Big Data-Driven Cognitive Computing System for Optimization of Social Media Analytics
The integration of big data analytics and cognitive computing results in a new model that can provide the utilization of the most complicated advances in industry and its relevant decision-making processes as well as resolving failures faced during big data analytics. In E-projects portfolio selecti...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 8; S. 82215 - 82226 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The integration of big data analytics and cognitive computing results in a new model that can provide the utilization of the most complicated advances in industry and its relevant decision-making processes as well as resolving failures faced during big data analytics. In E-projects portfolio selection (EPPS) problem, big data-driven decision-making has a great importance in web development environments. EPPS problem deals with choosing a set of the best investment projects on social media such that maximum return with minimum risk is achieved. To optimize the EPPS problem on social media, this study aims to develop a hybrid fuzzy multi-objective optimization algorithm, named as NSGA-III-MOIWO encompassing the non-dominated sorting genetic algorithm III (NSGA-III) and multi-objective invasive weed optimization (MOIWO) algorithms. The objectives are to simultaneously minimize variance, skewness and kurtosis as the risk measures and maximize the total expected return. To evaluate the performance of the proposed hybrid algorithm, the data derived from 125 active E-projects in an Iranian web development company are analyzed and employed over the period 2014-2018. Finally, the obtained experimental results provide the optimal policy based on the main limitations of the system and it is demonstrated that the NSGA-III-MOIWO outperforms the NSGA-III and MOIWO in finding efficient investment boundaries in EPPS problems. Finally, an efficient statistical-comparative analysis is performed to test the performance of NSGA-III-MOIWO against some well-known multi-objective algorithms. |
|---|---|
| AbstractList | The integration of big data analytics and cognitive computing results in a new model that can provide the utilization of the most complicated advances in industry and its relevant decision-making processes as well as resolving failures faced during big data analytics. In E-projects portfolio selection (EPPS) problem, big data-driven decision-making has a great importance in web development environments. EPPS problem deals with choosing a set of the best investment projects on social media such that maximum return with minimum risk is achieved. To optimize the EPPS problem on social media, this study aims to develop a hybrid fuzzy multi-objective optimization algorithm, named as NSGA-III-MOIWO encompassing the non-dominated sorting genetic algorithm III (NSGA-III) and multi-objective invasive weed optimization (MOIWO) algorithms. The objectives are to simultaneously minimize variance, skewness and kurtosis as the risk measures and maximize the total expected return. To evaluate the performance of the proposed hybrid algorithm, the data derived from 125 active E-projects in an Iranian web development company are analyzed and employed over the period 2014-2018. Finally, the obtained experimental results provide the optimal policy based on the main limitations of the system and it is demonstrated that the NSGA-III-MOIWO outperforms the NSGA-III and MOIWO in finding efficient investment boundaries in EPPS problems. Finally, an efficient statistical-comparative analysis is performed to test the performance of NSGA-III-MOIWO against some well-known multi-objective algorithms. |
| Author | Ranjbar-Bourani, Mehdi Zhang, Weizhe Pandey, Hari Mohan Goli, Alireza Tirkolaee, Erfan Babaee Sangaiah, Arun Kumar |
| Author_xml | – sequence: 1 givenname: Arun Kumar orcidid: 0000-0002-0229-2460 surname: Sangaiah fullname: Sangaiah, Arun Kumar organization: School of Computing Science and Engineering, Vellore Institute of Technology, Vellore, India – sequence: 2 givenname: Alireza surname: Goli fullname: Goli, Alireza organization: Department of Industrial Engineering, Yazd University, Yazd, Iran – sequence: 3 givenname: Erfan Babaee orcidid: 0000-0003-1664-9210 surname: Tirkolaee fullname: Tirkolaee, Erfan Babaee organization: Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran – sequence: 4 givenname: Mehdi surname: Ranjbar-Bourani fullname: Ranjbar-Bourani, Mehdi organization: Department of Industrial Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran – sequence: 5 givenname: Hari Mohan surname: Pandey fullname: Pandey, Hari Mohan organization: Department of Computer Science, Edge Hill University, Ormskirk, U.K – sequence: 6 givenname: Weizhe orcidid: 0000-0003-4783-876X surname: Zhang fullname: Zhang, Weizhe email: wzzhang@hit.edu.cn organization: Peng Cheng Laboratory, Shenzhen, China |
| BookMark | eNp9kU1PxCAQhonRxM9f4IXEc1cobYHjWj8TjYfVM5mysGHTLSuwJuuvF60a40EuTCbzvHln3kO0O_jBIHRKyYRSIs-nbXs1m01KUpJJKSVlstpBByVtZMFq1uz-qvfRSYxLkp_IrZofoOcLt8CXkKC4DO7VDLj1i8GlXOZqtd4kNyzwbBuTWWHrA35cJ7dyb5CcH7C3eOa1gx4_mLkDPB2g3yan4zHas9BHc_L1H6Hn66un9ra4f7y5a6f3ha6ISIW0HdiK2Y4xKvIqbN4J3kClO0os0bamsiFCck1LS5tSsLqRGWSaU6OpEewI3Y26cw9LtQ5uBWGrPDj12fBhoSBkQ71RjGrOKOkI8HlFbSVkYyxI4FJr6KzNWmej1jr4l42JSS39JuSNoiqrusruCGd5So5TOvgYg7FKu_R5jRTA9YoS9RGKGkNRH6Gor1Ayy_6w347_p05HyhljfghJRNlwwd4B0HSZJA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_su15139957 crossref_primary_10_1111_coin_12418 crossref_primary_10_3390_a16030155 crossref_primary_10_1007_s12652_020_02701_9 crossref_primary_10_1007_s12652_021_03000_7 crossref_primary_10_3390_su141912607 crossref_primary_10_1109_JIOT_2021_3090583 crossref_primary_10_1007_s12652_020_02481_2 crossref_primary_10_1007_s12597_020_00504_2 crossref_primary_10_1016_j_wasman_2021_02_047 crossref_primary_10_1016_j_asoc_2021_107272 crossref_primary_10_1016_j_ipm_2022_102888 crossref_primary_10_1007_s11356_023_25223_1 crossref_primary_10_1007_s12559_023_10176_x crossref_primary_10_1080_01605682_2023_2195426 crossref_primary_10_1002_cpe_7875 crossref_primary_10_1109_JIOT_2020_3026608 crossref_primary_10_1007_s00500_023_08371_x crossref_primary_10_1007_s00500_023_08213_w crossref_primary_10_1016_j_sasc_2025_200310 crossref_primary_10_1016_j_techfore_2021_121193 crossref_primary_10_1109_TNSE_2021_3119324 crossref_primary_10_1109_ACCESS_2022_3175842 crossref_primary_10_3390_bdcc7020076 crossref_primary_10_1007_s10479_020_03871_7 crossref_primary_10_1111_itor_70064 crossref_primary_10_1016_j_jclepro_2020_122927 crossref_primary_10_1007_s10489_022_03335_4 crossref_primary_10_1007_s10479_021_04486_2 crossref_primary_10_1016_j_eswa_2023_122770 crossref_primary_10_1155_2020_5480842 |
| Cites_doi | 10.1007/978-1-4613-0303-9_33 10.1016/j.ijinfomgt.2018.08.006 10.1108/LHTN-11-2018-0070 10.1126/science.220.4598.671 10.1016/j.engappai.2017.10.010 10.1007/s00521-018-3924-0 10.1016/j.ejor.2004.01.040 10.1016/j.eswa.2004.10.014 10.1016/j.eswa.2011.04.183 10.1016/S0377-2217(02)00881-0 10.1016/j.jdeveco.2008.07.002 10.2307/2975974 10.1007/s12190-008-0154-0 10.1016/j.swevo.2016.01.001 10.1111/risa.12801 10.1109/4235.996017 10.1002/sys.21301 10.7551/mitpress/3927.001.0001 10.1166/jmihi.2019.2692 10.1002/cpe.5130 10.1016/j.eswa.2015.06.057 10.1016/j.indmarman.2019.09.001 10.1109/SYSMART.2018.8746983 10.1016/j.ecoinf.2006.07.003 10.1016/j.ijinfomgt.2018.06.005 10.1016/j.asoc.2015.11.005 10.1016/j.eswa.2017.02.033 10.1016/j.cam.2018.10.039 10.1109/TFUZZ.2018.2842752 10.1016/j.techfore.2017.07.012 10.1007/978-3-030-05252-2_11 10.1109/TFUZZ.2002.800692 10.1016/j.ejor.2006.04.010 10.1016/j.swevo.2019.02.003 10.1016/j.cam.2007.06.009 10.1007/s00607-018-00692-2 10.1016/j.econmod.2017.03.020 10.1016/j.ejor.2013.10.060 10.1016/j.chb.2018.08.039 10.1016/j.automatica.2012.08.036 10.1109/TEVC.2013.2281535 10.1016/j.amc.2015.01.050 10.1007/s11771-016-3061-9 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.2991394 |
| DatabaseName | IEEE Xplore (IEEE) Open Access资源_IEL Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 82226 |
| ExternalDocumentID | oai_doaj_org_article_31c7310b0a7d41f4896efa9a79ccabff 10_1109_ACCESS_2020_2991394 9082678 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 61672186; 61872110 funderid: 10.13039/501100001809 – fundername: Key-Area Research and Development Program of Guangdong Province grantid: 2019B010136001 – fundername: National Key Research and Development Plan grantid: 2017YFB0801801 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-9fbaf43fb33181093db876a4cb10f0cf51960897c12f162835694083c71ec1e83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549502200044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:28:45 EDT 2025 Mon Jun 30 06:31:39 EDT 2025 Tue Nov 18 21:15:17 EST 2025 Sat Nov 29 02:42:21 EST 2025 Wed Aug 27 02:41:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-9fbaf43fb33181093db876a4cb10f0cf51960897c12f162835694083c71ec1e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0229-2460 0000-0003-1664-9210 0000-0003-4783-876X |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9082678 |
| PQID | 2454093073 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2454093073 doaj_primary_oai_doaj_org_article_31c7310b0a7d41f4896efa9a79ccabff crossref_citationtrail_10_1109_ACCESS_2020_2991394 ieee_primary_9082678 crossref_primary_10_1109_ACCESS_2020_2991394 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 zitzler (ref10) 2001 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 hao (ref25) 2009; 30 ref24 ref23 ref26 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref34 doi: 10.1007/978-1-4613-0303-9_33 – ident: ref40 doi: 10.1016/j.ijinfomgt.2018.08.006 – ident: ref4 doi: 10.1108/LHTN-11-2018-0070 – ident: ref33 doi: 10.1126/science.220.4598.671 – ident: ref18 doi: 10.1016/j.engappai.2017.10.010 – ident: ref36 doi: 10.1007/s00521-018-3924-0 – ident: ref12 doi: 10.1016/j.ejor.2004.01.040 – ident: ref7 doi: 10.1016/j.eswa.2004.10.014 – ident: ref20 doi: 10.1016/j.eswa.2011.04.183 – ident: ref6 doi: 10.1016/S0377-2217(02)00881-0 – ident: ref1 doi: 10.1016/j.jdeveco.2008.07.002 – ident: ref2 doi: 10.2307/2975974 – volume: 30 start-page: 9 year: 2009 ident: ref25 article-title: Mean-variance models for portfolio selection with fuzzy random returns publication-title: J Appl Math Comput doi: 10.1007/s12190-008-0154-0 – ident: ref29 doi: 10.1016/j.swevo.2016.01.001 – ident: ref35 doi: 10.1111/risa.12801 – ident: ref9 doi: 10.1109/4235.996017 – ident: ref44 doi: 10.1002/sys.21301 – ident: ref32 doi: 10.7551/mitpress/3927.001.0001 – ident: ref38 doi: 10.1166/jmihi.2019.2692 – ident: ref37 doi: 10.1002/cpe.5130 – ident: ref15 doi: 10.1016/j.eswa.2015.06.057 – ident: ref39 doi: 10.1016/j.indmarman.2019.09.001 – ident: ref3 doi: 10.1109/SYSMART.2018.8746983 – ident: ref26 doi: 10.1016/j.ecoinf.2006.07.003 – ident: ref41 doi: 10.1016/j.ijinfomgt.2018.06.005 – ident: ref17 doi: 10.1016/j.asoc.2015.11.005 – year: 2001 ident: ref10 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm – ident: ref8 doi: 10.1016/j.eswa.2017.02.033 – ident: ref11 doi: 10.1016/j.cam.2018.10.039 – ident: ref31 doi: 10.1109/TFUZZ.2018.2842752 – ident: ref16 doi: 10.1016/j.techfore.2017.07.012 – ident: ref43 doi: 10.1007/978-3-030-05252-2_11 – ident: ref24 doi: 10.1109/TFUZZ.2002.800692 – ident: ref13 doi: 10.1016/j.ejor.2006.04.010 – ident: ref30 doi: 10.1016/j.swevo.2019.02.003 – ident: ref14 doi: 10.1016/j.cam.2007.06.009 – ident: ref28 doi: 10.1007/s00607-018-00692-2 – ident: ref22 doi: 10.1016/j.econmod.2017.03.020 – ident: ref5 doi: 10.1016/j.ejor.2013.10.060 – ident: ref42 doi: 10.1016/j.chb.2018.08.039 – ident: ref19 doi: 10.1016/j.automatica.2012.08.036 – ident: ref27 doi: 10.1109/TEVC.2013.2281535 – ident: ref21 doi: 10.1016/j.amc.2015.01.050 – ident: ref23 doi: 10.1007/s11771-016-3061-9 |
| SSID | ssj0000816957 |
| Score | 2.374592 |
| Snippet | The integration of big data analytics and cognitive computing results in a new model that can provide the utilization of the most complicated advances in... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 82215 |
| SubjectTerms | Algorithms Big Data Big data-driven cognitive computing system Cognitive systems Computation Computational modeling Data analysis Decision analysis Decision making Digital media E-projects portfolio selection problem fuzzy system Genetic algorithms Investment Kurtosis Mathematical analysis Multiple objective analysis Optimization Performance evaluation Portfolios social media Social networking (online) Social networks Software development Sorting algorithms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCZm8aAHo07jdBoOHq2Dwko57oeLp-nBJbsRoGCW6DTb9O_3UdgyY6IXj22glMfj470Wvg-h6yqvfJUbBmmJtBk3jGaSaZLZwlbeESMZsbXYhBiPy-lUPm5JfYU9YZEeOBquw6gVEIIYokXFqeelLJzXUgsJbRvvA_oSIbeSqRqDS1rIrkg0Q5TITm8wgB5BQpiTW4BgCHz4t6WoZuxPEis_cLlebEaH6CBFibgX3-4I7bj5Mdrf4g5sokl_9oyHeqWz4SIgFh6sNwLhqNQApXDkI8cQmOIHwIbXdOgSv3kcz-Xi8KNG45qaJBA2n6DJ6O5pcJ8ljYTMclKuMumN9px5w2ByBmqoygC-aW4NJZ5YDwFaQUopLM09LQK5WiGhIrOCOktdyU5RY_42d2cIO87yrqOGdq3gRhrDcw0XnpS-sMzYFsrX5lI2EYgHHYsXVScSRKpoYxVsrJKNW-hmU-k98mf8XrwfxmFTNJBf1zfAJVRyCfWXS7RQM4zi5iFB1R3W5BZqr0dVpYm6VHlgIJQB6M7_o-kLtBe6E7_RtFFjtfhwl2jXfq5my8VV7aNfo3Lo6Q priority: 102 providerName: Directory of Open Access Journals |
| Title | Big Data-Driven Cognitive Computing System for Optimization of Social Media Analytics |
| URI | https://ieeexplore.ieee.org/document/9082678 https://www.proquest.com/docview/2454093073 https://doaj.org/article/31c7310b0a7d41f4896efa9a79ccabff |
| Volume | 8 |
| WOSCitedRecordID | wos000549502200044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources(FREE) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwEB0B4kAPhRYqFijyoUcCduyN4yMsIC6FHorEzbIdu0Jqd9GycOy3M-N4o1ZUSL1ESWRHTp49mbE97wF86eoudbWXGJaYUCkvRWWk41VoQpci90bykMUm9PV1e3dnvq3A0ZALE2PMm8_iMZ3mtfxuFp5oquyE5LnRuK7CqtZNn6s1zKeQgIQZ60IsJLg5OZ1M8B0wBKz5MRpddHXUXz-fzNFfRFVeWeL8e7nc_L-GbcH74kay0x73D7ASpx_h3R_kgttwe3b_g527havO52TS2GS5U4j1Ug5YivWE5Qw9V3aDxuNXycpks8T6xF1GKzmOZe4SYnTegdvLi--Tq6qIKFRB8XZRmeRdUjJ5iaOXuKM6jwbQqeAFTzwk9OAa3hodRJ1EQ-xrjcGKMmgRg4it_ARr09k07gKLStbjKLwYB6288V7VDi8Sb1MTpA8jqJdf14bCME5CFz9tjjS4sT0kliCxBZIRHA2VHnqCjbeLnxFsQ1Fix843EA9bBpuVImh0Wz13ulMiqdY0MTnjtMH-6lMawTZhODykwDeCg2UnsGUkP9qaKAoNWcK9f9fahw1qYD8tcwBri_lT_Azr4Xlx_zg_zDE-Hr_-vjjMHfYF8jXnBQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTxQxFH5BNFEOiqJhEbEHjwz0185Mj7BIIOLqARJuTfumNSS6S5bFv9--TneC0Zh4m5m0k8587et7bd_3AXzoZBc76VUKSwxW2itRGeV4hTV2MXBvFMcsNtFMp-31tfm6BvtDLkwIIR8-Cwd0mffyuzne01LZIclzJ-P6CB6PtZa8z9YaVlRIQsKMm0ItJLg5PJpM0lekIFDyg2R2k7Ojf5t-Mkt_kVX5wxbnCeb0xf81bROeF0eSHfXIv4S1MHsFGw_oBbfg6vjmGztxS1edLMioscnqrBDrxRxSKdZTlrPku7IvyXz8KHmZbB5Zn7rLaC_HscxeQpzOr-Hq9OPl5KwqMgoVat4uKxO9i1pFr9L4JfaozicT6DR6wSPHmHy4mremQSGjqIl_rTaposJGBBShVW9gfTafhW1gQSs5DsKLMTbaG--1dOkm8jbWqDyOQK7-rsXCMU5SF99tjjW4sT0kliCxBZIR7A-VbnuKjX8XPybYhqLEj50fJDxsGW5WCWyS4-q5azotom5NHaIzrjGpx_oYR7BFGA4vKfCNYHfVCWwZy3dWEkmhIVu48_da7-Hp2eXnC3txPv30Fp5RY_tFml1YXy7uwzt4gj-XN3eLvdxhfwE3_-gm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+Data-Driven+Cognitive+Computing+System+for+Optimization+of+Social+Media+Analytics&rft.jtitle=IEEE+access&rft.au=Sangaiah%2C+Arun+Kumar&rft.au=Goli%2C+Alireza&rft.au=Tirkolaee%2C+Erfan+Babaee&rft.au=Ranjbar-Bourani%2C+Mehdi&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=82215&rft.epage=82226&rft_id=info:doi/10.1109%2FACCESS.2020.2991394&rft.externalDocID=9082678 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |