef4c1bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1650-9982
0000-0003-2238-6808
0000-0002-4558-9803
0000-0002-5596-3694
OpenAccessLink https://doaj.org/article/62385df042d94cfd93a2bf40a8ce543e
PQID 2455610896
PQPubID 4845423
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2019_2929270
doaj_primary_oai_doaj_org_article_62385df042d94cfd93a2bf40a8ce543e
ieee_primary_8764548
crossref_primary_10_1109_ACCESS_2019_2929270
proquest_journals_2455610896
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References radford (ref13) 2016; 24
ref31
ref30
bilic (ref32) 2019
ref11
ref10
ref2
ref1
ref17
roth (ref19) 2017
dong (ref8) 2019; 78
chen (ref16) 2017; 22
ref24
ref23
ref26
ref25
warde-farley (ref18) 2017
ref22
ref21
(ref20) 2018
ref28
goodfellow (ref15) 2016
ref27
ref29
arjovsky (ref14) 2017; 32
ref9
ref4
goodfellow (ref12) 2014
ref3
ref6
badrinarayanan (ref5) 2015; 32
luc (ref7) 2016
References_xml – ident: ref30
  doi: 10.1245/s10434-017-5778-6
– ident: ref27
  doi: 10.1097/RCT.0000000000000713
– ident: ref21
  doi: 10.1007/978-3-319-66179-7_47
– ident: ref24
  doi: 10.1002/mp.12291
– ident: ref26
  doi: 10.1016/j.artmed.2017.03.008
– ident: ref11
  doi: 10.1007/978-3-319-46454-1_40
– ident: ref25
  doi: 10.1007/s10278-016-9934-5
– ident: ref31
  doi: 10.1118/1.4823765
– ident: ref3
  doi: 10.1109/TMI.2018.2845918
– start-page: 2672
  year: 2014
  ident: ref12
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 24
  start-page: 1
  year: 2016
  ident: ref13
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: Proc Int Conf Learn Represent
– volume: 32
  start-page: 1
  year: 2017
  ident: ref14
  article-title: Towards principled methods for training generative adversarial networks
  publication-title: Proc Int Conf Learn Represent
– volume: 78
  start-page: 3613
  year: 2019
  ident: ref8
  article-title: Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-017-5243-3
– year: 2018
  ident: ref20
  publication-title: DeepLab Deep Labelling for Semantic Image Segmentation
– ident: ref6
  doi: 10.1007/s11554-016-0578-y
– year: 2016
  ident: ref7
  article-title: Semantic segmentation using adversarial networks
  publication-title: ArXiv 1611 08408
– volume: 32
  start-page: 1182
  year: 2015
  ident: ref5
  article-title: SegNet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling
  publication-title: Comput Vis Pattern Recognit
– ident: ref2
  doi: 10.1038/s41598-018-28787-y
– ident: ref4
  doi: 10.1145/2964284.2964314
– ident: ref9
  doi: 10.1007/s11517-016-1495-8
– ident: ref17
  doi: 10.1109/ICCV.2015.178
– ident: ref23
  doi: 10.1109/MSP.2017.2765202
– ident: ref1
  doi: 10.1007/s10462-017-9550-x
– ident: ref28
  doi: 10.1016/j.media.2017.01.002
– ident: ref10
  doi: 10.1007/s10916-018-1116-1
– year: 2019
  ident: ref32
  article-title: The Liver Tumor Segmentation Benchmark (LiTS)
  publication-title: arXiv 1901 04056
– ident: ref29
  doi: 10.1109/TBME.2018.2880733
– start-page: 2018
  year: 2017
  ident: ref19
  article-title: Stabilizing training of generative adversarial networks through regularization
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1
  year: 2017
  ident: ref18
  article-title: Improving generative adversarial networks with denoising feature matching
  publication-title: Proc Int Conf Learn Represent
– ident: ref22
  doi: 10.24963/ijcai.2017/220
– volume: 22
  start-page: 1182
  year: 2017
  ident: ref16
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: Comput Vis Pattern Recognit
– year: 2016
  ident: ref15
  article-title: NIPS 2016 tutorial: Generative adversarial networks
  publication-title: Proc Neural Inf Process Syst Conf (NIPS)
SSID ssj0000816957
Score 2.4524019
Snippet Due to the space inconsistency between benchmark image and segmentation result in many existing semantic segmentation algorithms for abdominal CT images, an...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 96349
SubjectTerms Abdomen
Algorithms
atrous space pyramid pooling
Cancer
Computed tomography
Convolution
Entropy (Information theory)
game adversarial
generation adversarial networks
Generative adversarial networks
Generators
Image segmentation
Liver
Model accuracy
multi-scale features
Semantic segmentation
Semantics
weighted loss function
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtwgEEVJ1EN7aJumVTdNIw49xoltwIbjZttVD6tVpaZtbgjDkK6UtaP1Jv-RP86AiRWpVaXeEAYMfjAM42EeIZ-chcIJZTJgTaAwgypTtXUZ85UsKs8aFoP6_FzUy6W8vFTfdsjJeBcGAKLzGZyGZPyX7zp7G0xlZ7hyOWrYu2S3rqvhrtZoTwkEEkrUKbBQkauz6WyGYwjeW-q0RC2gDITETzafGKM_kar8IYnj9jJ_9X8de01eJjWSTgfc98kOtG_IiyfBBQ_I_SK4XNDvsMaPt7KYuFqni0YtnV5fdZvV9veanuM25ihmDeYFTH8GuKGRqLk3YXrS5eAq3tNVS1F-4Fl6aKTz9Fe0rGKlBY6XznGTHJ7gGxrXRcIwOrvAtlFs9W_Jj_mXi9nXLBEwZJbncpsZAV4xWwTOKWHqhonGu1yUoBSUQirDuTESmC-9BPACXGFqXxsOntuisewd2Wu7Ft4TKnBO1ChNSuMYRx20sU5ZibpTxYucGTEh5SMy2qbo5IEk41rHU0qu9ACnDnDqBOeEnIyVbobgHP8ufh4gH4uGyNoxA7HUaaFqVAelcB5lmVPceqeYKRvPcyMtCM5gQg4C_mMjCfoJOXqcQDpJgV6XPJCP5lJVh3-v9YE8Dx0cTDpHZG-7uYWP5Jm92676zXGc4A8ycfuy
  priority: 102
  providerName: IEEE
Title Liver Semantic Segmentation Algorithm Based on Improved Deep Adversarial Networks in Combination of Weighted Loss Function on Abdominal CT Images
URI https://ieeexplore.ieee.org/document/8764548
https://www.proquest.com/docview/2455610896
https://doaj.org/article/62385df042d94cfd93a2bf40a8ce543e
Volume 7
WOSCitedRecordID wos000478961900076&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOCCiILaXygSOhiR-JfdwuXXFYVkgU6M1y7HFZqZutmoUj_4F_zPjR1UpIcOESWY4fsWcyD2s8HyGvvYPGS20r4H2EMIO20p3zFQ-tatrAe56S-nxZdMulurzUH_egvmJMWE4PnDfuFNWzkj4gb3ktXPCaW9YHUVvlQAoOUfrWnd5zppIMxom07EqaoabWp9PZDFcUY7n0W4Y2AYvwxHuqKGXsLxArf8jlpGzmj8mjYiXSaf66J-QeDE_Jw73cgYfk1yJGVNBPsMa9WTksXK3LPaKBTq-vNuj1f1vTM9RSnmJVPj3A8juAG5pwmEcbuY8ucyT4SFcDRfGArnIeZBPo13Rwip0WuAA6Rx2Y3-AMvd8kPDA6u8CxUSqNz8jn-fnF7H1V8BUqJ2q1rayEoLlrIqSUtF3PZR98LRloDUwqbYWwVgEPLCiAIME3tgudFRCEa3rHn5ODYTPAC0IlkrxDYcGs5wJNzN557RSaRq1oam7lhLC7rTauJB-PGBjXJjkhtTaZPibSxxT6TMibXaebnHvj783PIg13TWPi7FSB7GQKO5l_sdOEHEYO2A2CykKgUzchx3ccYcpPPhomIrZorXR79D-mfkkexOXk851jcrC9_Q6vyH33Y7sab08Sf-Pzw8_zk3RL8Te3BAE7
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKQYIe-CqoCwV84Ni0SWwn9nG7sCoirJBYoLfIscdlpW5Sbbb8D_4xY8eNKoGQuFlJ7Dh5k5nxZDyPkLfWQGaF0gmwxlOYQZGo0tiEuUJmhWMNC0V9vlXlYiHPz9XnHXI07oUBgJB8Bse-Gf7l285c-1DZCX65HD3sO-SuQDtaDLu1xoiKp5BQooylhbJUnUxnM3wKn7-ljnP0A3JPSXzL_IQq_ZFW5Q9dHAzM_NH_Te0xeRgdSTodkH9CdqB9SvZulRfcJ78qn3RBv8AaX9_KYONiHbcatXR6edFtVtsfa3qKhsxSPDQEGLD9DuCKBqrmXnsBpYshWbynq5aiBsHV9DBI5-j3EFvFThU-L52jmRzO4B0a2wXKMDpb4tiouPpn5Ov8_XJ2lkQKhsTwVG4TLcApZjLPOiV02TDROJuKHJSCXEilOddaAnO5kwBOgM106UrNwXGTNYY9J7tt18IBoQKlokR9kmvLOHqhjbHKSPSeCp6lTIsJyW-QqU2sT-5pMi7rsE5JVT3AWXs46wjnhByNna6G8hz_vvzUQz5e6mtrhwOIZR0_1RodQimsQ21mFTfOKqbzxvFUSwModzAh-x7_cZAI_YQc3ghQHfVAX-fc04-mUhUv_t7rDbl_tvxU1dWHxceX5IGf7BDgOSS72801vCL3zM_tqt-8DsL-G4mW_wU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+Semantic+Segmentation+Algorithm+Based+on+Improved+Deep+Adversarial+Networks+in+Combination+of+Weighted+Loss+Function+on+Abdominal+CT+Images&rft.jtitle=IEEE+access&rft.au=Xia%2C+Kaijian&rft.au=Yin%2C+Hongsheng&rft.au=Qian%2C+Pengjiang&rft.au=Jiang%2C+Yizhang&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=96349&rft.epage=96358&rft_id=info:doi/10.1109%2FACCESS.2019.2929270&rft.externalDocID=8764548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon