Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming
•Optimal scheduling strategy for building energy systems is developed.•Mixed-integer nonlinear programming approach is used for the optimal scheduling.•Four scenarios are investigated to evaluate the optimal scheduling strategy.•Case studies are conducted on the Hong Kong Zero Carbon Building. The i...
Saved in:
| Published in: | Applied energy Vol. 147; pp. 49 - 58 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.06.2015
|
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Optimal scheduling strategy for building energy systems is developed.•Mixed-integer nonlinear programming approach is used for the optimal scheduling.•Four scenarios are investigated to evaluate the optimal scheduling strategy.•Case studies are conducted on the Hong Kong Zero Carbon Building.
The increasing complexity of building energy systems integrated with renewable energy systems requires essentially more intelligent scheduling strategy. The energy systems often have strong non-linear characteristics and have discrete working ranges. The mixed-integer nonlinear programming approach is used to solve their optimal scheduling problems of energy systems in building integrated with energy generation and thermal energy storage in this study. The optimal scheduling strategy minimizes the overall operation cost day-ahead, including operation energy cost and cost concerning the plant on/off penalty. A case study is conducted to validate the proposed strategy based on the Hong Kong Zero Carbon Building. Four scenarios are investigated and compared to exam the performance of the optimal scheduling. Results show that the strategy can reduce operation energy cost greatly (about 25%) compared with a rule-based strategy and the reduction is even increased to about 47% when a thermal energy storage system is used. The strategy can also reduce the on/off frequency of chillers significantly. |
|---|---|
| AbstractList | The increasing complexity of building energy systems integrated with renewable energy systems requires essentially more intelligent scheduling strategy. The energy systems often have strong non-linear characteristics and have discrete working ranges. The mixed-integer nonlinear programming approach is used to solve their optimal scheduling problems of energy systems in building integrated with energy generation and thermal energy storage in this study. The optimal scheduling strategy minimizes the overall operation cost day-ahead, including operation energy cost and cost concerning the plant on/off penalty. A case study is conducted to validate the proposed strategy based on the Hong Kong Zero Carbon Building. Four scenarios are investigated and compared to exam the performance of the optimal scheduling. Results show that the strategy can reduce operation energy cost greatly (about 25%) compared with a rule-based strategy and the reduction is even increased to about 47% when a thermal energy storage system is used. The strategy can also reduce the on/off frequency of chillers significantly. •Optimal scheduling strategy for building energy systems is developed.•Mixed-integer nonlinear programming approach is used for the optimal scheduling.•Four scenarios are investigated to evaluate the optimal scheduling strategy.•Case studies are conducted on the Hong Kong Zero Carbon Building. The increasing complexity of building energy systems integrated with renewable energy systems requires essentially more intelligent scheduling strategy. The energy systems often have strong non-linear characteristics and have discrete working ranges. The mixed-integer nonlinear programming approach is used to solve their optimal scheduling problems of energy systems in building integrated with energy generation and thermal energy storage in this study. The optimal scheduling strategy minimizes the overall operation cost day-ahead, including operation energy cost and cost concerning the plant on/off penalty. A case study is conducted to validate the proposed strategy based on the Hong Kong Zero Carbon Building. Four scenarios are investigated and compared to exam the performance of the optimal scheduling. Results show that the strategy can reduce operation energy cost greatly (about 25%) compared with a rule-based strategy and the reduction is even increased to about 47% when a thermal energy storage system is used. The strategy can also reduce the on/off frequency of chillers significantly. |
| Author | Wang, Shengwei Lu, Yuehong Sun, Yongjun Yan, Chengchu |
| Author_xml | – sequence: 1 givenname: Yuehong surname: Lu fullname: Lu, Yuehong organization: Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong – sequence: 2 givenname: Shengwei surname: Wang fullname: Wang, Shengwei email: beswwang@polyu.edu.hk organization: Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong – sequence: 3 givenname: Yongjun surname: Sun fullname: Sun, Yongjun organization: Division of Building Science and Technology, City University of Hong Kong, Kowloon, Hong Kong – sequence: 4 givenname: Chengchu surname: Yan fullname: Yan, Chengchu organization: Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong |
| BookMark | eNqFUcuO1DAQtNCuxOzjF5CPXBLazsSZSBxAKxaQVtoLe7acdifjUeIMtgPMx_CvOMxy4bIXl6Wu6lJXXbELP3ti7I2AUoBQ7w6lOZKnMJxKCaIuQZag4BXbiF0ji1aI3QXbQAWqkEq0r9lVjAcAkELChv1-PCY3mZFH3JNdRucHPve8W9xo8z_yny7t-Xk9H1Y0yc2eG2952lNYpc_TmOZgBuKLtxS4PXkzOeQ0Eqbg0KUTP66YDZa4vpP7RbZwPtGQ-fmobE4mZNY8BDNNmXPDLnszRrp9xmv2dP_p292X4uHx89e7jw8FbmGXCgNV3wJWamtxJ9VWoTWqxq5Tqq97FKbpqK4MVtAidNb0bd2BBcSmabeyaqpr9va8N3t_XygmPbmINI7G07xELXPQlYRWtpmqzlQMc4yBep2vmkw4aQF67UMf9L8-9NqHBqlzH1n4_j9hzuRvmCkYN74s_3CWU87hh6OgIzrySNaFnLC2s3tpxR9uCrOv |
| CitedBy_id | crossref_primary_10_3390_en16196849 crossref_primary_10_1016_j_energy_2017_02_038 crossref_primary_10_1016_j_bios_2019_111576 crossref_primary_10_1016_j_scs_2020_102673 crossref_primary_10_1016_j_egyr_2020_01_010 crossref_primary_10_1016_j_egyr_2023_01_013 crossref_primary_10_1016_j_enbuild_2024_114167 crossref_primary_10_1002_er_8444 crossref_primary_10_1016_j_energy_2022_123115 crossref_primary_10_1016_j_energy_2022_124204 crossref_primary_10_1002_dac_4133 crossref_primary_10_1016_j_apenergy_2016_06_030 crossref_primary_10_1016_j_apenergy_2017_11_076 crossref_primary_10_1016_j_energy_2015_10_034 crossref_primary_10_1016_j_ijepes_2021_106891 crossref_primary_10_1016_j_energy_2019_116771 crossref_primary_10_1109_ACCESS_2019_2923612 crossref_primary_10_3390_app12020888 crossref_primary_10_1016_j_ijepes_2018_11_021 crossref_primary_10_1016_j_apenergy_2017_12_043 crossref_primary_10_3390_su132212838 crossref_primary_10_1016_j_apenergy_2017_01_075 crossref_primary_10_1016_j_apenergy_2019_114287 crossref_primary_10_1016_j_energy_2016_05_093 crossref_primary_10_1016_j_apenergy_2016_08_171 crossref_primary_10_2478_rtuect_2019_0096 crossref_primary_10_1016_j_apenergy_2015_11_086 crossref_primary_10_1016_j_jobe_2024_111185 crossref_primary_10_1016_j_scs_2017_03_018 crossref_primary_10_1016_j_apenergy_2019_04_017 crossref_primary_10_1016_j_apenergy_2015_09_070 crossref_primary_10_1016_j_apenergy_2020_115145 crossref_primary_10_1051_bioconf_20249305011 crossref_primary_10_3390_en11030631 crossref_primary_10_3390_en9070490 crossref_primary_10_1016_j_rser_2018_05_022 crossref_primary_10_1016_j_energy_2018_12_185 crossref_primary_10_1016_j_energy_2020_119598 crossref_primary_10_3390_pr7050296 crossref_primary_10_1016_j_apenergy_2020_114977 crossref_primary_10_1016_j_buildenv_2019_106372 crossref_primary_10_1016_j_apenergy_2018_03_001 crossref_primary_10_1016_j_autcon_2020_103139 crossref_primary_10_1016_j_apenergy_2019_03_205 crossref_primary_10_1016_j_enbuild_2025_115833 crossref_primary_10_1016_j_apenergy_2017_08_140 crossref_primary_10_1016_j_egypro_2016_06_003 crossref_primary_10_1016_j_rser_2017_03_068 crossref_primary_10_3390_su14063136 crossref_primary_10_1016_j_energy_2018_06_199 crossref_primary_10_1016_j_epsr_2020_106232 crossref_primary_10_1016_j_energy_2021_121599 crossref_primary_10_1016_j_apenergy_2023_120705 crossref_primary_10_1016_j_compchemeng_2023_108519 crossref_primary_10_3389_fenrg_2022_1053498 crossref_primary_10_3390_en11051287 crossref_primary_10_1016_j_apenergy_2020_114983 crossref_primary_10_1016_j_energy_2023_130005 crossref_primary_10_1016_j_apenergy_2016_01_074 crossref_primary_10_1016_j_energy_2024_133416 crossref_primary_10_1016_j_energy_2016_03_074 crossref_primary_10_1016_j_seta_2021_101347 crossref_primary_10_1016_j_epsr_2020_106229 crossref_primary_10_1016_j_enbuild_2023_113684 crossref_primary_10_3390_en11040942 crossref_primary_10_1016_j_apenergy_2023_120796 crossref_primary_10_1016_j_apenergy_2023_121247 crossref_primary_10_1016_j_energy_2025_137488 crossref_primary_10_1016_j_applthermaleng_2023_121871 crossref_primary_10_1016_j_apenergy_2016_11_042 crossref_primary_10_1016_j_enbuild_2022_112298 crossref_primary_10_1016_j_enconman_2021_114381 crossref_primary_10_1016_j_apenergy_2016_11_041 crossref_primary_10_1016_j_apenergy_2018_11_083 crossref_primary_10_1016_j_apenergy_2022_119606 crossref_primary_10_1016_j_energy_2024_131066 crossref_primary_10_1371_journal_pone_0307228 crossref_primary_10_1016_j_apenergy_2016_03_029 crossref_primary_10_3390_en14175400 crossref_primary_10_1016_j_apenergy_2019_03_152 crossref_primary_10_1007_s10668_023_04344_0 crossref_primary_10_1016_j_energy_2019_07_055 crossref_primary_10_1016_j_apenergy_2017_07_048 crossref_primary_10_1016_j_apenergy_2019_03_148 crossref_primary_10_1016_j_rser_2022_112625 crossref_primary_10_1016_j_renene_2018_11_024 crossref_primary_10_1007_s11081_023_09853_5 crossref_primary_10_1016_j_esr_2024_101349 crossref_primary_10_1016_j_scs_2022_103727 crossref_primary_10_1016_j_energy_2019_02_192 crossref_primary_10_1016_j_apenergy_2017_07_035 crossref_primary_10_1080_00038628_2015_1079164 crossref_primary_10_1016_j_renene_2016_04_085 crossref_primary_10_1016_j_renene_2018_06_073 crossref_primary_10_3390_app11177991 crossref_primary_10_1016_j_apenergy_2018_09_042 crossref_primary_10_1016_j_apenergy_2018_10_112 crossref_primary_10_1016_j_seta_2023_103064 crossref_primary_10_3390_su13041938 crossref_primary_10_3390_en14040801 crossref_primary_10_1016_j_enbuild_2024_113967 crossref_primary_10_1016_j_enbuild_2021_111527 crossref_primary_10_1177_0958305X221117519 crossref_primary_10_1016_j_energy_2021_122693 crossref_primary_10_3390_en12203995 crossref_primary_10_1080_19401493_2022_2084161 crossref_primary_10_1016_j_jobe_2019_100976 crossref_primary_10_1016_j_apenergy_2016_08_139 crossref_primary_10_1016_j_apenergy_2015_06_007 crossref_primary_10_1016_j_enconman_2015_08_057 crossref_primary_10_1002_er_6853 crossref_primary_10_1016_j_energy_2024_134172 crossref_primary_10_1007_s12273_022_0892_1 crossref_primary_10_1109_TSG_2021_3052515 crossref_primary_10_1016_j_enbenv_2022_02_011 crossref_primary_10_1007_s12273_021_0768_9 crossref_primary_10_3390_en16145511 crossref_primary_10_1016_j_energy_2017_10_130 crossref_primary_10_1016_j_apenergy_2017_10_002 crossref_primary_10_3390_su12177035 crossref_primary_10_1109_ACCESS_2020_2964696 crossref_primary_10_3390_su16145895 crossref_primary_10_1016_j_apenergy_2017_08_065 crossref_primary_10_1109_ACCESS_2021_3069278 crossref_primary_10_1109_ACCESS_2021_3110657 crossref_primary_10_1088_1742_6596_3001_1_012014 crossref_primary_10_1080_15567036_2020_1829203 crossref_primary_10_1007_s11081_018_09419_w crossref_primary_10_1007_s12667_019_00374_8 crossref_primary_10_1016_j_apenergy_2016_11_093 crossref_primary_10_1016_j_apenergy_2020_116397 crossref_primary_10_1016_j_enbuild_2017_06_041 crossref_primary_10_3390_en18071734 crossref_primary_10_1016_j_apenergy_2015_09_049 crossref_primary_10_1016_j_enbuild_2021_110856 crossref_primary_10_1016_j_isatra_2024_08_032 crossref_primary_10_1016_j_egyr_2025_01_002 crossref_primary_10_1002_oca_2728 crossref_primary_10_1016_j_apenergy_2022_118664 crossref_primary_10_1016_j_apenergy_2016_07_080 |
| Cites_doi | 10.1016/j.apenergy.2014.04.084 10.1109/ACC.2012.6315606 10.1016/j.energy.2012.11.035 10.1016/j.rser.2011.09.028 10.1016/j.egypro.2014.01.135 10.1016/j.proeng.2014.02.152 10.1016/j.apenergy.2012.12.004 10.1109/TPWRS.2004.831699 10.1016/j.solener.2008.10.008 10.1016/j.energy.2013.02.030 10.1016/j.renene.2013.11.025 10.1016/j.energy.2013.06.053 10.1016/j.renene.2009.02.031 10.1016/j.rser.2004.11.004 10.1016/j.apenergy.2012.09.019 10.1016/j.renene.2014.07.006 10.1016/j.energy.2012.10.013 10.1016/j.enbuild.2014.10.019 10.1016/j.enbuild.2014.08.013 10.1016/j.enbuild.2010.04.005 10.1016/j.proeng.2011.11.146 10.1016/j.enbuild.2013.10.003 10.1002/eej.22336 10.1109/CDC.2009.5400677 10.1016/j.apenergy.2009.09.023 10.1016/j.apenergy.2014.03.052 10.1016/j.epsr.2012.12.009 10.1016/j.apenergy.2013.09.057 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2015.02.060 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 58 |
| ExternalDocumentID | 10_1016_j_apenergy_2015_02_060 S0306261915002378 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c408t-a03f90c364dc82646cda65cbb66f5fc1a7be53ac309c0bdaf95b0d0cc77942373 |
| ISICitedReferencesCount | 152 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353755000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sat Sep 27 23:06:37 EDT 2025 Sat Nov 29 07:23:54 EST 2025 Tue Nov 18 22:30:43 EST 2025 Fri Feb 23 02:32:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Zero energy building Renewable energy systems Thermal energy storage Mixed-integer nonlinear programming Optimal scheduling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c408t-a03f90c364dc82646cda65cbb66f5fc1a7be53ac309c0bdaf95b0d0cc77942373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2101320929 |
| PQPubID | 24069 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2101320929 crossref_primary_10_1016_j_apenergy_2015_02_060 crossref_citationtrail_10_1016_j_apenergy_2015_02_060 elsevier_sciencedirect_doi_10_1016_j_apenergy_2015_02_060 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-06-01 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ozoe, Tanaka, Fukushima (b0085) 2014; 186 Morais, Kádár, Faria, Vale, Khodr (b0070) 2010; 35 Torres, Crichigno, Padilla, Rivera (b0080) 2014; 72 Ashouri, Fux, Benz, Guzzella (b0100) 2013; 59 Chen, Galal, Athienitis (b0030) 2014; 84 Motevasel, Seifi, Niknam (b0025) 2013; 51 Kitagawa S, Nakazawa C, Fukuyama Y. Particle swarm optimization for optimal operational planning of a cogeneration system. In: Proceedings of the IASTED international conference on modelling, simulation and optimization, 2004; 2004. p. 43–8. Skoplaki, Palyvos (b0145) 2009; 83 Hong, Yang, Hill, Feng (b0155) 2014; 126 Alanne, Saari (b0005) 2006; 10 Mixed-Integer Nonlinear Optimization. Zhang, Liu, Zhou, Ma, Li, Ni (b0125) 2014; 114 Khushairi, Abdullah, Hazran (b0060) 2011; 20 Kusakan, Vermaak (b0150) 2014; 67 Puleo, Morley, Freni, Savić (b0075) 2014; 70 Facci, Andreassi, Ubertini, Sciubba (b0045) 2014; 45 Zhao, Lu, Yan, Wang (b0130) 2015; 86 Rueda-Medina, Franco, Rider, Padilha-Feltrin, Romero (b0105) 2013; 97 Ren, Gao (b0090) 2010; 87 Mago, Hueffed (b0050) 2010; 42 El-Khattam, Bhattacharya, Hegazy, Salama (b0065) 2004; 19 Ma Y, Borrelli F, Hencey B, Packard A, Bortoff S. Model predictive control of thermal energy storage in building cooling systems. In: Joint 48th IEEE conference on decision and control and 28th Chinese control conference, 2009; 2009. p. 392–7. . Ranjbar, Mohammadian, esmaili (b0035) 2014; 68 Kwon, Han (b0135) 2005 Wu, Wang, Li (b0120) 2012; 48 Chandan V, Do A-T, Jin B, Jabbari F, Brouwer J, Akrotirianakis I, et al. Modeling and optimization of a combined cooling, heating and power plant system. In: American control conference (ACC), 2012; 2012. p. 3069–74. Mitra, Sun, Grossmann (b0010) 2013; 54 Ayhan, Sağlam (b0020) 2012; 16 Ma, Yang, Lu (b0015) 2013; 112 Zheng, Wu, Zhai (b0055) 2014; 128 Zhou, Zhang, Liu, Li, Georgiadis, Pistikopoulos (b0095) 2013; 103 Zheng (10.1016/j.apenergy.2015.02.060_b0055) 2014; 128 10.1016/j.apenergy.2015.02.060_b0110 Mitra (10.1016/j.apenergy.2015.02.060_b0010) 2013; 54 Zhang (10.1016/j.apenergy.2015.02.060_b0125) 2014; 114 10.1016/j.apenergy.2015.02.060_b0115 Ma (10.1016/j.apenergy.2015.02.060_b0015) 2013; 112 El-Khattam (10.1016/j.apenergy.2015.02.060_b0065) 2004; 19 Alanne (10.1016/j.apenergy.2015.02.060_b0005) 2006; 10 Chen (10.1016/j.apenergy.2015.02.060_b0030) 2014; 84 Ashouri (10.1016/j.apenergy.2015.02.060_b0100) 2013; 59 Motevasel (10.1016/j.apenergy.2015.02.060_b0025) 2013; 51 Ayhan (10.1016/j.apenergy.2015.02.060_b0020) 2012; 16 10.1016/j.apenergy.2015.02.060_b0040 Rueda-Medina (10.1016/j.apenergy.2015.02.060_b0105) 2013; 97 10.1016/j.apenergy.2015.02.060_b0140 Kusakan (10.1016/j.apenergy.2015.02.060_b0150) 2014; 67 Morais (10.1016/j.apenergy.2015.02.060_b0070) 2010; 35 Ranjbar (10.1016/j.apenergy.2015.02.060_b0035) 2014; 68 Wu (10.1016/j.apenergy.2015.02.060_b0120) 2012; 48 Mago (10.1016/j.apenergy.2015.02.060_b0050) 2010; 42 Ren (10.1016/j.apenergy.2015.02.060_b0090) 2010; 87 Zhou (10.1016/j.apenergy.2015.02.060_b0095) 2013; 103 Zhao (10.1016/j.apenergy.2015.02.060_b0130) 2015; 86 Puleo (10.1016/j.apenergy.2015.02.060_b0075) 2014; 70 Ozoe (10.1016/j.apenergy.2015.02.060_b0085) 2014; 186 Hong (10.1016/j.apenergy.2015.02.060_b0155) 2014; 126 Facci (10.1016/j.apenergy.2015.02.060_b0045) 2014; 45 Khushairi (10.1016/j.apenergy.2015.02.060_b0060) 2011; 20 Kwon (10.1016/j.apenergy.2015.02.060_b0135) 2005 Torres (10.1016/j.apenergy.2015.02.060_b0080) 2014; 72 Skoplaki (10.1016/j.apenergy.2015.02.060_b0145) 2009; 83 |
| References_xml | – reference: Chandan V, Do A-T, Jin B, Jabbari F, Brouwer J, Akrotirianakis I, et al. Modeling and optimization of a combined cooling, heating and power plant system. In: American control conference (ACC), 2012; 2012. p. 3069–74. – volume: 68 start-page: 476 year: 2014 end-page: 487 ident: b0035 article-title: Economic analysis of hybrid system consists of fuel cell and wind based CHP system for supplying grid-parallel residential load publication-title: Energy Build – volume: 59 start-page: 365 year: 2013 end-page: 376 ident: b0100 article-title: Optimal design and operation of building services using mixed-integer linear programming techniques publication-title: Energy – reference: Kitagawa S, Nakazawa C, Fukuyama Y. Particle swarm optimization for optimal operational planning of a cogeneration system. In: Proceedings of the IASTED international conference on modelling, simulation and optimization, 2004; 2004. p. 43–8. – volume: 48 start-page: 472 year: 2012 end-page: 483 ident: b0120 article-title: Multi-objective optimal operation strategy study of micro-CCHP system publication-title: Energy – volume: 16 start-page: 1040 year: 2012 end-page: 1049 ident: b0020 article-title: A technical review of building-mounted wind power systems and a sample simulation model publication-title: Renew Sustain Energy Rev – volume: 42 start-page: 1628 year: 2010 end-page: 1636 ident: b0050 article-title: Evaluation of a turbine driven CCHP system for large office buildings under different operating strategies publication-title: Energy Build – volume: 35 start-page: 151 year: 2010 end-page: 156 ident: b0070 article-title: Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming publication-title: Renew Energy – volume: 67 start-page: 97 year: 2014 end-page: 102 ident: b0150 article-title: Hybrid diesel generator/renewable energy system performance modeling publication-title: Renew Energy – reference: Mixed-Integer Nonlinear Optimization. < – volume: 103 start-page: 135 year: 2013 end-page: 144 ident: b0095 article-title: A two-stage stochastic programming model for the optimal design of distributed energy systems publication-title: Appl Energy – volume: 10 start-page: 539 year: 2006 end-page: 558 ident: b0005 article-title: Distributed energy generation and sustainable development publication-title: Renew Sustain Energy Rev – volume: 112 start-page: 663 year: 2013 end-page: 672 ident: b0015 article-title: Performance evaluation of a stand-alone photovoltaic system on an isolated island in Hong Kong publication-title: Appl Energy – volume: 114 start-page: 146 year: 2014 end-page: 154 ident: b0125 article-title: A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system publication-title: Appl Energy – volume: 186 start-page: 48 year: 2014 end-page: 58 ident: b0085 article-title: A two-stage stochastic mixed-integer programming approach to the smart house scheduling problem publication-title: Electr Eng Jpn – volume: 51 start-page: 123 year: 2013 end-page: 136 ident: b0025 article-title: Multi-objective energy management of CHP (combined heat and power)-based micro-grid publication-title: Energy – volume: 84 start-page: 575 year: 2014 end-page: 585 ident: b0030 article-title: Design and operation methodology for active building-integrated thermal energy storage systems publication-title: Energy Build – volume: 20 start-page: 118 year: 2011 end-page: 124 ident: b0060 article-title: A study on the optimization of control strategy of a thermal energy storage system for building air-conditioning publication-title: Proc Eng – volume: 86 start-page: 415 year: 2015 end-page: 426 ident: b0130 article-title: MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages publication-title: Energy Build – reference: >. – volume: 72 start-page: 284 year: 2014 end-page: 290 ident: b0080 article-title: Scheduling coupled photovoltaic, battery and conventional energy sources to maximize profit using linear programming publication-title: Renew Energy – volume: 83 start-page: 614 year: 2009 end-page: 624 ident: b0145 article-title: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations publication-title: Sol Energy – volume: 54 start-page: 194 year: 2013 end-page: 211 ident: b0010 article-title: Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices publication-title: Energy – volume: 70 start-page: 1378 year: 2014 end-page: 1385 ident: b0075 article-title: Multi-stage linear programming optimization for pump scheduling publication-title: Proc Eng – volume: 87 start-page: 1001 year: 2010 end-page: 1014 ident: b0090 article-title: A MILP model for integrated plan and evaluation of distributed energy systems publication-title: Appl Energy – volume: 45 start-page: 1295 year: 2014 end-page: 1304 ident: b0045 article-title: Analysis of the influence of thermal energy storage on the optimal management of a trigeneration plant publication-title: Energy Proc – volume: 128 start-page: 325 year: 2014 end-page: 335 ident: b0055 article-title: A novel operation strategy for CCHP systems based on minimum distance publication-title: Appl Energy – volume: 97 start-page: 133 year: 2013 end-page: 143 ident: b0105 article-title: A mixed-integer linear programming approach for optimal type, size and allocation of distributed generation in radial distribution systems publication-title: Electr Power Syst Res – volume: 126 start-page: 90 year: 2014 end-page: 106 ident: b0155 article-title: Data and analytics to inform energy retrofit of high performance buildings publication-title: Appl Energy – year: 2005 ident: b0135 article-title: Receding horizon control model predictive control for state models – volume: 19 start-page: 1674 year: 2004 end-page: 1684 ident: b0065 article-title: Optimal investment planning for distributed generation in a competitive electricity market publication-title: IEEE Trans Power Syst – reference: Ma Y, Borrelli F, Hencey B, Packard A, Bortoff S. Model predictive control of thermal energy storage in building cooling systems. In: Joint 48th IEEE conference on decision and control and 28th Chinese control conference, 2009; 2009. p. 392–7. – year: 2005 ident: 10.1016/j.apenergy.2015.02.060_b0135 – volume: 128 start-page: 325 year: 2014 ident: 10.1016/j.apenergy.2015.02.060_b0055 article-title: A novel operation strategy for CCHP systems based on minimum distance publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.04.084 – ident: 10.1016/j.apenergy.2015.02.060_b0040 doi: 10.1109/ACC.2012.6315606 – volume: 51 start-page: 123 year: 2013 ident: 10.1016/j.apenergy.2015.02.060_b0025 article-title: Multi-objective energy management of CHP (combined heat and power)-based micro-grid publication-title: Energy doi: 10.1016/j.energy.2012.11.035 – volume: 16 start-page: 1040 year: 2012 ident: 10.1016/j.apenergy.2015.02.060_b0020 article-title: A technical review of building-mounted wind power systems and a sample simulation model publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.09.028 – volume: 45 start-page: 1295 year: 2014 ident: 10.1016/j.apenergy.2015.02.060_b0045 article-title: Analysis of the influence of thermal energy storage on the optimal management of a trigeneration plant publication-title: Energy Proc doi: 10.1016/j.egypro.2014.01.135 – volume: 70 start-page: 1378 year: 2014 ident: 10.1016/j.apenergy.2015.02.060_b0075 article-title: Multi-stage linear programming optimization for pump scheduling publication-title: Proc Eng doi: 10.1016/j.proeng.2014.02.152 – volume: 112 start-page: 663 year: 2013 ident: 10.1016/j.apenergy.2015.02.060_b0015 article-title: Performance evaluation of a stand-alone photovoltaic system on an isolated island in Hong Kong publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.004 – volume: 19 start-page: 1674 year: 2004 ident: 10.1016/j.apenergy.2015.02.060_b0065 article-title: Optimal investment planning for distributed generation in a competitive electricity market publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2004.831699 – volume: 83 start-page: 614 year: 2009 ident: 10.1016/j.apenergy.2015.02.060_b0145 article-title: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations publication-title: Sol Energy doi: 10.1016/j.solener.2008.10.008 – volume: 54 start-page: 194 year: 2013 ident: 10.1016/j.apenergy.2015.02.060_b0010 article-title: Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices publication-title: Energy doi: 10.1016/j.energy.2013.02.030 – volume: 67 start-page: 97 year: 2014 ident: 10.1016/j.apenergy.2015.02.060_b0150 article-title: Hybrid diesel generator/renewable energy system performance modeling publication-title: Renew Energy doi: 10.1016/j.renene.2013.11.025 – volume: 59 start-page: 365 year: 2013 ident: 10.1016/j.apenergy.2015.02.060_b0100 article-title: Optimal design and operation of building services using mixed-integer linear programming techniques publication-title: Energy doi: 10.1016/j.energy.2013.06.053 – volume: 35 start-page: 151 year: 2010 ident: 10.1016/j.apenergy.2015.02.060_b0070 article-title: Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming publication-title: Renew Energy doi: 10.1016/j.renene.2009.02.031 – volume: 10 start-page: 539 year: 2006 ident: 10.1016/j.apenergy.2015.02.060_b0005 article-title: Distributed energy generation and sustainable development publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2004.11.004 – volume: 103 start-page: 135 year: 2013 ident: 10.1016/j.apenergy.2015.02.060_b0095 article-title: A two-stage stochastic programming model for the optimal design of distributed energy systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.09.019 – volume: 72 start-page: 284 year: 2014 ident: 10.1016/j.apenergy.2015.02.060_b0080 article-title: Scheduling coupled photovoltaic, battery and conventional energy sources to maximize profit using linear programming publication-title: Renew Energy doi: 10.1016/j.renene.2014.07.006 – volume: 48 start-page: 472 year: 2012 ident: 10.1016/j.apenergy.2015.02.060_b0120 article-title: Multi-objective optimal operation strategy study of micro-CCHP system publication-title: Energy doi: 10.1016/j.energy.2012.10.013 – volume: 86 start-page: 415 year: 2015 ident: 10.1016/j.apenergy.2015.02.060_b0130 article-title: MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages publication-title: Energy Build doi: 10.1016/j.enbuild.2014.10.019 – volume: 84 start-page: 575 year: 2014 ident: 10.1016/j.apenergy.2015.02.060_b0030 article-title: Design and operation methodology for active building-integrated thermal energy storage systems publication-title: Energy Build doi: 10.1016/j.enbuild.2014.08.013 – ident: 10.1016/j.apenergy.2015.02.060_b0140 – volume: 42 start-page: 1628 year: 2010 ident: 10.1016/j.apenergy.2015.02.060_b0050 article-title: Evaluation of a turbine driven CCHP system for large office buildings under different operating strategies publication-title: Energy Build doi: 10.1016/j.enbuild.2010.04.005 – volume: 20 start-page: 118 year: 2011 ident: 10.1016/j.apenergy.2015.02.060_b0060 article-title: A study on the optimization of control strategy of a thermal energy storage system for building air-conditioning publication-title: Proc Eng doi: 10.1016/j.proeng.2011.11.146 – volume: 68 start-page: 476 year: 2014 ident: 10.1016/j.apenergy.2015.02.060_b0035 article-title: Economic analysis of hybrid system consists of fuel cell and wind based CHP system for supplying grid-parallel residential load publication-title: Energy Build doi: 10.1016/j.enbuild.2013.10.003 – volume: 186 start-page: 48 year: 2014 ident: 10.1016/j.apenergy.2015.02.060_b0085 article-title: A two-stage stochastic mixed-integer programming approach to the smart house scheduling problem publication-title: Electr Eng Jpn doi: 10.1002/eej.22336 – ident: 10.1016/j.apenergy.2015.02.060_b0110 doi: 10.1109/CDC.2009.5400677 – volume: 87 start-page: 1001 year: 2010 ident: 10.1016/j.apenergy.2015.02.060_b0090 article-title: A MILP model for integrated plan and evaluation of distributed energy systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.09.023 – ident: 10.1016/j.apenergy.2015.02.060_b0115 – volume: 126 start-page: 90 year: 2014 ident: 10.1016/j.apenergy.2015.02.060_b0155 article-title: Data and analytics to inform energy retrofit of high performance buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.03.052 – volume: 97 start-page: 133 year: 2013 ident: 10.1016/j.apenergy.2015.02.060_b0105 article-title: A mixed-integer linear programming approach for optimal type, size and allocation of distributed generation in radial distribution systems publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2012.12.009 – volume: 114 start-page: 146 year: 2014 ident: 10.1016/j.apenergy.2015.02.060_b0125 article-title: A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.09.057 |
| SSID | ssj0002120 |
| Score | 2.518721 |
| Snippet | •Optimal scheduling strategy for building energy systems is developed.•Mixed-integer nonlinear programming approach is used for the optimal scheduling.•Four... The increasing complexity of building energy systems integrated with renewable energy systems requires essentially more intelligent scheduling strategy. The... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 49 |
| SubjectTerms | buildings carbon case studies China energy costs Mixed-integer nonlinear programming Optimal scheduling renewable energy sources Renewable energy systems thermal energy Thermal energy storage Zero energy building |
| Title | Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming |
| URI | https://dx.doi.org/10.1016/j.apenergy.2015.02.060 https://www.proquest.com/docview/2101320929 |
| Volume | 147 |
| WOSCitedRecordID | wos000353755000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCywEOCApVy0tGQlyqLZvseh_HCqUCFKUcUik9WV6vt0mUbJYkW_Jn-A38Rcb2eJPwUMuBy2blteON5svM2J75hpC3UjJWhCLzmAoyD26ElwYq8WRgyEvagVCGxLUX9_vJcJh-abV-uFyYm2lclsl6nVb_VdTQBsLWqbP_IO7mS6EB7kHocAWxw_VOgr8AJTAzqY4jMCNTjGrOsPw1ZrMpm_J3bUinVy4kWTuDeig-1YGTOqRH55ktTnJbu_7EFs4ZS-2-V_oTJqjNjsNsvFa5ZwgooH9pSTg0lbaNAZs5K-lIb9EBtrM1kUG1sQq1Gs2xu9nux13tkSqvv6nx5ijLKM0r6DqpG5hfCYwkgM5yVG9vbLTZJgDLJXRBg17g7SjrMD6pTsPUs4TvqHYt6ykacPvkN9Ngdykmp6KyP0uH9THD12oLGuxycfcv-Pllr8cH3eHgXfXV02XK9HE-1my5R_Y7MUtBje6ffeoOPzfGv4NMoO7dt5LS_zz13_yhXzwD4-4MHpNHuE6hZxZfT0hLlQfk4RZ75QE57G6SJKErWonlU_IdIUg3EKTzgjYQpBqC1L4k3UCQAgQpQtA9RQhSA0GKEKRbEKQIQWogSHcgSBsI0i0IPiOX593Bh48elgHxZOgnK0_4QZH6MojCXMJiOIxkLiImsyyKClbItogzxQIB2iWVfpaLImWZn_tSxmBrOkEcHJI9mE8dEVqEMkoUKyJtuWQErliQgI6KiyjJC-Enx4Q5YXCJHPm6VMuUu2DICXdC5FqI3O9wEOIxed-MqyxLzK0jUidrjr6u9WE54PXWsW8cODgYA33CJ0o1r5e809ZHpz4seZ7foc8L8mDzv3tJ9laLWr0i9-XNarxcvEZk_wR7DORl |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+scheduling+of+buildings+with+energy+generation+and+thermal+energy+storage+under+dynamic+electricity+pricing+using+mixed-integer+nonlinear+programming&rft.jtitle=Applied+energy&rft.au=Lu%2C+Yuehong&rft.au=Wang%2C+Shengwei&rft.au=Sun%2C+Yongjun&rft.au=Yan%2C+Chengchu&rft.date=2015-06-01&rft.issn=0306-2619&rft.volume=147+p.49-58&rft.spage=49&rft.epage=58&rft_id=info:doi/10.1016%2Fj.apenergy.2015.02.060&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |