Big Data-Driven Cognitive Computing System for Optimization of Social Media Analytics

The integration of big data analytics and cognitive computing results in a new model that can provide the utilization of the most complicated advances in industry and its relevant decision-making processes as well as resolving failures faced during big data analytics. In E-projects portfolio selecti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 8; s. 82215 - 82226
Hlavní autoři: Sangaiah, Arun Kumar, Goli, Alireza, Tirkolaee, Erfan Babaee, Ranjbar-Bourani, Mehdi, Pandey, Hari Mohan, Zhang, Weizhe
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The integration of big data analytics and cognitive computing results in a new model that can provide the utilization of the most complicated advances in industry and its relevant decision-making processes as well as resolving failures faced during big data analytics. In E-projects portfolio selection (EPPS) problem, big data-driven decision-making has a great importance in web development environments. EPPS problem deals with choosing a set of the best investment projects on social media such that maximum return with minimum risk is achieved. To optimize the EPPS problem on social media, this study aims to develop a hybrid fuzzy multi-objective optimization algorithm, named as NSGA-III-MOIWO encompassing the non-dominated sorting genetic algorithm III (NSGA-III) and multi-objective invasive weed optimization (MOIWO) algorithms. The objectives are to simultaneously minimize variance, skewness and kurtosis as the risk measures and maximize the total expected return. To evaluate the performance of the proposed hybrid algorithm, the data derived from 125 active E-projects in an Iranian web development company are analyzed and employed over the period 2014-2018. Finally, the obtained experimental results provide the optimal policy based on the main limitations of the system and it is demonstrated that the NSGA-III-MOIWO outperforms the NSGA-III and MOIWO in finding efficient investment boundaries in EPPS problems. Finally, an efficient statistical-comparative analysis is performed to test the performance of NSGA-III-MOIWO against some well-known multi-objective algorithms.
AbstractList The integration of big data analytics and cognitive computing results in a new model that can provide the utilization of the most complicated advances in industry and its relevant decision-making processes as well as resolving failures faced during big data analytics. In E-projects portfolio selection (EPPS) problem, big data-driven decision-making has a great importance in web development environments. EPPS problem deals with choosing a set of the best investment projects on social media such that maximum return with minimum risk is achieved. To optimize the EPPS problem on social media, this study aims to develop a hybrid fuzzy multi-objective optimization algorithm, named as NSGA-III-MOIWO encompassing the non-dominated sorting genetic algorithm III (NSGA-III) and multi-objective invasive weed optimization (MOIWO) algorithms. The objectives are to simultaneously minimize variance, skewness and kurtosis as the risk measures and maximize the total expected return. To evaluate the performance of the proposed hybrid algorithm, the data derived from 125 active E-projects in an Iranian web development company are analyzed and employed over the period 2014-2018. Finally, the obtained experimental results provide the optimal policy based on the main limitations of the system and it is demonstrated that the NSGA-III-MOIWO outperforms the NSGA-III and MOIWO in finding efficient investment boundaries in EPPS problems. Finally, an efficient statistical-comparative analysis is performed to test the performance of NSGA-III-MOIWO against some well-known multi-objective algorithms.
Author Ranjbar-Bourani, Mehdi
Zhang, Weizhe
Pandey, Hari Mohan
Goli, Alireza
Tirkolaee, Erfan Babaee
Sangaiah, Arun Kumar
Author_xml – sequence: 1
  givenname: Arun Kumar
  orcidid: 0000-0002-0229-2460
  surname: Sangaiah
  fullname: Sangaiah, Arun Kumar
  organization: School of Computing Science and Engineering, Vellore Institute of Technology, Vellore, India
– sequence: 2
  givenname: Alireza
  surname: Goli
  fullname: Goli, Alireza
  organization: Department of Industrial Engineering, Yazd University, Yazd, Iran
– sequence: 3
  givenname: Erfan Babaee
  orcidid: 0000-0003-1664-9210
  surname: Tirkolaee
  fullname: Tirkolaee, Erfan Babaee
  organization: Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran
– sequence: 4
  givenname: Mehdi
  surname: Ranjbar-Bourani
  fullname: Ranjbar-Bourani, Mehdi
  organization: Department of Industrial Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
– sequence: 5
  givenname: Hari Mohan
  surname: Pandey
  fullname: Pandey, Hari Mohan
  organization: Department of Computer Science, Edge Hill University, Ormskirk, U.K
– sequence: 6
  givenname: Weizhe
  orcidid: 0000-0003-4783-876X
  surname: Zhang
  fullname: Zhang, Weizhe
  email: wzzhang@hit.edu.cn
  organization: Peng Cheng Laboratory, Shenzhen, China
BookMark eNp9kU1PxCAQhonRxM9f4IXEc1cobYHjWj8TjYfVM5mysGHTLSuwJuuvF60a40EuTCbzvHln3kO0O_jBIHRKyYRSIs-nbXs1m01KUpJJKSVlstpBByVtZMFq1uz-qvfRSYxLkp_IrZofoOcLt8CXkKC4DO7VDLj1i8GlXOZqtd4kNyzwbBuTWWHrA35cJ7dyb5CcH7C3eOa1gx4_mLkDPB2g3yan4zHas9BHc_L1H6Hn66un9ra4f7y5a6f3ha6ISIW0HdiK2Y4xKvIqbN4J3kClO0os0bamsiFCck1LS5tSsLqRGWSaU6OpEewI3Y26cw9LtQ5uBWGrPDj12fBhoSBkQ71RjGrOKOkI8HlFbSVkYyxI4FJr6KzNWmej1jr4l42JSS39JuSNoiqrusruCGd5So5TOvgYg7FKu_R5jRTA9YoS9RGKGkNRH6Gor1Ayy_6w347_p05HyhljfghJRNlwwd4B0HSZJA
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_su15139957
crossref_primary_10_1111_coin_12418
crossref_primary_10_3390_a16030155
crossref_primary_10_1007_s12652_020_02701_9
crossref_primary_10_1007_s12652_021_03000_7
crossref_primary_10_3390_su141912607
crossref_primary_10_1109_JIOT_2021_3090583
crossref_primary_10_1007_s12652_020_02481_2
crossref_primary_10_1007_s12597_020_00504_2
crossref_primary_10_1016_j_wasman_2021_02_047
crossref_primary_10_1016_j_asoc_2021_107272
crossref_primary_10_1016_j_ipm_2022_102888
crossref_primary_10_1007_s11356_023_25223_1
crossref_primary_10_1007_s12559_023_10176_x
crossref_primary_10_1080_01605682_2023_2195426
crossref_primary_10_1002_cpe_7875
crossref_primary_10_1109_JIOT_2020_3026608
crossref_primary_10_1007_s00500_023_08371_x
crossref_primary_10_1007_s00500_023_08213_w
crossref_primary_10_1016_j_sasc_2025_200310
crossref_primary_10_1016_j_techfore_2021_121193
crossref_primary_10_1109_TNSE_2021_3119324
crossref_primary_10_1109_ACCESS_2022_3175842
crossref_primary_10_3390_bdcc7020076
crossref_primary_10_1007_s10479_020_03871_7
crossref_primary_10_1111_itor_70064
crossref_primary_10_1016_j_jclepro_2020_122927
crossref_primary_10_1007_s10489_022_03335_4
crossref_primary_10_1007_s10479_021_04486_2
crossref_primary_10_1016_j_eswa_2023_122770
crossref_primary_10_1155_2020_5480842
Cites_doi 10.1007/978-1-4613-0303-9_33
10.1016/j.ijinfomgt.2018.08.006
10.1108/LHTN-11-2018-0070
10.1126/science.220.4598.671
10.1016/j.engappai.2017.10.010
10.1007/s00521-018-3924-0
10.1016/j.ejor.2004.01.040
10.1016/j.eswa.2004.10.014
10.1016/j.eswa.2011.04.183
10.1016/S0377-2217(02)00881-0
10.1016/j.jdeveco.2008.07.002
10.2307/2975974
10.1007/s12190-008-0154-0
10.1016/j.swevo.2016.01.001
10.1111/risa.12801
10.1109/4235.996017
10.1002/sys.21301
10.7551/mitpress/3927.001.0001
10.1166/jmihi.2019.2692
10.1002/cpe.5130
10.1016/j.eswa.2015.06.057
10.1016/j.indmarman.2019.09.001
10.1109/SYSMART.2018.8746983
10.1016/j.ecoinf.2006.07.003
10.1016/j.ijinfomgt.2018.06.005
10.1016/j.asoc.2015.11.005
10.1016/j.eswa.2017.02.033
10.1016/j.cam.2018.10.039
10.1109/TFUZZ.2018.2842752
10.1016/j.techfore.2017.07.012
10.1007/978-3-030-05252-2_11
10.1109/TFUZZ.2002.800692
10.1016/j.ejor.2006.04.010
10.1016/j.swevo.2019.02.003
10.1016/j.cam.2007.06.009
10.1007/s00607-018-00692-2
10.1016/j.econmod.2017.03.020
10.1016/j.ejor.2013.10.060
10.1016/j.chb.2018.08.039
10.1016/j.automatica.2012.08.036
10.1109/TEVC.2013.2281535
10.1016/j.amc.2015.01.050
10.1007/s11771-016-3061-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.2991394
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 82226
ExternalDocumentID oai_doaj_org_article_31c7310b0a7d41f4896efa9a79ccabff
10_1109_ACCESS_2020_2991394
9082678
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61672186; 61872110
  funderid: 10.13039/501100001809
– fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2019B010136001
– fundername: National Key Research and Development Plan
  grantid: 2017YFB0801801
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-9fbaf43fb33181093db876a4cb10f0cf51960897c12f162835694083c71ec1e83
IEDL.DBID DOA
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549502200044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:28:45 EDT 2025
Mon Jun 30 06:31:39 EDT 2025
Tue Nov 18 21:15:17 EST 2025
Sat Nov 29 02:42:21 EST 2025
Wed Aug 27 02:41:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-9fbaf43fb33181093db876a4cb10f0cf51960897c12f162835694083c71ec1e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0229-2460
0000-0003-1664-9210
0000-0003-4783-876X
OpenAccessLink https://doaj.org/article/31c7310b0a7d41f4896efa9a79ccabff
PQID 2454093073
PQPubID 4845423
PageCount 12
ParticipantIDs proquest_journals_2454093073
doaj_primary_oai_doaj_org_article_31c7310b0a7d41f4896efa9a79ccabff
crossref_citationtrail_10_1109_ACCESS_2020_2991394
ieee_primary_9082678
crossref_primary_10_1109_ACCESS_2020_2991394
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
zitzler (ref10) 2001
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
hao (ref25) 2009; 30
ref24
ref23
ref26
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref34
  doi: 10.1007/978-1-4613-0303-9_33
– ident: ref40
  doi: 10.1016/j.ijinfomgt.2018.08.006
– ident: ref4
  doi: 10.1108/LHTN-11-2018-0070
– ident: ref33
  doi: 10.1126/science.220.4598.671
– ident: ref18
  doi: 10.1016/j.engappai.2017.10.010
– ident: ref36
  doi: 10.1007/s00521-018-3924-0
– ident: ref12
  doi: 10.1016/j.ejor.2004.01.040
– ident: ref7
  doi: 10.1016/j.eswa.2004.10.014
– ident: ref20
  doi: 10.1016/j.eswa.2011.04.183
– ident: ref6
  doi: 10.1016/S0377-2217(02)00881-0
– ident: ref1
  doi: 10.1016/j.jdeveco.2008.07.002
– ident: ref2
  doi: 10.2307/2975974
– volume: 30
  start-page: 9
  year: 2009
  ident: ref25
  article-title: Mean-variance models for portfolio selection with fuzzy random returns
  publication-title: J Appl Math Comput
  doi: 10.1007/s12190-008-0154-0
– ident: ref29
  doi: 10.1016/j.swevo.2016.01.001
– ident: ref35
  doi: 10.1111/risa.12801
– ident: ref9
  doi: 10.1109/4235.996017
– ident: ref44
  doi: 10.1002/sys.21301
– ident: ref32
  doi: 10.7551/mitpress/3927.001.0001
– ident: ref38
  doi: 10.1166/jmihi.2019.2692
– ident: ref37
  doi: 10.1002/cpe.5130
– ident: ref15
  doi: 10.1016/j.eswa.2015.06.057
– ident: ref39
  doi: 10.1016/j.indmarman.2019.09.001
– ident: ref3
  doi: 10.1109/SYSMART.2018.8746983
– ident: ref26
  doi: 10.1016/j.ecoinf.2006.07.003
– ident: ref41
  doi: 10.1016/j.ijinfomgt.2018.06.005
– ident: ref17
  doi: 10.1016/j.asoc.2015.11.005
– year: 2001
  ident: ref10
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref8
  doi: 10.1016/j.eswa.2017.02.033
– ident: ref11
  doi: 10.1016/j.cam.2018.10.039
– ident: ref31
  doi: 10.1109/TFUZZ.2018.2842752
– ident: ref16
  doi: 10.1016/j.techfore.2017.07.012
– ident: ref43
  doi: 10.1007/978-3-030-05252-2_11
– ident: ref24
  doi: 10.1109/TFUZZ.2002.800692
– ident: ref13
  doi: 10.1016/j.ejor.2006.04.010
– ident: ref30
  doi: 10.1016/j.swevo.2019.02.003
– ident: ref14
  doi: 10.1016/j.cam.2007.06.009
– ident: ref28
  doi: 10.1007/s00607-018-00692-2
– ident: ref22
  doi: 10.1016/j.econmod.2017.03.020
– ident: ref5
  doi: 10.1016/j.ejor.2013.10.060
– ident: ref42
  doi: 10.1016/j.chb.2018.08.039
– ident: ref19
  doi: 10.1016/j.automatica.2012.08.036
– ident: ref27
  doi: 10.1109/TEVC.2013.2281535
– ident: ref21
  doi: 10.1016/j.amc.2015.01.050
– ident: ref23
  doi: 10.1007/s11771-016-3061-9
SSID ssj0000816957
Score 2.374592
Snippet The integration of big data analytics and cognitive computing results in a new model that can provide the utilization of the most complicated advances in...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 82215
SubjectTerms Algorithms
Big Data
Big data-driven cognitive computing system
Cognitive systems
Computation
Computational modeling
Data analysis
Decision analysis
Decision making
Digital media
E-projects portfolio selection problem
fuzzy system
Genetic algorithms
Investment
Kurtosis
Mathematical analysis
Multiple objective analysis
Optimization
Performance evaluation
Portfolios
social media
Social networking (online)
Social networks
Software development
Sorting algorithms
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B4tAe2lJasZRWPvRIwE68cXyEpagnygEkbtbYsSukdhctC7-_M443omqFxC2ybMfJs8fjj3kP4GuH0k_rljw3lWzF8toVKsRK6Sn6trWxtz6LTZiLi-7mxl5uwOEYCxNjzJfP4hE_5rP8fhEeeKvsmOW5ybhuwqYx7RCrNe6nsICEnZpCLKSkPT6ZzegbaAlYyyMyuuTq6L8mn8zRX0RV_rHEeXo5f_uyhr2DN8WNFCcD7juwEefv4fUTcsFduD69_SnOcIXV2ZJNmpitbwqJQcqBcomBsFyQ5yp-kPH4XaIyxSKJIXBX8EkOisxdwozOH-D6_NvV7HtVRBSqoGW3qmzymHSTfEOjl7mjek8GEHXwSiYZEnlwreysCapOqmX2tdZSwSYYFYOKXfMRtuaLedwDoVHLqHpKbchr8VQXvQJrIwlP7CJOoF7_XRcKwzgLXfxyeaUhrRsgcQyJK5BM4HAsdDcQbDyf_ZRhG7MyO3ZOIDxcGWyuUcGQ2-olml6rpDvbxoQWjaX-6lOawC5jOFZS4JvAwboTuDKS713NFIWWLeH-_0t9glfcwGFb5gC2VsuH-Bm2w-Pq9n75JXfSP94E4_0
  priority: 102
  providerName: IEEE
Title Big Data-Driven Cognitive Computing System for Optimization of Social Media Analytics
URI https://ieeexplore.ieee.org/document/9082678
https://www.proquest.com/docview/2454093073
https://doaj.org/article/31c7310b0a7d41f4896efa9a79ccabff
Volume 8
WOSCitedRecordID wos000549502200044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2_TxsxFLYQ6gADaguI0BR5YOQa-845n8eQgLpAO4DEZj07NkKCgELo2L-979lOlAoJFpYbLP84v2d_fr6zv4-x4w6EG9YtRm4ymorktSuQAJVUQ3Bta8LUuCQ2oS8vu5sb83tN6ovOhGV64Gy4QSO9xhDECdBTJaPqTBsiGNAG23YxEvoKbdY2UwmDO9maoS40Q1KYwWg8xh7hhrAWPxCCMfBR_y1FibG_SKy8wuW02Jx_ZjslSuSj_HZf2EaYfWXba9yBu-z69O6WT2AB1WROiMXHy4NAPCs1YC6e-cg5Bqb8F2LDQ7l0yR8jz_dyOf2oAZ6oSYiweY9dn59djX9WRSOh8kp0i8pEB1E10TU4OYkaauoQ30B5J0UUPmKA1orOaC_rKFsiV2sNFmy8lsHL0DX7bHP2OAsHjCtQIsgppjYYlDisC5uAWgt0F3QBeqxemsv6QiBOOhb3Nm0khLHZxpZsbIuNe-xkVegp82e8nf2U_LDKSuTXKQGHhC1Dwr43JHpsl7y4qoRU3XFN7rH-0qu2TNRnWxMDoSGgO_yIpr-xLepO_kbTZ5uL-Uv4zj75P4u75_lRGqP4vPh7dpRuGv4DManqOQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTxQxFH5BNFEOiqJhEbEHjwy0M92Z6REWCURcPUDCrXnttIZEd8my-Pf7Xqc7wWhMvE2attOZr319_fG-D-BDi9KNy5o8NxVNwfLaBSrEQukxuro2oTMuiU0002l7fW2-rsH-EAsTQkiXz8IBP6az_G7u73mr7JDlucm4PoLHY61L2UdrDTsqLCFhxk2mFlLSHB5NJvQVtAgs5QGZXXJ29G_TT2Lpz7Iqf9jiNMGcvvi_pm3C8-xIiqMe-ZewFmavYOMBveAWXB3ffBMnuMTiZMFGTUxWd4VEL-ZAuURPWS7IdxVfyHz8yHGZYh5FH7or-CwHRWIvYU7n13B1-vFyclZkGYXCa9kuCxMdRl1FV9H4ZfaozpEJRO2dklH6SD5cLVvTeFVGVTP_Wm2oYOUbFbwKbfUG1mfzWdgGoVHLoDpKrchvcVQXvQLLRhKi2AYcQbn6u9ZnjnGWuvhu01pDGttDYhkSmyEZwf5Q6Lan2Ph39mOGbcjK_NgpgfCwebjZSvmGHFcnsem0iro1dYhosDHUY12MI9hiDIdKMnwj2F11ApvH8p0tmaTQsC3c-Xup9_D07PLzhb04n356C8-4sf0mzS6sLxf34R088T-XN3eLvdRhfwHezedE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+Data-Driven+Cognitive+Computing+System+for+Optimization+of+Social+Media+Analytics&rft.jtitle=IEEE+access&rft.au=Sangaiah%2C+Arun+Kumar&rft.au=Goli%2C+Alireza&rft.au=Tirkolaee%2C+Erfan+Babaee&rft.au=Ranjbar-Bourani%2C+Mehdi&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=82215&rft.epage=82226&rft_id=info:doi/10.1109%2FACCESS.2020.2991394&rft.externalDocID=9082678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon