Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming

•Optimal scheduling strategy for building energy systems is developed.•Mixed-integer nonlinear programming approach is used for the optimal scheduling.•Four scenarios are investigated to evaluate the optimal scheduling strategy.•Case studies are conducted on the Hong Kong Zero Carbon Building. The i...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 147; pp. 49 - 58
Main Authors: Lu, Yuehong, Wang, Shengwei, Sun, Yongjun, Yan, Chengchu
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.06.2015
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Optimal scheduling strategy for building energy systems is developed.•Mixed-integer nonlinear programming approach is used for the optimal scheduling.•Four scenarios are investigated to evaluate the optimal scheduling strategy.•Case studies are conducted on the Hong Kong Zero Carbon Building. The increasing complexity of building energy systems integrated with renewable energy systems requires essentially more intelligent scheduling strategy. The energy systems often have strong non-linear characteristics and have discrete working ranges. The mixed-integer nonlinear programming approach is used to solve their optimal scheduling problems of energy systems in building integrated with energy generation and thermal energy storage in this study. The optimal scheduling strategy minimizes the overall operation cost day-ahead, including operation energy cost and cost concerning the plant on/off penalty. A case study is conducted to validate the proposed strategy based on the Hong Kong Zero Carbon Building. Four scenarios are investigated and compared to exam the performance of the optimal scheduling. Results show that the strategy can reduce operation energy cost greatly (about 25%) compared with a rule-based strategy and the reduction is even increased to about 47% when a thermal energy storage system is used. The strategy can also reduce the on/off frequency of chillers significantly.
AbstractList The increasing complexity of building energy systems integrated with renewable energy systems requires essentially more intelligent scheduling strategy. The energy systems often have strong non-linear characteristics and have discrete working ranges. The mixed-integer nonlinear programming approach is used to solve their optimal scheduling problems of energy systems in building integrated with energy generation and thermal energy storage in this study. The optimal scheduling strategy minimizes the overall operation cost day-ahead, including operation energy cost and cost concerning the plant on/off penalty. A case study is conducted to validate the proposed strategy based on the Hong Kong Zero Carbon Building. Four scenarios are investigated and compared to exam the performance of the optimal scheduling. Results show that the strategy can reduce operation energy cost greatly (about 25%) compared with a rule-based strategy and the reduction is even increased to about 47% when a thermal energy storage system is used. The strategy can also reduce the on/off frequency of chillers significantly.
•Optimal scheduling strategy for building energy systems is developed.•Mixed-integer nonlinear programming approach is used for the optimal scheduling.•Four scenarios are investigated to evaluate the optimal scheduling strategy.•Case studies are conducted on the Hong Kong Zero Carbon Building. The increasing complexity of building energy systems integrated with renewable energy systems requires essentially more intelligent scheduling strategy. The energy systems often have strong non-linear characteristics and have discrete working ranges. The mixed-integer nonlinear programming approach is used to solve their optimal scheduling problems of energy systems in building integrated with energy generation and thermal energy storage in this study. The optimal scheduling strategy minimizes the overall operation cost day-ahead, including operation energy cost and cost concerning the plant on/off penalty. A case study is conducted to validate the proposed strategy based on the Hong Kong Zero Carbon Building. Four scenarios are investigated and compared to exam the performance of the optimal scheduling. Results show that the strategy can reduce operation energy cost greatly (about 25%) compared with a rule-based strategy and the reduction is even increased to about 47% when a thermal energy storage system is used. The strategy can also reduce the on/off frequency of chillers significantly.
Author Wang, Shengwei
Lu, Yuehong
Sun, Yongjun
Yan, Chengchu
Author_xml – sequence: 1
  givenname: Yuehong
  surname: Lu
  fullname: Lu, Yuehong
  organization: Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 2
  givenname: Shengwei
  surname: Wang
  fullname: Wang, Shengwei
  email: beswwang@polyu.edu.hk
  organization: Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 3
  givenname: Yongjun
  surname: Sun
  fullname: Sun, Yongjun
  organization: Division of Building Science and Technology, City University of Hong Kong, Kowloon, Hong Kong
– sequence: 4
  givenname: Chengchu
  surname: Yan
  fullname: Yan, Chengchu
  organization: Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
BookMark eNqFUcuO1DAQtNCuxOzjF5CPXBLazsSZSBxAKxaQVtoLe7acdifjUeIMtgPMx_CvOMxy4bIXl6Wu6lJXXbELP3ti7I2AUoBQ7w6lOZKnMJxKCaIuQZag4BXbiF0ji1aI3QXbQAWqkEq0r9lVjAcAkELChv1-PCY3mZFH3JNdRucHPve8W9xo8z_yny7t-Xk9H1Y0yc2eG2952lNYpc_TmOZgBuKLtxS4PXkzOeQ0Eqbg0KUTP66YDZa4vpP7RbZwPtGQ-fmobE4mZNY8BDNNmXPDLnszRrp9xmv2dP_p292X4uHx89e7jw8FbmGXCgNV3wJWamtxJ9VWoTWqxq5Tqq97FKbpqK4MVtAidNb0bd2BBcSmabeyaqpr9va8N3t_XygmPbmINI7G07xELXPQlYRWtpmqzlQMc4yBep2vmkw4aQF67UMf9L8-9NqHBqlzH1n4_j9hzuRvmCkYN74s_3CWU87hh6OgIzrySNaFnLC2s3tpxR9uCrOv
CitedBy_id crossref_primary_10_3390_en16196849
crossref_primary_10_1016_j_energy_2017_02_038
crossref_primary_10_1016_j_bios_2019_111576
crossref_primary_10_1016_j_scs_2020_102673
crossref_primary_10_1016_j_egyr_2020_01_010
crossref_primary_10_1016_j_egyr_2023_01_013
crossref_primary_10_1016_j_enbuild_2024_114167
crossref_primary_10_1002_er_8444
crossref_primary_10_1016_j_energy_2022_123115
crossref_primary_10_1016_j_energy_2022_124204
crossref_primary_10_1002_dac_4133
crossref_primary_10_1016_j_apenergy_2016_06_030
crossref_primary_10_1016_j_apenergy_2017_11_076
crossref_primary_10_1016_j_energy_2015_10_034
crossref_primary_10_1016_j_ijepes_2021_106891
crossref_primary_10_1016_j_energy_2019_116771
crossref_primary_10_1109_ACCESS_2019_2923612
crossref_primary_10_3390_app12020888
crossref_primary_10_1016_j_ijepes_2018_11_021
crossref_primary_10_1016_j_apenergy_2017_12_043
crossref_primary_10_3390_su132212838
crossref_primary_10_1016_j_apenergy_2017_01_075
crossref_primary_10_1016_j_apenergy_2019_114287
crossref_primary_10_1016_j_energy_2016_05_093
crossref_primary_10_1016_j_apenergy_2016_08_171
crossref_primary_10_2478_rtuect_2019_0096
crossref_primary_10_1016_j_apenergy_2015_11_086
crossref_primary_10_1016_j_jobe_2024_111185
crossref_primary_10_1016_j_scs_2017_03_018
crossref_primary_10_1016_j_apenergy_2019_04_017
crossref_primary_10_1016_j_apenergy_2015_09_070
crossref_primary_10_1016_j_apenergy_2020_115145
crossref_primary_10_1051_bioconf_20249305011
crossref_primary_10_3390_en11030631
crossref_primary_10_3390_en9070490
crossref_primary_10_1016_j_rser_2018_05_022
crossref_primary_10_1016_j_energy_2018_12_185
crossref_primary_10_1016_j_energy_2020_119598
crossref_primary_10_3390_pr7050296
crossref_primary_10_1016_j_apenergy_2020_114977
crossref_primary_10_1016_j_buildenv_2019_106372
crossref_primary_10_1016_j_apenergy_2018_03_001
crossref_primary_10_1016_j_autcon_2020_103139
crossref_primary_10_1016_j_apenergy_2019_03_205
crossref_primary_10_1016_j_enbuild_2025_115833
crossref_primary_10_1016_j_apenergy_2017_08_140
crossref_primary_10_1016_j_egypro_2016_06_003
crossref_primary_10_1016_j_rser_2017_03_068
crossref_primary_10_3390_su14063136
crossref_primary_10_1016_j_energy_2018_06_199
crossref_primary_10_1016_j_epsr_2020_106232
crossref_primary_10_1016_j_energy_2021_121599
crossref_primary_10_1016_j_apenergy_2023_120705
crossref_primary_10_1016_j_compchemeng_2023_108519
crossref_primary_10_3389_fenrg_2022_1053498
crossref_primary_10_3390_en11051287
crossref_primary_10_1016_j_apenergy_2020_114983
crossref_primary_10_1016_j_energy_2023_130005
crossref_primary_10_1016_j_apenergy_2016_01_074
crossref_primary_10_1016_j_energy_2024_133416
crossref_primary_10_1016_j_energy_2016_03_074
crossref_primary_10_1016_j_seta_2021_101347
crossref_primary_10_1016_j_epsr_2020_106229
crossref_primary_10_1016_j_enbuild_2023_113684
crossref_primary_10_3390_en11040942
crossref_primary_10_1016_j_apenergy_2023_120796
crossref_primary_10_1016_j_apenergy_2023_121247
crossref_primary_10_1016_j_energy_2025_137488
crossref_primary_10_1016_j_applthermaleng_2023_121871
crossref_primary_10_1016_j_apenergy_2016_11_042
crossref_primary_10_1016_j_enbuild_2022_112298
crossref_primary_10_1016_j_enconman_2021_114381
crossref_primary_10_1016_j_apenergy_2016_11_041
crossref_primary_10_1016_j_apenergy_2018_11_083
crossref_primary_10_1016_j_apenergy_2022_119606
crossref_primary_10_1016_j_energy_2024_131066
crossref_primary_10_1371_journal_pone_0307228
crossref_primary_10_1016_j_apenergy_2016_03_029
crossref_primary_10_3390_en14175400
crossref_primary_10_1016_j_apenergy_2019_03_152
crossref_primary_10_1007_s10668_023_04344_0
crossref_primary_10_1016_j_energy_2019_07_055
crossref_primary_10_1016_j_apenergy_2017_07_048
crossref_primary_10_1016_j_apenergy_2019_03_148
crossref_primary_10_1016_j_rser_2022_112625
crossref_primary_10_1016_j_renene_2018_11_024
crossref_primary_10_1007_s11081_023_09853_5
crossref_primary_10_1016_j_esr_2024_101349
crossref_primary_10_1016_j_scs_2022_103727
crossref_primary_10_1016_j_energy_2019_02_192
crossref_primary_10_1016_j_apenergy_2017_07_035
crossref_primary_10_1080_00038628_2015_1079164
crossref_primary_10_1016_j_renene_2016_04_085
crossref_primary_10_1016_j_renene_2018_06_073
crossref_primary_10_3390_app11177991
crossref_primary_10_1016_j_apenergy_2018_09_042
crossref_primary_10_1016_j_apenergy_2018_10_112
crossref_primary_10_1016_j_seta_2023_103064
crossref_primary_10_3390_su13041938
crossref_primary_10_3390_en14040801
crossref_primary_10_1016_j_enbuild_2024_113967
crossref_primary_10_1016_j_enbuild_2021_111527
crossref_primary_10_1177_0958305X221117519
crossref_primary_10_1016_j_energy_2021_122693
crossref_primary_10_3390_en12203995
crossref_primary_10_1080_19401493_2022_2084161
crossref_primary_10_1016_j_jobe_2019_100976
crossref_primary_10_1016_j_apenergy_2016_08_139
crossref_primary_10_1016_j_apenergy_2015_06_007
crossref_primary_10_1016_j_enconman_2015_08_057
crossref_primary_10_1002_er_6853
crossref_primary_10_1016_j_energy_2024_134172
crossref_primary_10_1007_s12273_022_0892_1
crossref_primary_10_1109_TSG_2021_3052515
crossref_primary_10_1016_j_enbenv_2022_02_011
crossref_primary_10_1007_s12273_021_0768_9
crossref_primary_10_3390_en16145511
crossref_primary_10_1016_j_energy_2017_10_130
crossref_primary_10_1016_j_apenergy_2017_10_002
crossref_primary_10_3390_su12177035
crossref_primary_10_1109_ACCESS_2020_2964696
crossref_primary_10_3390_su16145895
crossref_primary_10_1016_j_apenergy_2017_08_065
crossref_primary_10_1109_ACCESS_2021_3069278
crossref_primary_10_1109_ACCESS_2021_3110657
crossref_primary_10_1088_1742_6596_3001_1_012014
crossref_primary_10_1080_15567036_2020_1829203
crossref_primary_10_1007_s11081_018_09419_w
crossref_primary_10_1007_s12667_019_00374_8
crossref_primary_10_1016_j_apenergy_2016_11_093
crossref_primary_10_1016_j_apenergy_2020_116397
crossref_primary_10_1016_j_enbuild_2017_06_041
crossref_primary_10_3390_en18071734
crossref_primary_10_1016_j_apenergy_2015_09_049
crossref_primary_10_1016_j_enbuild_2021_110856
crossref_primary_10_1016_j_isatra_2024_08_032
crossref_primary_10_1016_j_egyr_2025_01_002
crossref_primary_10_1002_oca_2728
crossref_primary_10_1016_j_apenergy_2022_118664
crossref_primary_10_1016_j_apenergy_2016_07_080
Cites_doi 10.1016/j.apenergy.2014.04.084
10.1109/ACC.2012.6315606
10.1016/j.energy.2012.11.035
10.1016/j.rser.2011.09.028
10.1016/j.egypro.2014.01.135
10.1016/j.proeng.2014.02.152
10.1016/j.apenergy.2012.12.004
10.1109/TPWRS.2004.831699
10.1016/j.solener.2008.10.008
10.1016/j.energy.2013.02.030
10.1016/j.renene.2013.11.025
10.1016/j.energy.2013.06.053
10.1016/j.renene.2009.02.031
10.1016/j.rser.2004.11.004
10.1016/j.apenergy.2012.09.019
10.1016/j.renene.2014.07.006
10.1016/j.energy.2012.10.013
10.1016/j.enbuild.2014.10.019
10.1016/j.enbuild.2014.08.013
10.1016/j.enbuild.2010.04.005
10.1016/j.proeng.2011.11.146
10.1016/j.enbuild.2013.10.003
10.1002/eej.22336
10.1109/CDC.2009.5400677
10.1016/j.apenergy.2009.09.023
10.1016/j.apenergy.2014.03.052
10.1016/j.epsr.2012.12.009
10.1016/j.apenergy.2013.09.057
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2015.02.060
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 58
ExternalDocumentID 10_1016_j_apenergy_2015_02_060
S0306261915002378
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c408t-a03f90c364dc82646cda65cbb66f5fc1a7be53ac309c0bdaf95b0d0cc77942373
ISICitedReferencesCount 152
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353755000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 23:06:37 EDT 2025
Sat Nov 29 07:23:54 EST 2025
Tue Nov 18 22:30:43 EST 2025
Fri Feb 23 02:32:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Zero energy building
Renewable energy systems
Thermal energy storage
Mixed-integer nonlinear programming
Optimal scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c408t-a03f90c364dc82646cda65cbb66f5fc1a7be53ac309c0bdaf95b0d0cc77942373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2101320929
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2101320929
crossref_primary_10_1016_j_apenergy_2015_02_060
crossref_citationtrail_10_1016_j_apenergy_2015_02_060
elsevier_sciencedirect_doi_10_1016_j_apenergy_2015_02_060
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ozoe, Tanaka, Fukushima (b0085) 2014; 186
Morais, Kádár, Faria, Vale, Khodr (b0070) 2010; 35
Torres, Crichigno, Padilla, Rivera (b0080) 2014; 72
Ashouri, Fux, Benz, Guzzella (b0100) 2013; 59
Chen, Galal, Athienitis (b0030) 2014; 84
Motevasel, Seifi, Niknam (b0025) 2013; 51
Kitagawa S, Nakazawa C, Fukuyama Y. Particle swarm optimization for optimal operational planning of a cogeneration system. In: Proceedings of the IASTED international conference on modelling, simulation and optimization, 2004; 2004. p. 43–8.
Skoplaki, Palyvos (b0145) 2009; 83
Hong, Yang, Hill, Feng (b0155) 2014; 126
Alanne, Saari (b0005) 2006; 10
Mixed-Integer Nonlinear Optimization.
Zhang, Liu, Zhou, Ma, Li, Ni (b0125) 2014; 114
Khushairi, Abdullah, Hazran (b0060) 2011; 20
Kusakan, Vermaak (b0150) 2014; 67
Puleo, Morley, Freni, Savić (b0075) 2014; 70
Facci, Andreassi, Ubertini, Sciubba (b0045) 2014; 45
Zhao, Lu, Yan, Wang (b0130) 2015; 86
Rueda-Medina, Franco, Rider, Padilha-Feltrin, Romero (b0105) 2013; 97
Ren, Gao (b0090) 2010; 87
Mago, Hueffed (b0050) 2010; 42
El-Khattam, Bhattacharya, Hegazy, Salama (b0065) 2004; 19
Ma Y, Borrelli F, Hencey B, Packard A, Bortoff S. Model predictive control of thermal energy storage in building cooling systems. In: Joint 48th IEEE conference on decision and control and 28th Chinese control conference, 2009; 2009. p. 392–7.
.
Ranjbar, Mohammadian, esmaili (b0035) 2014; 68
Kwon, Han (b0135) 2005
Wu, Wang, Li (b0120) 2012; 48
Chandan V, Do A-T, Jin B, Jabbari F, Brouwer J, Akrotirianakis I, et al. Modeling and optimization of a combined cooling, heating and power plant system. In: American control conference (ACC), 2012; 2012. p. 3069–74.
Mitra, Sun, Grossmann (b0010) 2013; 54
Ayhan, Sağlam (b0020) 2012; 16
Ma, Yang, Lu (b0015) 2013; 112
Zheng, Wu, Zhai (b0055) 2014; 128
Zhou, Zhang, Liu, Li, Georgiadis, Pistikopoulos (b0095) 2013; 103
Zheng (10.1016/j.apenergy.2015.02.060_b0055) 2014; 128
10.1016/j.apenergy.2015.02.060_b0110
Mitra (10.1016/j.apenergy.2015.02.060_b0010) 2013; 54
Zhang (10.1016/j.apenergy.2015.02.060_b0125) 2014; 114
10.1016/j.apenergy.2015.02.060_b0115
Ma (10.1016/j.apenergy.2015.02.060_b0015) 2013; 112
El-Khattam (10.1016/j.apenergy.2015.02.060_b0065) 2004; 19
Alanne (10.1016/j.apenergy.2015.02.060_b0005) 2006; 10
Chen (10.1016/j.apenergy.2015.02.060_b0030) 2014; 84
Ashouri (10.1016/j.apenergy.2015.02.060_b0100) 2013; 59
Motevasel (10.1016/j.apenergy.2015.02.060_b0025) 2013; 51
Ayhan (10.1016/j.apenergy.2015.02.060_b0020) 2012; 16
10.1016/j.apenergy.2015.02.060_b0040
Rueda-Medina (10.1016/j.apenergy.2015.02.060_b0105) 2013; 97
10.1016/j.apenergy.2015.02.060_b0140
Kusakan (10.1016/j.apenergy.2015.02.060_b0150) 2014; 67
Morais (10.1016/j.apenergy.2015.02.060_b0070) 2010; 35
Ranjbar (10.1016/j.apenergy.2015.02.060_b0035) 2014; 68
Wu (10.1016/j.apenergy.2015.02.060_b0120) 2012; 48
Mago (10.1016/j.apenergy.2015.02.060_b0050) 2010; 42
Ren (10.1016/j.apenergy.2015.02.060_b0090) 2010; 87
Zhou (10.1016/j.apenergy.2015.02.060_b0095) 2013; 103
Zhao (10.1016/j.apenergy.2015.02.060_b0130) 2015; 86
Puleo (10.1016/j.apenergy.2015.02.060_b0075) 2014; 70
Ozoe (10.1016/j.apenergy.2015.02.060_b0085) 2014; 186
Hong (10.1016/j.apenergy.2015.02.060_b0155) 2014; 126
Facci (10.1016/j.apenergy.2015.02.060_b0045) 2014; 45
Khushairi (10.1016/j.apenergy.2015.02.060_b0060) 2011; 20
Kwon (10.1016/j.apenergy.2015.02.060_b0135) 2005
Torres (10.1016/j.apenergy.2015.02.060_b0080) 2014; 72
Skoplaki (10.1016/j.apenergy.2015.02.060_b0145) 2009; 83
References_xml – reference: Chandan V, Do A-T, Jin B, Jabbari F, Brouwer J, Akrotirianakis I, et al. Modeling and optimization of a combined cooling, heating and power plant system. In: American control conference (ACC), 2012; 2012. p. 3069–74.
– volume: 68
  start-page: 476
  year: 2014
  end-page: 487
  ident: b0035
  article-title: Economic analysis of hybrid system consists of fuel cell and wind based CHP system for supplying grid-parallel residential load
  publication-title: Energy Build
– volume: 59
  start-page: 365
  year: 2013
  end-page: 376
  ident: b0100
  article-title: Optimal design and operation of building services using mixed-integer linear programming techniques
  publication-title: Energy
– reference: Kitagawa S, Nakazawa C, Fukuyama Y. Particle swarm optimization for optimal operational planning of a cogeneration system. In: Proceedings of the IASTED international conference on modelling, simulation and optimization, 2004; 2004. p. 43–8.
– volume: 48
  start-page: 472
  year: 2012
  end-page: 483
  ident: b0120
  article-title: Multi-objective optimal operation strategy study of micro-CCHP system
  publication-title: Energy
– volume: 16
  start-page: 1040
  year: 2012
  end-page: 1049
  ident: b0020
  article-title: A technical review of building-mounted wind power systems and a sample simulation model
  publication-title: Renew Sustain Energy Rev
– volume: 42
  start-page: 1628
  year: 2010
  end-page: 1636
  ident: b0050
  article-title: Evaluation of a turbine driven CCHP system for large office buildings under different operating strategies
  publication-title: Energy Build
– volume: 35
  start-page: 151
  year: 2010
  end-page: 156
  ident: b0070
  article-title: Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming
  publication-title: Renew Energy
– volume: 67
  start-page: 97
  year: 2014
  end-page: 102
  ident: b0150
  article-title: Hybrid diesel generator/renewable energy system performance modeling
  publication-title: Renew Energy
– reference: Mixed-Integer Nonlinear Optimization. <
– volume: 103
  start-page: 135
  year: 2013
  end-page: 144
  ident: b0095
  article-title: A two-stage stochastic programming model for the optimal design of distributed energy systems
  publication-title: Appl Energy
– volume: 10
  start-page: 539
  year: 2006
  end-page: 558
  ident: b0005
  article-title: Distributed energy generation and sustainable development
  publication-title: Renew Sustain Energy Rev
– volume: 112
  start-page: 663
  year: 2013
  end-page: 672
  ident: b0015
  article-title: Performance evaluation of a stand-alone photovoltaic system on an isolated island in Hong Kong
  publication-title: Appl Energy
– volume: 114
  start-page: 146
  year: 2014
  end-page: 154
  ident: b0125
  article-title: A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system
  publication-title: Appl Energy
– volume: 186
  start-page: 48
  year: 2014
  end-page: 58
  ident: b0085
  article-title: A two-stage stochastic mixed-integer programming approach to the smart house scheduling problem
  publication-title: Electr Eng Jpn
– volume: 51
  start-page: 123
  year: 2013
  end-page: 136
  ident: b0025
  article-title: Multi-objective energy management of CHP (combined heat and power)-based micro-grid
  publication-title: Energy
– volume: 84
  start-page: 575
  year: 2014
  end-page: 585
  ident: b0030
  article-title: Design and operation methodology for active building-integrated thermal energy storage systems
  publication-title: Energy Build
– volume: 20
  start-page: 118
  year: 2011
  end-page: 124
  ident: b0060
  article-title: A study on the optimization of control strategy of a thermal energy storage system for building air-conditioning
  publication-title: Proc Eng
– volume: 86
  start-page: 415
  year: 2015
  end-page: 426
  ident: b0130
  article-title: MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages
  publication-title: Energy Build
– reference: >.
– volume: 72
  start-page: 284
  year: 2014
  end-page: 290
  ident: b0080
  article-title: Scheduling coupled photovoltaic, battery and conventional energy sources to maximize profit using linear programming
  publication-title: Renew Energy
– volume: 83
  start-page: 614
  year: 2009
  end-page: 624
  ident: b0145
  article-title: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations
  publication-title: Sol Energy
– volume: 54
  start-page: 194
  year: 2013
  end-page: 211
  ident: b0010
  article-title: Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices
  publication-title: Energy
– volume: 70
  start-page: 1378
  year: 2014
  end-page: 1385
  ident: b0075
  article-title: Multi-stage linear programming optimization for pump scheduling
  publication-title: Proc Eng
– volume: 87
  start-page: 1001
  year: 2010
  end-page: 1014
  ident: b0090
  article-title: A MILP model for integrated plan and evaluation of distributed energy systems
  publication-title: Appl Energy
– volume: 45
  start-page: 1295
  year: 2014
  end-page: 1304
  ident: b0045
  article-title: Analysis of the influence of thermal energy storage on the optimal management of a trigeneration plant
  publication-title: Energy Proc
– volume: 128
  start-page: 325
  year: 2014
  end-page: 335
  ident: b0055
  article-title: A novel operation strategy for CCHP systems based on minimum distance
  publication-title: Appl Energy
– volume: 97
  start-page: 133
  year: 2013
  end-page: 143
  ident: b0105
  article-title: A mixed-integer linear programming approach for optimal type, size and allocation of distributed generation in radial distribution systems
  publication-title: Electr Power Syst Res
– volume: 126
  start-page: 90
  year: 2014
  end-page: 106
  ident: b0155
  article-title: Data and analytics to inform energy retrofit of high performance buildings
  publication-title: Appl Energy
– year: 2005
  ident: b0135
  article-title: Receding horizon control model predictive control for state models
– volume: 19
  start-page: 1674
  year: 2004
  end-page: 1684
  ident: b0065
  article-title: Optimal investment planning for distributed generation in a competitive electricity market
  publication-title: IEEE Trans Power Syst
– reference: Ma Y, Borrelli F, Hencey B, Packard A, Bortoff S. Model predictive control of thermal energy storage in building cooling systems. In: Joint 48th IEEE conference on decision and control and 28th Chinese control conference, 2009; 2009. p. 392–7.
– year: 2005
  ident: 10.1016/j.apenergy.2015.02.060_b0135
– volume: 128
  start-page: 325
  year: 2014
  ident: 10.1016/j.apenergy.2015.02.060_b0055
  article-title: A novel operation strategy for CCHP systems based on minimum distance
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.04.084
– ident: 10.1016/j.apenergy.2015.02.060_b0040
  doi: 10.1109/ACC.2012.6315606
– volume: 51
  start-page: 123
  year: 2013
  ident: 10.1016/j.apenergy.2015.02.060_b0025
  article-title: Multi-objective energy management of CHP (combined heat and power)-based micro-grid
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.035
– volume: 16
  start-page: 1040
  year: 2012
  ident: 10.1016/j.apenergy.2015.02.060_b0020
  article-title: A technical review of building-mounted wind power systems and a sample simulation model
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.09.028
– volume: 45
  start-page: 1295
  year: 2014
  ident: 10.1016/j.apenergy.2015.02.060_b0045
  article-title: Analysis of the influence of thermal energy storage on the optimal management of a trigeneration plant
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2014.01.135
– volume: 70
  start-page: 1378
  year: 2014
  ident: 10.1016/j.apenergy.2015.02.060_b0075
  article-title: Multi-stage linear programming optimization for pump scheduling
  publication-title: Proc Eng
  doi: 10.1016/j.proeng.2014.02.152
– volume: 112
  start-page: 663
  year: 2013
  ident: 10.1016/j.apenergy.2015.02.060_b0015
  article-title: Performance evaluation of a stand-alone photovoltaic system on an isolated island in Hong Kong
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.004
– volume: 19
  start-page: 1674
  year: 2004
  ident: 10.1016/j.apenergy.2015.02.060_b0065
  article-title: Optimal investment planning for distributed generation in a competitive electricity market
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2004.831699
– volume: 83
  start-page: 614
  year: 2009
  ident: 10.1016/j.apenergy.2015.02.060_b0145
  article-title: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2008.10.008
– volume: 54
  start-page: 194
  year: 2013
  ident: 10.1016/j.apenergy.2015.02.060_b0010
  article-title: Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices
  publication-title: Energy
  doi: 10.1016/j.energy.2013.02.030
– volume: 67
  start-page: 97
  year: 2014
  ident: 10.1016/j.apenergy.2015.02.060_b0150
  article-title: Hybrid diesel generator/renewable energy system performance modeling
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.11.025
– volume: 59
  start-page: 365
  year: 2013
  ident: 10.1016/j.apenergy.2015.02.060_b0100
  article-title: Optimal design and operation of building services using mixed-integer linear programming techniques
  publication-title: Energy
  doi: 10.1016/j.energy.2013.06.053
– volume: 35
  start-page: 151
  year: 2010
  ident: 10.1016/j.apenergy.2015.02.060_b0070
  article-title: Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2009.02.031
– volume: 10
  start-page: 539
  year: 2006
  ident: 10.1016/j.apenergy.2015.02.060_b0005
  article-title: Distributed energy generation and sustainable development
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2004.11.004
– volume: 103
  start-page: 135
  year: 2013
  ident: 10.1016/j.apenergy.2015.02.060_b0095
  article-title: A two-stage stochastic programming model for the optimal design of distributed energy systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.09.019
– volume: 72
  start-page: 284
  year: 2014
  ident: 10.1016/j.apenergy.2015.02.060_b0080
  article-title: Scheduling coupled photovoltaic, battery and conventional energy sources to maximize profit using linear programming
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.07.006
– volume: 48
  start-page: 472
  year: 2012
  ident: 10.1016/j.apenergy.2015.02.060_b0120
  article-title: Multi-objective optimal operation strategy study of micro-CCHP system
  publication-title: Energy
  doi: 10.1016/j.energy.2012.10.013
– volume: 86
  start-page: 415
  year: 2015
  ident: 10.1016/j.apenergy.2015.02.060_b0130
  article-title: MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.10.019
– volume: 84
  start-page: 575
  year: 2014
  ident: 10.1016/j.apenergy.2015.02.060_b0030
  article-title: Design and operation methodology for active building-integrated thermal energy storage systems
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.08.013
– ident: 10.1016/j.apenergy.2015.02.060_b0140
– volume: 42
  start-page: 1628
  year: 2010
  ident: 10.1016/j.apenergy.2015.02.060_b0050
  article-title: Evaluation of a turbine driven CCHP system for large office buildings under different operating strategies
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2010.04.005
– volume: 20
  start-page: 118
  year: 2011
  ident: 10.1016/j.apenergy.2015.02.060_b0060
  article-title: A study on the optimization of control strategy of a thermal energy storage system for building air-conditioning
  publication-title: Proc Eng
  doi: 10.1016/j.proeng.2011.11.146
– volume: 68
  start-page: 476
  year: 2014
  ident: 10.1016/j.apenergy.2015.02.060_b0035
  article-title: Economic analysis of hybrid system consists of fuel cell and wind based CHP system for supplying grid-parallel residential load
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2013.10.003
– volume: 186
  start-page: 48
  year: 2014
  ident: 10.1016/j.apenergy.2015.02.060_b0085
  article-title: A two-stage stochastic mixed-integer programming approach to the smart house scheduling problem
  publication-title: Electr Eng Jpn
  doi: 10.1002/eej.22336
– ident: 10.1016/j.apenergy.2015.02.060_b0110
  doi: 10.1109/CDC.2009.5400677
– volume: 87
  start-page: 1001
  year: 2010
  ident: 10.1016/j.apenergy.2015.02.060_b0090
  article-title: A MILP model for integrated plan and evaluation of distributed energy systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.09.023
– ident: 10.1016/j.apenergy.2015.02.060_b0115
– volume: 126
  start-page: 90
  year: 2014
  ident: 10.1016/j.apenergy.2015.02.060_b0155
  article-title: Data and analytics to inform energy retrofit of high performance buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.03.052
– volume: 97
  start-page: 133
  year: 2013
  ident: 10.1016/j.apenergy.2015.02.060_b0105
  article-title: A mixed-integer linear programming approach for optimal type, size and allocation of distributed generation in radial distribution systems
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2012.12.009
– volume: 114
  start-page: 146
  year: 2014
  ident: 10.1016/j.apenergy.2015.02.060_b0125
  article-title: A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.09.057
SSID ssj0002120
Score 2.518721
Snippet •Optimal scheduling strategy for building energy systems is developed.•Mixed-integer nonlinear programming approach is used for the optimal scheduling.•Four...
The increasing complexity of building energy systems integrated with renewable energy systems requires essentially more intelligent scheduling strategy. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms buildings
carbon
case studies
China
energy costs
Mixed-integer nonlinear programming
Optimal scheduling
renewable energy sources
Renewable energy systems
thermal energy
Thermal energy storage
Zero energy building
Title Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming
URI https://dx.doi.org/10.1016/j.apenergy.2015.02.060
https://www.proquest.com/docview/2101320929
Volume 147
WOSCitedRecordID wos000353755000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCywEOCApVy0tGQlyqLZvseh_HCqUCFKUcUik9WV6vt0mUbJYkW_Jn-A38Rcb2eJPwUMuBy2blteON5svM2J75hpC3UjJWhCLzmAoyD26ElwYq8WRgyEvagVCGxLUX9_vJcJh-abV-uFyYm2lclsl6nVb_VdTQBsLWqbP_IO7mS6EB7kHocAWxw_VOgr8AJTAzqY4jMCNTjGrOsPw1ZrMpm_J3bUinVy4kWTuDeig-1YGTOqRH55ktTnJbu_7EFs4ZS-2-V_oTJqjNjsNsvFa5ZwgooH9pSTg0lbaNAZs5K-lIb9EBtrM1kUG1sQq1Gs2xu9nux13tkSqvv6nx5ijLKM0r6DqpG5hfCYwkgM5yVG9vbLTZJgDLJXRBg17g7SjrMD6pTsPUs4TvqHYt6ykacPvkN9Ngdykmp6KyP0uH9THD12oLGuxycfcv-Pllr8cH3eHgXfXV02XK9HE-1my5R_Y7MUtBje6ffeoOPzfGv4NMoO7dt5LS_zz13_yhXzwD4-4MHpNHuE6hZxZfT0hLlQfk4RZ75QE57G6SJKErWonlU_IdIUg3EKTzgjYQpBqC1L4k3UCQAgQpQtA9RQhSA0GKEKRbEKQIQWogSHcgSBsI0i0IPiOX593Bh48elgHxZOgnK0_4QZH6MojCXMJiOIxkLiImsyyKClbItogzxQIB2iWVfpaLImWZn_tSxmBrOkEcHJI9mE8dEVqEMkoUKyJtuWQErliQgI6KiyjJC-Enx4Q5YXCJHPm6VMuUu2DICXdC5FqI3O9wEOIxed-MqyxLzK0jUidrjr6u9WE54PXWsW8cODgYA33CJ0o1r5e809ZHpz4seZ7foc8L8mDzv3tJ9laLWr0i9-XNarxcvEZk_wR7DORl
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+scheduling+of+buildings+with+energy+generation+and+thermal+energy+storage+under+dynamic+electricity+pricing+using+mixed-integer+nonlinear+programming&rft.jtitle=Applied+energy&rft.au=Lu%2C+Yuehong&rft.au=Wang%2C+Shengwei&rft.au=Sun%2C+Yongjun&rft.au=Yan%2C+Chengchu&rft.date=2015-06-01&rft.issn=0306-2619&rft.volume=147+p.49-58&rft.spage=49&rft.epage=58&rft_id=info:doi/10.1016%2Fj.apenergy.2015.02.060&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon